Mathematical Journal of Okayama University

Volume 23, Issue 1

1981 JUNE 1981 Article 4

Note on Azumaya algebras and H-separable extensions

Shûichi Ikehata*

*Okayama University

Copyright ©1981 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 23 (1981), 17-18

NOTE ON AZUMAYA ALGEBRAS AND H-SEPARABLE EXTENSIONS

SHÛICHI IKEHATA

Let A/B be a ring extension with common identity 1, and C be the center of A. If $A \bigotimes_B A$ is A-A-isomorphic to an A-A-direct summand of a finite direct sum A^n then A/B is called to be H-separable. As is well known, A/C is H-separable if and only if A is an Azumaya C-algebra. The purpose of this note is to prove the following theorem, which has an application (Th. 2).

Theorem 1. Let A be an Azumaya C-algebra, and $A \supset B \supset C$. If A_B is projective then A/B is H-separable.

Proof. Since A/C is separable, there exists an element $\sum_i r_i \otimes s_i$ in $A \otimes_c A$ such that $\sum_i r_i s_i = 1$ and $\sum_i ar_i \otimes s_i = \sum_i r_i \otimes s_i a$ for all $a \in A$. Further, since A_B is f.g. projective, there exists a finite number of elements $t_j \in A$ and $f_j \in \text{Hom}(A_B, B_B)$ such that $\sum_j t_j f_j(a) = a$ for all $a \in A$. Then, the mapping $\theta : u \otimes v \to \sum_j ut_j \otimes f_j(v)$ of $A \otimes_c A$ into itself is an endomorphism, and

$$\sum_{i,j} r_i t_j \otimes f_j(s_i a x) y = \theta(\sum_i r_i \otimes s_i a x) y = \theta(\sum_i a r_i \otimes s_i x) y$$
$$= \sum_{i,j} a r_i t_j \otimes f_j(s_i x) y$$

where $a, x, y \in A$. This implies that the map $\phi: A \otimes_B A \to A \otimes_C A$ defined by $x \otimes y \to \sum_{i,j} r_i t_j \otimes f_j(s_i x) y$ is an A-A-homomorphism. Obviously, the canonical map $\psi: A \otimes_C A \to A \otimes_B A$ is an A-A-homomorphism and $\psi \phi$ is the identity map of $A \otimes_B A$. Hence ${}_A A \otimes_B A_A \langle \bigoplus_A A \otimes_C A_A$. Since A/C is H-separable, it follows that A/B is H-separable.

Next, we need the following

Lemma. Let A/B be H-separable, and $_{A}M$ a unital A-module. If $_{B}M$ is a generator then so is $_{A}M$.

Proof. Since ${}_{B}M$ is a generator, ${}_{B}B\langle\bigoplus {}_{B}M^{n}$ for some integer n > 0. Further, since A/B is H-separable, ${}_{A}A\bigotimes_{B}A_{A}\langle\bigoplus {}_{A}A\overset{n}{}_{A}$ for some integer m > 0. Then, we obtain ${}_{A}A \simeq {}_{A}A\bigotimes_{B}B\langle\bigoplus {}_{A}A\bigotimes_{B}M^{n} \simeq {}_{A}(A\bigotimes_{B}M)^{n} \langle \bigoplus {}_{A}M^{mn}$.

Now, let B be a commutative ring, G a finite group of automorphisms

S. IKEHATA

of *B*, and $R = B^{\sigma}$ (the fixed ring of *G* in *B*). Moreover, $\varDelta(B; G)$ denotes the trivial crossed product $\bigoplus_{\sigma \in G} Bu_{\sigma}$ with $u_{\sigma}u_{\tau} = u_{\sigma\tau}$ and $u_{\sigma}b = \sigma(b)u_{\sigma}$ ($\sigma, \tau \in G, b \in B$). Obviously, the map $j: \varDelta(B; G) \to \operatorname{Hom}(B_R, B_R)$ defined by $j(bu_{\sigma})(x) = b\sigma(x)$ ($b, x \in B, \sigma \in G$) is a ring homomorphism. If j is an isomorphism and B_R is f. g. projective then B/R is called to be *G*-Galois (cf. [1], [2]). Under this situation, we shall prove the following theorem which contain some characterizations of Galois extensions of commutative rings.

Theorem 2. Let B be a commutative ring, G a finite group of automorphisms of B, $R = B^{c}$, and $\Delta = \Delta(B; G)$. Then the following conditions are equivalent.

- (1) B/R is G-Galois.
- (2) *∆* is an Azumaya R-algebra.
- (3) Δ/B is H-separable.

When this is the case, B is a maximal commutative R-subalgebra of \varDelta with $\varDelta \bigotimes_{\mathbb{R}} B \simeq M_m(B)$ and $B \bigotimes_{\mathbb{R}} \varDelta \simeq M_m(B)$, where m is the order of G.

Proof. $(1) \Longrightarrow (2)$. It is well known ([2, Prop. 3. 1. 2 and Prop. 2. 4. 1]). $(2) \Longrightarrow (3)$. Since ${}_{B} \varDelta$ is free, it follows from Th. 1. $(3) \Longrightarrow (1)$. By Lemma, ${}_{d}B$ is a generator. Hence B/R is G-Galois by [1, Prop. A. 1]. Finally, if B/R is G-Galois then B coincides with the centralizer of B in \varDelta , and hence the last assertion follows immediatly from [3, Lemma 1 (3)].

REFERENCES

- M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97(1960), 367-409.
- [2] F. DEMEYER and E. INGRAHAM: Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer, Berlin, 1971.
- [3] T. NAKAMOTO: On QF-extensions in an H-separable extensions, Proc. Japan Acad. 50 (1974), 440-443.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received June 17, 1980)