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Abstract

We show that two main theorems: (1) A regular space Y has a complete sequence if and only
if the set valued usco map to Y defined on every dense set D of any space X has an usco extension
over a Gδ-set in X containing D. (2) A regular space Y with a Gδ-diagonal has a complete sequence
if and only if the single valued continuous map to Y defined on every dense set D of any space X
has a continuous extension over a Gδ-set in X containing D.

KEYWORDS: Complete sequence, G?-diagonal, usco map, property (E), initially ?-compact,
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ON THE EXTENSIONS OF SINGLE VALUED
CONTINUOUS AND SET VALUED USC MAPS

Shôgo IKENAGA, Shin-ichi NITTA and Iwao YOSHIOKA

Abstract. We show that two main theorems: (1) A regular space Y
has a complete sequence if and only if the set valued usco map to Y
defined on every dense set D of any space X has an usco extension over
a Gδ-set in X containing D. (2) A regular space Y with a Gδ-diagonal
has a complete sequence if and only if the single valued continuous map
to Y defined on every dense set D of any space X has a continuous
extension over a Gδ-set in X containing D.

1. Introduction

In this paper, we state some results concerning the extension to a domain
space or a Gδ-set of an upper semi continuous set valued map or a single
valued continuous map defined on a dense set of a topological space.

It is well known that if the range space is compact Hausdorff (countably
compact regular), then such an upper semicontinuous map has an upper
semicontinuous extension to the domain space (the first countable domain
space) [3], [6]. Moreover, if the range space is a Moore space having a
complete sequence, such a continuous single valued map has a continuous
extension to a Gδ-set in the domain space [4], [6], [8].

In this note, we do not assume any separation axioms unless otherwise
stated. By a set valued map F : X → Y we mean that for each x ∈ X,
F (x) is a non-empty closed set in Y , and F is upper semicontinuous (usc)
if, for every point x ∈ X and every open set V with F (x) ⊂ V , there exists a
neighborhood U of x such that F (U) =

⋃
{F (z) | z ∈ U} ⊂ V . Moreover, F

is usco if F is usc and compact valued (i.e. F (x) is compact for each x ∈ X).
For a subset D of X and a set valued map G : D → Y , F is an extension of
G if F (x) = G(x) for each x ∈ D.

The real line (resp. the set of natural numbers) with its usual topology is
denoted by R (resp. N). We refer the reader to [7] for undefined terms.

We will prove the following three main theorems. Below, for a space X,
by χ(X) we mean the character of X.

Theorem 1.1. For a regular space Y , the following conditions are equivalent
for any cardinal number κ ≥ ℵ0:
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96 S. IKENAGA, S. NITTA AND I. YOSHIOKA

(1) Y is initially κ-compact,
(2) For a space X with χ(X) ≤ κ, a dense set D ⊂ X and an usc map

F : D → Y , there exists an usc extension F̃ : X → Y of F such
that F̃ (x) is initially κ-compact for every x ∈ X. Moreover, if F is
minimal, then F̃ is minimal.

Theorem 1.2. For a regular space Y , the following conditions are equiva-
lent :

(1) Y has a complete sequence,
(2) Y is a Gδ-set in its Wallman compactification wY ,
(3) For a space X, a dense set D ⊂ X and an usco map F : D → Y ,

there exist a Gδ-set G in X with D ⊂ G and an usco extension
F̃ : G → Y of F . Moreover if F is minimal, then F̃ is minimal,

(4) For a space X, a dense set D ⊂ X and a single valued continuous
map f : D → Y , there exist a Gδ-set G in X with D ⊂ G and an
usco extension f̃ : G → Y of f such that f(x) ∈ f̃(x) for every
x ∈ D.

Remark. In Theorem 1.1 (2) and Theorem 1.2 (3), the extension map F̃
of F has the following property: If G is another extension map of F , then
F̃ (x) ⊂ G(x) for each element x of the domain space of F̃ and G (see [6,
Lemma 1]).

Definition 1.3 ([8]). A space X is said to have property (E) if for each
space Z, a dense set D ⊂ Z and a single valued continuous map f : D → X,
there exist a Gδ-set G in Z with D ⊂ G and a single valued continuous
extension f̃ : G → X of f . In [6], such a space X is called an EC-space.

The next theorem slightly generalizes the results of T. M. Phillips [8,
Corollary 1.1] and S. Levi [6, Theorem 6].

Theorem 1.4. For a regular space Y with a Gδ-diagonal, the following
conditions are equivalent :

(1) Y has a complete sequence,
(2) Y has the property (E).

We will give the proof of Theorem 1.1 in section 2 while in section 3 we
will prove theorems 1.2 and 1.4.

2. Proof of Theorem 1.1

Definition 2.1. For a cardinal number κ ≥ ℵ0, a topological space X is
called initially κ-compact if every open cover U , with |U| ≤ κ, has a finite
subcover. It is well known that X is initially κ-compact if and only if
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ON THE EXTENSIONS OF SINGLE VALUED CONTINUOUS 97

every decreasing sequence of nonempty closed subsets of X, well ordered by
inclusion as

F0 ⊃ F1 ⊃ · · · ⊃ Fα ⊃ · · · , α < δ,

where δ ≤ κ, has nonempty intersection [10, Theorem 2.2].

The next lemma can be easily proved.

Lemma 2.2. Let X be Lindelöf and F : X → Y be an usc map such that
F (x) is Lindelöf for each x ∈ X and F (X) = Y . Then Y is Lindelöf.

Definition 2.3. An usc map F : X → Y is called minimal if whenever
H : X → Y is an usc map with H(x) ⊂ F (x) for every x ∈ X, then
H(x) = F (x) for every x ∈ X.

Example 2.4. There exists a minimal usc map which is not an usco map.
Let X = {0} ∪ {1/n | n ≥ 1} and Y = N endowed with the subspace

topology of R. Then Y is a disjoint sum
⋃

k≥1 Mk with |Mk| = ℵ0 for every
k ∈ N. We define a set valued map F : X → Y by F (x) = {k} if 1/x ∈ Mk

and F (0) = Y . This usc map is minimal. Indeed, if H : X → Y is an usc
map with Gr(H) $ Gr(F ), where Gr(F ) =

⋃
{{x} × F (x) | x ∈ X} is the

graph of F , then H(0) ⊂ Y \{m} for some m ∈ Y . Hence, H(W ) ⊂ Y \{m}
for some neighbourhood W of 0. Consequently, m = H(1/k) ⊂ Y \ {m},
since 1/k ∈ W for some k ∈ Mm. ¤

The next lemma is well known for an usco map [1].

Lemma 2.5. Let Y be a regular space and F : X → Y be an usc map, then
the following conditions are equivalent :

(1) F is minimal,
(2) For every open set U in X and every open set V in Y with F (U) ∩

V 6= ∅, there exists a non-empty open set W ⊂ U with F (W ) ⊂ V .

Proof. The implication (2) ⇒ (1) is well known, therefore we sketch the proof
of (1) ⇒ (2). The restriction G = F |U : U → Y is minimal. If G(x) ⊂ V
for some x ∈ U , then F (W ) = G(W ) ⊂ V for some neighbourhood W ⊂ U
of x since G is usc. If G(x) \ V 6= ∅ for every x ∈ U , then let K : U → Y
be defined by K(x) = G(x) \ V . Then K is usc and K(z) $ G(z) for some
z ∈ U with F (z) ∩ V 6= ∅. This is a contradiction. ¤
Proof of Theorem 1.1. (1) ⇒ (2): For a point x ∈ X, let U(x) be the open
neighbourhood base at x with |U(x)| ≤ χ(X) and F̃ (x) =

⋂
{F (U ∩ D) |

U ∈ U(x)}. Then A(x) = {F (U ∩ D) | U ∈ U(x)} is a filter base with
|A(x)| ≤ κ, so that F̃ (x) =

⋂
A(x) 6= ∅ and F̃ (x) is initially κ-compact.

For any open set V in Y with F̃ (x) ⊂ V , we have F (U1 ∩ D) ⊂ V for some
U1 ∈ U(x), therefore F̃ (U1) ⊂ V . This implies that F̃ is usc.
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98 S. IKENAGA, S. NITTA AND I. YOSHIOKA

We now show that F (x) = F̃ (x) for x ∈ D. Evidently, F (x) ⊂ F̃ (x).
If y ∈ F̃ (x) \ F (x), there exists an open set V in Y such that y 6∈ V and
F (x) ⊂ V . Then we have y ∈ F̃ (x) ⊂ F (U ∩ D) ⊂ V since F (U ∩ D) ⊂ V

for some U ∈ U(x). This contradiction implies F (x) = F̃ (x).
Finally, let F be minimal. For an open set U in X and an open set V

in Y with F̃ (U) ∩ V 6= ∅, then there exist x1 ∈ U , z ∈ F̃ (x1) ∩ V and
U1 ∈ U(x1) with x1 ∈ U1 ⊂ U . So, there exists an open set V1 in Y with
z ∈ V1 ⊂ V1 ⊂ V , then F (U1∩D)∩V1 6= ∅. By the minimality of F , we have
a non empty open set H ⊂ U1 ∩ D in D with F (H) ⊂ V1. Consequently,
F̃ (H1) ⊂ V for some open set H1 in X such that H1 ∩D = H and H1 ⊂ U1.
This implies that F̃ is minimal by Lemma 2.5.

(2) ⇒ (1): For any δ ≤ κ, let {Fα | α < δ} be a decreasing sequence
of nonempty closed subsets as in the equivalent condition of Definition 2.1.
And let X = {α | α < δ} with discrete topology and cX = X ∪ {p} (p 6∈ X)
be the one point compactification of X. Then, we have that χ(X) ≤ κ.
Hence, for the usc map F : X → Y defined by F (α) = Fα for every α < δ,
there exists an usc extension F̃ : cX → Y of F such that F̃ (z) is initially
κ-compact for every z ∈ cX. Then, we have that F̃ (p) ∩ Fα 6= ∅ for every
α < δ. By initially κ-compactness of F̃ (p), {Fα | α < δ} has nonempty
intersection. ¤

Remark. With maps between the subspaces of R, we have
(1) The continuous map f(x) = sin(1/x) : (0, 1] → [−1, 1] has no con-

tinuous single valued extension to [0, 1],
(2) The usco map f(x) = 1/x : (0, 1] → [0,∞) has no usco extension to

[0, 1].

We have the following result for an usc map to a Lindelöf space. We first
give the following definition.

Definition 2.6. A space X is called a P -space if every Gδ-set in X is open.

Proposition 2.7. For a regular space Y , the following conditions are equiv-
alent :

(1) Y is Lindelöf,
(2) For a P -space X, a dense subset D ⊂ X and an usc map F : D → Y ,

there exists an usc extension F̃ : X → Y of F such that F̃ (x) is
Lindelöf for every x ∈ X.

Proof. (1) ⇒ (2) is similar to the proof of (1) ⇒ (2) of Theorem 1.1.
(2) ⇒ (1): If |Y | ≤ ℵ0, Y is Lindelöf. If |Y | > ℵ0, let Ỹ = Y with the

discrete topology and let Z = Ỹ ∪ {p} (p 6∈ Ỹ ) whose topology is induced
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ON THE EXTENSIONS OF SINGLE VALUED CONTINUOUS 99

by the following neighbourhood system. V(p) = {{p} ∪ (Ỹ \ B) | B ⊂
Ỹ and |B| ≤ ℵ0} and V(y) = {{y}} for y ∈ Ỹ . Then Z is a Lindelöf
P -space and it contains Ỹ as a dense subset. Hence, the continuous map
f : Ỹ → Y with f(y) = y for y ∈ Ỹ , has an usc extension f̃ to Z such that
f̃(z) is Lindelöf for z ∈ Z. Consequently, Y is Lindelöf by Lemma 2.2. ¤

3. Proofs of theorems 1.2 and 1.4

Definition 3.1 ([4]). Let X be a space. A sequence {Gn}n≥1 of open covers
of X is called a complete sequence if, for every open filter A on X such that
A∩Gn 6= ∅ for each n ∈ N,

⋂
A =

⋂
{A | A ∈ A} is not empty. In a regular

space X, this condition is equivalent to saying that there exists a sequence
{Gn}n≥1 of open covers of X satisfying the following property: if F is a filter
base on X such that, for every n ∈ N, there exist Fn ∈ F and Gn ∈ Gn with
Fn ⊂ Gn, then

⋂
F is not empty. We use this characterization for regular

spaces.

Definition 3.2 ([5]). A subspace Y of a space Z is regularly embedded in Z
if for every y ∈ Y and every open neighbourhood U of y in Z, there exists
an open neighbourhood V of y in Z with y ∈ V ⊂ V ⊂ U .

Lemma 3.3 ([5]). A regular space X is regularly embedded in its Wallman
compactification wX.

We now prove the following proposition which will be used in the proofs
of Theorems 1.2 and 1.4.

Proposition 3.4. Let Y be a regular space with a complete sequence
{Gn}n≥1. Then, for a space X, a dense set D ⊂ X and an usco map
F : D → Y , there exist a Gδ-set G in X with D ⊂ G and an usco extension
F̃ : G → Y of F . If F is minimal, then F̃ is minimal. Moreover, if Y has
a Gδ-diagonal, then Y has the property (E).

Proof. For a point x ∈ X, let U(x) = {U | U is an open neighbourhood of x

in X}. For each n ∈ N, the set On = {x ∈ X | F (U1 ∩ D) ⊂ G1 ∪ · · · ∪ Gk

for some U1 ∈ U(x) and some finite {G1, . . . , Gk} ⊂ Gn} is open in X with
D ⊂ On. Hence, H =

⋂
n≥1 On is a Gδ-set in X and contains D. Let

F̃ : H → Y be defined by F̃ (x) =
⋂
{F (U ∩ D) | U ∈ U(x)}, then the

collection A = {F (U ∩ D) | U ∈ U(x)} has the finite intersection property
and ∅ 6=

⋂
A = F̃ (x) [4, Proposition 2.13]. Also F̃ (x) is compact. Moreover

the map F̃ is an usc extension of F by analogy with (1) ⇒ (2) of Theorem 1.1.
If F is minimal, for an open set U in H and an open set V in Y with

F̃ (U) ∩ V 6= ∅, there exist u ∈ U and z ∈ F̃ (u) ∩ V . Let V1 be open in
Y with z ∈ V1 ⊂ V1 ⊂ V , then z ∈ F̃ (u) ∩ V1 ⊂ F (U ∩ D) ∩ V1. Hence
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100 S. IKENAGA, S. NITTA AND I. YOSHIOKA

F (U ∩D)∩ V1 6= ∅. By the minimality of F , there exists a non-empty open
set P ⊂ U ∩ D in D with F (P ) ⊂ V1. Then, there exists a non-empty open
set P1 ⊂ U in H with P1 ∩ D = P and consequently F̃ (P1) ⊂ V . This
implies that F̃ is minimal.

Next, if Y has a Gδ-diagonal, we can assume that the complete sequence
{Gn}n≥1 satisfies

⋂
n≥1 St(y,Gn) = {y} for every y ∈ Y ([2]). Let F be

a single valued continuous map. For each n ∈ N, let O′
n = {x ∈ X |

F (U ∩ D) ⊂ G for some U ∈ U(x) and some G ∈ Gn} and H ′ =
⋂

n≥1 O′
n.

Then H ′ is a Gδ-set in X containing D. Consequently, the restriction map
F̃ : H ′ → Y is an usco extension of F .

To see that F̃ is single valued, for each point x ∈ H ′, F (x) ⊂ F (Un ∩ D) ⊂
Gn for some Un ∈ U(x) and some Gn ∈ Gn for every n ∈ N. Hence, F̃ (x) is
a single point, since

⋂
n≥1 Gn is a single point and F̃ (x) ⊂

⋂
n≥1 Gn. ¤

Proof of Theorem 1.2. The implications (1) ⇒ (3) ⇒ (4) are evident by
Proposition 3.4.

(4) ⇒ (2): The identity map f : Y → Y has an usco extension f̃ to a
Gδ-set H in wY with Y ⊂ H, and y ∈ f̃(y) for every y ∈ Y . If z ∈ H \ Y ,
f̃(z) is a compact set of Y . Hence, there are open sets V , W in wY such that
f̃(z) ⊂ V , z ∈ W and V ∩ W = ∅ [Lemma 3.3]. Then, there exists an open
neighbourhood W1 ⊂ W of z in wY such that f̃(W1 ∩ H) ⊂ V . Therefore
we have ∅ 6= Y ∩ W1 ⊂ f̃(W1 ∩ H) ∩ W1 ⊂ V ∩ W1. This contradiction
implies that Y = H.

(2) ⇒ (1): Let Y =
⋂

n≥1 Hn, where each Hn is open in wY . Put Gn =
{V ∩Y | V is open in wY and V ⊂ Hn} for each n ∈ N. By Lemma 3.3, we
get a complete sequence {Gn}n≥1. ¤

Proof of Theorem 1.4. The implication (1) ⇒ (2) follows from Proposi-
tion 3.4 and the implication (2) ⇒ (1) follows from Theorem 1.2. ¤

From Theorem 1.4, we get a slight generalization of the Lavrentieff The-
orem.

Corollary 3.5. Let X and Y be regular spaces in which closed sets are
Gδ-sets and having complete sequences and Gδ-diagonals. If A and B are
subspaces of X and Y respectively, and f : A → B is a homeomorphism, then
f has a homeomorphic extension between two Gδ-set GA, GB with A ⊂ GA,
B ⊂ GB.

We now show some results concerning extensions of single-valued closed
continuous maps.

6
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ON THE EXTENSIONS OF SINGLE VALUED CONTINUOUS 101

Definition 3.6. A continuous map f : X → Y is closed if f(F ) is closed in
Y for every closed set F in X. A continuous map f : X → Y is perfect if f
is closed and f−1(y) is compact for every point y ∈ Y .

V. I. Ponomarev proved the following result:

Ponomarev’s theorem ([9, Theorem 3]). Any single valued closed con-
tinuous map f from a T1-space X onto a T1-space Y can be extended to a
single valued closed continuous map g : wX → wY .

As an immediate consequence of Theorem 1.2 and Ponomarev’s theorem,
we obtain the following:

Proposition 3.7. For a regular space Y , the following conditions are equiv-
alent :

(1) Y has a complete sequence,
(2) For a T1-space X and a single valued closed continuous map f : X →

Y , there exist a Gδ-set G containing X in wX and a single valued
continuous extension f̃ : G → Y of f . Moreover, f̃ is perfect and
f̃(G) = f(X),

(3) For a T1-space X and a single valued closed continuous map f : X →
Y , there exist a subspace G containing X of wX having a complete
sequence and a single valued continuous extension f̃ : G → Y of f .
Moreover, f̃ is perfect and f̃(G) = f(X).

Proof. (1) ⇒ (2): A closed subspace B = f(X) of Y is a Gδ-set in wB
by Theorem 1.2. Then, the closed continuous onto map f : X → B has a
closed continuous extension g : wX → wB, by the Ponomarev’s theorem.
Therefore, the inverse image G = g−1(B) is a Gδ-set in wX with X ⊂ G and
the restriction f̃ = g|G : G → Y of g is a perfect map and f̃(G) = f(X).

The implication (2) ⇒ (3) is shown in an analogous manner as in the
proof of (2) ⇒ (1) of Theorem 1.2.

(3) ⇒ (1): For the identity map f : Y → Y , there exist a subspace G
with Y ⊂ G in wY having a complete sequence and a continuous extension
f̃ : G → Y of f . Let {Un}n≥1 be a complete sequence of G, then we show
that {{U ∩Y | U ∈ Un} | n ∈ N} is a complete sequence of Y . For any filter
base F in Y such that Fn ⊂ Un ∩ Y for some Fn ∈ F and some Un ∈ Un

for every n ∈ N, there exists a point z ∈ (
⋂

F) ∩ G. Let U be any open
neighbourhood of f̃(z) in Y , then there exists an open neighbourhood W of
z in G such that f̃(W ) ⊂ U . Therefore, we have

∅ 6= F ∩ W ⊂ F ∩ f̃(W ) ⊂ F ∩ U for every F ∈ F .

Hence, f̃(z) ∈ (
⋂

F) ∩ Y and this implies that {{U ∩ Y | U ∈ Un} | n ∈ N}
is a complete sequence of Y . ¤

7

Ikenaga et al.: On the Extensions of Single Valued Continuous and Set Valued Usc

Produced by The Berkeley Electronic Press, 2001



102 S. IKENAGA, S. NITTA AND I. YOSHIOKA

Finally, we give some results concerning maps with a locally compact
range.

Proposition 3.8. For a regular space Y , the following conditions are equiv-
alent :

(1) Y is locally compact,
(2) For a space X, a dense set D ⊂ X and an usco map F : D → Y ,

there exist an open set O in X with D ⊂ O and an usco extension
F̃ : O → Y of F . Moreover, if F is minimal, then F̃ is minimal,

(3) For a space X, a dense set D ⊂ X and a single valued continuous
map f : D → Y , there exist an open set O in X with D ⊂ O and an
usco map f̃ : O → Y such that f(x) ∈ f̃(x) for every x ∈ D.

Proof. (1) ⇒ (2): Let F : D → Y be an usco map, then F is an usco
map from D into the Stone-Čech compactification βY of Y . Hence, F has
an usco extension F̃ : X → βY by a result similar to Theorem 1.1. Let
O =

⋃
{U | U is open in X and F (U) ⊂ Y }, then O is open in X with

D ⊂ O and the restriction F1 = F̃ |O : O → Y is an usco extension of F . If
F is minimal, then F̃ is minimal. Hence F1 is also minimal.

The implication (2) ⇒ (3) is evident.
(3) ⇒ (1): For the identity map f : Y → Y , there exist an open set O

with D ⊂ O in wY and an usco map f̃ : O → Y with y ∈ f̃(y), for every
y ∈ Y . For y ∈ Y , there exists an open set V in wY with y ∈ V ⊂ V ⊂ O.
Therefore, V ∩ Y is a neighbourhood of y in Y , V ∩ Y ⊂ f̃(V ) ⊂ f̃(O) = Y

and f̃(V ) is compact. Consequently, Y is locally compact. ¤
Example 3.9. There exist a space X, a dense set D ⊂ X and a continuous
map f from D to a locally compact Hausdorff space Y such that f has no
continuous extension to O for every open set O in X containing D.

Let X = [0, 1] × [−1, 1] have the subspace topology of R2, D1 = [0, 1] ×
[−1, 0] \ ({0} × [−1, 0) ∪ (0, 1]× {0}) and D2 = [0, 1]× [0, 1] \ ({0} × (0, 1] ∪
(0, 1] × {0}). Then, D = D1 ∪ D2 is a dense Gδ-set in X. We define a
continuous map f from D to a compact metric space [0,

√
2] having the

subspace topology of R as follows:

f(x, y) =

{
0 if (x, y) ∈ D1,√

x2 + y2 if (x, y) ∈ D2.

The map f satisfies the mentioned above conditions. ¤
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