Mathematical Journal of Okayama University

Elliptic Curves $y^{2}=x^{3}-\mathrm{px}$ of Rank Two

Blair K. Spearman*

*University of British Columbia Okanagan
Copyright © 2007 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Elliptic Curves $\mathrm{y}^{2}=\mathrm{x}^{3}$-px of Rank Two

Blair K. Spearman

Abstract

A class of prime numbers p is given for which the elliptic curve $y^{2}=x^{3}-p x$ has rank two. This extends a theorem of Kudo and Motose.

KEYWORDS: Elliptic curve, rank

Math. J. Okayama Univ. 49 (2007), 183-184
ELLIPTIC CURVES $y^{2}=x^{3}-p x$ OF RANK TWO

Blair K. SPEARMAN

Abstract

A class of prime numbers p is given for which the elliptic curve $y^{2}=x^{3}-p x$ has rank two. This extends a theorem of Kudo and Motose.

Let p be a prime number and let E denote the elliptic curve $y^{2}=x^{3}-p x$. We let $E(\mathbb{Q})$ be the set of rational points on E. Then $E(\mathbb{Q})$ has the structure of a finitely generated abelian group. We write

$$
E(\mathbb{Q})=E(\mathbb{Q})_{\text {tors }} \oplus \mathbb{Z}^{r}
$$

where $E(\mathbb{Q})_{\text {tors }}$ is a finite group and where r is a non-negative integer called the Mordell-Weil rank of E. In [2] it was shown that $E(\mathbb{Q})_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z}$. Further, the authors showed that $r=2$, the maximal rank for this type of elliptic curve, if p is a Fermat prime >5, that is $p=2^{2^{n}}+1$ with $n \geq 2$. The purpose of this paper is to extend the class of primes for which $r=2$. We prove the following theorem.

Theorem 1. Let p be an odd prime number such that $p=u^{4}+v^{4}$ for some integers u and v. Then

$$
E(\mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
$$

We note that Fermat primes $p>5$ are of the form $u^{4}+v^{4}$.
Proof. Since $u^{4}+v^{4}=p$ is odd, we have $(u, v)=1$ and exactly one of u, v is odd. The calculation of the rank of $E(\mathbb{Q})$ uses the method described in [2]. For more details see [1] or [3]. Briefly, the idea for this problem is to consider E simultaneously with the curve $y^{2}=x^{3}+4 p x$ denoted by \bar{E}.
Begin by writing down two families of equations, one for each curve according to $\left[1\right.$, Theorem 7.6]. For the curve E these equations are $d S^{4}+c T^{4}=U^{2}$ where $(d, c)=(p,-1)$ or $(-1, p)$. The number of these equations having integral solutions (S, T, U) with $S, T \geq 1$, and $(S, c)=1$ is equal to $2^{w}-2$ for some positive integer w. An analogous statement holds for the curve \bar{E} where $2^{\bar{w}}-2$ of the equations $d S^{4}+c T^{4}=U^{2}$ are solvable with $(d, c)=(2,2 p)$ or $(2 p, 2)$ because $d S^{4}+c T^{4}=U^{2}$ has no solution for $d<0$ and $c<0$. Then the rank of $E(\mathbb{Q})$ is equal to $w+\bar{w}-2$ from [1, Corollary 7.5].

[^0]The equation $p S^{4}-T^{4}=U^{2}$ has a solution $\left(S, T, U=\left(1, v, v^{2}\right)\right.$ and clearly $(S, c)=1$ where $p=u^{4}+v^{4}$.

The equation $-S^{4}+p T^{4}=U^{2}$ has a solution $(S, T, U)=\left(v, 1, u^{2}\right)$ and $(S, c)=(v, p)=1$ for otherwise $p \mid v$ so that $0 \equiv p=u^{4}+v^{4} \equiv u^{4}(\bmod p)$ implying that $p \mid u$ contradicting $(u, v)=1$.

We may assume $u>v$. The equation $2 S^{4}+2 p T^{4}=U^{2}$ has a solution $(S, T, U)=\left(u-v, 1,2 u^{2}-2 u v+2 v^{2}\right)$. If $u \equiv v(\bmod 2)$ then we have a contradiction from $p=u^{4}+v^{4} \equiv 2 u^{4} \equiv 0(\bmod 2)$. If $u \equiv v(\bmod p)$, then $0 \equiv p=u^{4}+v^{4} \equiv 2 u^{4}(\bmod p)$ so we have a contradiction $0 \equiv u \equiv v$ $(\bmod p)$. Thus $(S, c)=(u-v, 2 p)=1$.

Finally we consider the equation $2 p S^{4}+2 T^{4}=U^{2}$ which has a solution $(S, T, U)=\left(1, u-v, 2 u^{2}-2 u v+2 v^{2}\right)$ and $(S, c)=1$ where $p=u^{4}+v^{4}$.

From these observations $w=\bar{w}=2$ so the rank of $E(\mathbb{Q})=w+\bar{w}-2=2$. This completes the proof.
Let S denote the set of primes of the form $x^{4}+y^{4}$ and less than 10,000 . Then we have

$$
S=\{17,97,257,337,641,881,1297,2417,2657,3697,4177,4721,6577\}
$$

References

[1] J.S. Chahal, Topics in number theory, Kluwer Academic/Plenum Publisher, 1988.
[2] T. Kudo and K. Motose, On Group structures of some special elliptic curves, Math. J. Okayama Univ. 47 (2005), 81-84.
[3] J.H. Silverman and J. Tate, Rational points on elliptic curves, Springer New York, 1985.

Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, B.C. Canada V1V 1V7 e-mail address: blair.spearman@ubc.ca

(Received July 6, 2006)
(Revised September 21, 2006)

[^0]: Mathematics Subject Classification. 11G05.
 Key words and phrases. Elliptic curve, rank.
 Research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

