Mathematical Journal of Okayama University

Volume 18, Issue 1

1975

Article 7

DECEMBER 1975

A note on quotient rings over a quasi-Frobenius extension

Yoshimi Kitamura*

*Tokyo Gakugei University

Copyright ©1975 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

A NOTE ON QUOTIENT RINGS OVER A QUASI-FROBENIUS EXTENSION

YOSHIMI KITAMURA

Let A/B be a ring extension. When A/B is a Quasi-Frobenius (QF) (resp. Frobenius) extension, it seems to be natural to ask where the maximal right quotient ring $Q_{\max}(A)$ of A in the sense of Utumi-Lambek is a QF (resp. Frobenius) extension of the maximal right quotient ring $Q_{\max}(B)$ of B or not. In the previous paper [4], we showed that the answer is affirmative if A/B is a Frobenius extension such that

 $(*)_0$ A is finitely generated as a B-module by elements which centralize B.

In the present paper, we shall further investigate the above question under a suitable hypothesis. Our main result of this paper is the following:

If A/B is a QF (resp. Frobenius) extension satisfying (*)₀ or the condition:

(**)_B the class of right B-modules with zero duals is closed under taking submodules

then $Q_{\max}(A)$ is a QF (resp. Frobenius) extension of $Q_{\max}(B)$ such that $Q_{\max}(A) \cong Q_{\max}(B) \otimes_B A \cong \otimes_B Q_{\max}(B)$ canonically. Here, by the dual of a right B-module X, we mean $\operatorname{Hom}(X_B, B_B)$.

It is interesting to observe that when A/B is QF, A satisfies $(**)_A$ if and only if B does $(**)_B$ (Proposition 1. 4).

Throughout this paper, A will denote a ring with identity element and B a subring of A with the common identity element. The notation and terminology are same as [4] unless otherwise specified.

- 1. Let R be a ring with identity element. A non-empty set \mathfrak{F} of right ideals of R is called an idempotent filter of R if the following conditions are satisfied:
 - (i) If $I \in \mathcal{F}$ and $I \subset J$, then $J \in \mathcal{F}$.
 - (ii) If $I, J \in \mathcal{F}$, then $I \cap J \in \mathcal{F}$.
 - (iii) If $I \in \mathcal{F}$, $a \in R$, then $a^{-1}I = \{x \in R \mid ax \in I\} \in \mathcal{F}$.
 - (iv) If $I \in \mathcal{F}$, $a^{-1}J \in \mathcal{F}$ for every $a \in I$, then $J \in \mathcal{F}$.

Let \mathfrak{F} be an idempotent filter of R. Then \mathfrak{F} is obviously a directed set by inverse inclusion and $Q_{\mathfrak{F}}(R) = \lim_{I \in \mathfrak{F}} \operatorname{Hom}_{\mathfrak{K}}(I, R/T_{\mathfrak{F}}(R))$ has

a ring structure in a natural way, where $T_{\mathfrak{F}}(R) = \{a \in R \mid aI = 0 \text{ for } aI = 0\}$

some $I \in \mathfrak{F}$, called the right quotient ring of R with respect to \mathfrak{F} , and moreover there is a canonical ring homomorphism $R \longrightarrow Q_{\mathfrak{F}}(R)$ whose kernel is $T_{\mathfrak{F}}(R)$. Thus the last homomorphism is monic if and only if the following condition is enjoyed:

(v) The left annihilator of every member of \mathfrak{F} is zero. The largest set of right ideals of R satisfying (i)—(v) is the filter consisting of all dense right ideals of R, where a right ideal I of R is said to be dense if for every x, $y \in R$, $y \neq 0$, there exists some $a \in R$ such that $xa \in I$ and $ya \neq 0$, or equivalently, if $\operatorname{Hom}(R/I_R, E(R_R)_R) = 0$, $E(R_R)$ the injective hull of R_R . The right quotient ring with respect to this filter is called the maximal right quotient ring of R and denoted by $Q_{\max}(R)$ (see for details, [6] and [8]).

Now we shall turn to a ring extension A/B.

58

Proposition 1.1. Let \mathfrak{F} be a non-empty set of right ideals of B and \mathfrak{F} the set of right ideals of A which contain some member in \mathfrak{F} . If \mathfrak{F} satisfies (i), (ii) and (iv), then \mathfrak{F} satisfies (i), (ii) and (iv). Morever if (*) A is generated as a B-module by elements which centralize B, then \mathfrak{F} satisfies (iii) whenever so does \mathfrak{F} .

Proof. Clearly, \mathfrak{F} satisfies (i) and (ii). Let I be a member in \mathfrak{F} with $I \supset J$ for some $J \in \mathfrak{F}$. Let K be a right ideal of A such that $x^{-1}K \in \mathfrak{F}$ for every $x \in I$. Since $b^{-1}(K \cap B) = b^{-1}K \cap B \in \mathfrak{F}$ for every $b \in J$, we obtain $K \cap B \in \mathfrak{F}$, and so, $K \in \mathfrak{F}$, proving (iv). Next assume further (*) and (iii) for \mathfrak{F} . Then every element a of A can be written as $a = \sum b_i a_i$ with some $a_i \in V_A(B) = \{a \in A \mid ab = ba \text{ for all } b \in B\}$ and $b_i \in B$ ($i = 1, \dots, t$). Since $b_i^{-1}(I \cap B) \in \mathfrak{F}$ for all i, we have $\cap b_i^{-1}(I \cap B) \in \mathfrak{F}$, and so, $a^{-1}I \in \mathfrak{F}$ because of $a^{-1}I \supset \cap b_i^{-1}(I \cap B)$.

To contrast with the above proposition, we shall prove the next.

Proposition 1.2. Let \mathcal{F} be a non-empty set of right ideals of A satisfying (i), (ii) and (iii), and \mathcal{F}' the set of right ideals J of B with $J \supset I'$ for some $I \in \mathcal{F}$, where I' denotes the right ideal of B generated by the elements of the form f(x), $x \in I$, $f \in \text{Hom}(_BA,_BB)$. Then \mathcal{F}' satisfies (i), (ii) and (iii). Moreover, if $_BA$ satisfies (*) and is projective then \mathcal{F}' satisfies (iv) whenever so does \mathcal{F} .

Proof. Obviously, \mathfrak{F}' satisfies (i) and (ii). Let I and b be elements in \mathfrak{F} and B respectively. Since $(b^{-1}I)' \subset b^{-1}I'$, we have $b^{-1}I' \in \mathfrak{F}'$, proving (iii). Assume further that ${}_BA$ is projective and (*) is satisfied. Let $\{a_i\}_i \subset V_{\cdot,i}(B)$ be a generating set for the left B-module A. Then, by the projectivity of ${}_BA$, there exists a subset $\{f_i\}_i \subset I$.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol18/iss1/7

Hom (A_B, B_B) such that, for each $x \in A$, $f_i(x) = 0$ for almost all i and $x = \sum f_i(x) a_i$. (Such a system $(f_i, a_i)_i$ is called a dual basis for $_BA$). Let J be a right ideal of B such that $y^{-1}J \in \mathfrak{F}'$ for every $y \in I'$. For every element $x = \sum f_i(x)a_i$ in I, $\bigcap f_i(x)^{-1}J$ is contained in $x^{-1}JA$ and contains some $I'_0(I_0 \in \mathfrak{F})$ as a member of \mathfrak{F}' , and so, $I_0 \subset I'_0 \cdot A \subset x^{-1}JA$. Therefore $JA \in \mathfrak{F}$ by (iv), which implies $(JA)' \subset J \in \mathfrak{F}'$ as desired.

We now consider the following conditions on a ring R which have been investigated in [2]:

- $(**)_R$ The class of right R-modules with zero duals is closed under taking submodules.
- (***)_R The class of torsionless right R-modules is closed under taking extensions.

As was mentioned in [2], if the injective hull $E(R_R)_R$ of R_R is torsionless then R satisfies $(**)_R$ and $(***)_R$. We shall show in the following proposition that these conditions are inherited for QF extensions. Although, the next lemma was cited in the foot note of [2, p. 450], for the sake of completeness, we give here a proof.

Lemma 1.3. A ring R satisfies $(**)_R$ if and only if $\operatorname{Hom}(X_R, E(R_R)_R) = 0$ for every X_R with zero dual.

Proof. It is enough to prove the only if part. Let X_R be a right R-module with zero dual. If $f(X) \neq 0$ for some $f \in \operatorname{Hom}(X_R, E(R_R)_R)$, then $f(X) \cap R \neq 0$, which contradicts $(**)_R$.

Proposition 1.4. Suppose A/B is a QF extension. Then B satisfies $(**)_B$ (resp. $(***)_B$) if and only if so does A.

Proof. Let $(\alpha_i: \sum_j x_{ij} \otimes y_{ij})_{1 \le i \le p}$ be a right QF system for $A/B^{(i)}$. First, we claim the followings:

a) If Y_B is torsionless, then $\operatorname{Hom}(A_B, Y_B)_A$ is torsionless and a mapping $\alpha_V: Y \longrightarrow \operatorname{Hom}(A_B, Y_B)^p$ defined by $\alpha_V(y) = (\lambda_V \cdot \alpha_i)_i$ for $y \in Y$ is monic, where λ_V denotes a mapping $B \longrightarrow Y$ given by $\lambda_V(b) = yb$ for $b \in B$. In fact, the first assertion is clear, because $Y_B \subset \Pi B_B$ implies $\operatorname{Hom}(A_B, Y_B)_A \subset \Pi$ $\operatorname{Hom}(A_B, B_B)_A \subset \Pi A_A$. To see the second one, let us assume $\lambda_V \cdot \alpha_i = 0$ for all i. Then $\alpha_i \cdot f(y) = 0$ in $\operatorname{Hom}(A_B, B_B)$ for every $f \in \operatorname{Hom}(Y_B, B_B)$, and so, f(y) = 0. As Y_B is torsion-

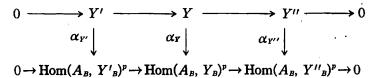
¹⁾ A right QF system for A/B is defined as a system $(\alpha_i; \sum_j x_{ij} \otimes y_{ij})_{1 \leq i \leq p}$ with $\sum_{i,j} \alpha_i(x_{ij})$ $y_{ij}=1$, where every α_i is a B-B-homomorphism of A to B and every $\sum_j x_{ij} \otimes y_{ij}$ is a casimir element of $A \otimes_B A$, that is, an element which commutes with all elements of A. A left QF system for A/B is defined similarly (see [5]).

60

less, this means y = 0.

- b) X_A is torsionless if and only if so is it as a B-module. Noting $X_A \subset \operatorname{Hom}(A_B, X_B)_A$, this is a consequence of a).
- c) $_B \operatorname{Hom}(X_A, A_A) \sim _B \operatorname{Hom}(X_B, B_B)$ for every X_A . In fact, $_B \operatorname{Hom}(X_A, A_A) \sim _B \operatorname{Hom}(X_A, \operatorname{Hom}(A_B, B)_B) \cong _E \operatorname{Hom}(X \otimes _A A_B, B_B) \cong _B \operatorname{Hom}(X_B, B_B)$.

Now assume the validity of $(**)_A$, and let Y be a right B-module with zero dual and Y' an arbitrary submodule of Y. Since $Hom(A_B, Y_B)_A \subset Hom(A_B, Y_B)_A$ and $Hom(Hom(A_B, Y_B)_A, A_A) \sim Hom(Y \otimes_B A_A, A_A) \cong Hom(Y_B, A_B) \mid Hom(Y_B, B_B)$ (as abelian groups), the validity of $(**)_A$ yields $Hom(Y'_B, A_B) = 0$, and so, $Hom(Y'_B, B_B) = 0$ as desired. The converse is clear by c). Next assume the validity of $(***)_A$. Let $0 \longrightarrow Y' \longrightarrow Y \longrightarrow Y'' \longrightarrow 0$ be a short exact sequence of tight B-modules with Y', Y'' torsionless. We have the following commutative diagram with rows exact:



Therefore $\operatorname{Hom}(A_B, Y_B)$ is torsionless as an A and hence as a B-module by a) and $(***)_A$. Recalling here that $\alpha_{Y'}$ and $\alpha_{Y''}$ are both monic by a), we can see $\alpha_{Y'}$ to be monic and Y_B to be torsionless. Conversely, A satisfies $(***)_A$ whenever B dose $(***)_B$ from b).

Proposition 1.5. Suppose that A/B is QF and that either (*) or (**)_B is satisfied. If I (resp. J) is a dense right ideal of A (resp. B), then so is $I \cap B$ (resp. JA) in B (resp. A).

Proof. First, we note the following fact that the canonical injection $B/I \cap B \longrightarrow A/I$ induces a surjection $\operatorname{Hom}(A/I_B, E(B_B)_B) \longrightarrow \operatorname{Hom}(B/I \cap B_B, E(B_B)_B)$. Let us now assume (*). Then we have $E(A_A)_A \sim \operatorname{Hom}(A_B, E(B_B)_B)_A$ by the proof of [4, Theorem]. Thus we have $\operatorname{Hom}(A/I_B, E(B_B)_B) \cong \operatorname{Hom}(A/I_A, \operatorname{Hom}(A_B, E(B_B)_B)_A) \sim \operatorname{Hom}(A/I_A, E(A_A)_A) = 0$ as abelian groups. Therefore, recalling the above mention, $I \cap B$ is dense in B. Further, noting $\operatorname{Hom}(A/JA_A, E(A_A)_A) \sim \operatorname{Hom}(B/J \otimes_B A_A, \operatorname{Hom}(A_B, E(B_B)_B)_A) \sim \operatorname{Hom}(B/J_B, E(B_B)_B) = 0$, it follows that JA is dense in A.

Next assume $(**)_B$ for B. Thus A satisfies $(**)_A$ by Proposition 1.4. Since $\operatorname{Hom}(A/JA_A, A_A) \cong \operatorname{Hom}(B/J_B, A_B) | \operatorname{Hom}(B/J_B, B_B)$, we have $\operatorname{Hom}(A/JA_A, A_A) = 0$. It follows that JA is dense in A by Lemma 1.3. Moreover we have $\operatorname{Hom}(A/I_B, B_B) \sim \operatorname{Hom}(A/I_A, A_A)$ by C in the proof

of Proposition 1. 4, and so, $\operatorname{Hom}(A/I_B, E(B_B)_B) = 0$ by Lemma 1. 3. Therefore, recalling the mention at the beginning of the proof, $I \cap B$ is dense in B.

Remark. Assume ${}_{B}A$ to be torsionless. If I is a dense right ideal of A, then I' defined in Proposition 1.2 is a dense right ideal of B. In fact, let x and y be in B, with $y \neq 0$. Since I is dense in A, there exists $a \in A$ such that $xa \in I$ and $ya \neq 0$. Our assumption yields $f(ya) \neq 0$ for some $f \in \text{Hom}({}_{B}A, {}_{B}B)$. Therefore we have $xf(a) = f(xa) \in I'$ and $yf(a) \neq 0$.

is commutative, where the vertical mappings are the natural isomorphisms. Thus we can obtain a ring homomorphism $\rho: \widetilde{B} \longrightarrow \widetilde{A}$ defined by

$$\rho([g]) = [\hat{g}]$$

for $[g] \in \widetilde{B}$. It is obviously monic. Therefore, we can and shall regard \widetilde{B} as a subring of \widetilde{A} by ρ . Moreover we shall denote by \widetilde{a} the image of $a \in A$ under the canonical mapping $A \longrightarrow \widetilde{A}$, and by f' the restriction of f to f for a representative $f: fA \longrightarrow \overline{A}$ of $[f] \in \widetilde{A}(f \in \mathfrak{F})$.

Then we claim the followings.

a) Every right B-homomorphism φ of A to B induces a right \widetilde{B} -homomorphism $\widetilde{\varphi}$ of \widetilde{A} to \widetilde{B} defined by

$$\tilde{\varphi}([f]) = [\overline{\varphi} \circ f']$$

for $[f] \in \widetilde{A}$. In particular, if $(\varphi_s, a_s)_{1 \leq s \leq s_0} (\varphi_s \in \text{Hom}(A_B, B_B), a_s \in A)$ is a dual basis for A_B , then $(\bar{\varphi}_s, \bar{a}_s)_{1 \leq s \leq s_0}$ is also a dual basis for $\widetilde{A}_{\widetilde{B}}$.

- b) For $\psi \in \text{Hom}({}_{B}A_{B}, {}_{B}B_{B})$, $\widetilde{\psi}$ which can be defined by a) regarding ψ as a right B-homomorphism is contained in $\text{Hom}(\widetilde{{}_{B}A}\widetilde{{}_{B}}, \widetilde{{}_{B}B}\widetilde{{}_{B}})$.
- c) If $\sum x_i \otimes y_i \in A \otimes_B A$ is a casimir element, then $\sum \tilde{x}_i \otimes \tilde{y}_i \in \widetilde{A}$ $\otimes_{\widetilde{B}} \widetilde{A}$ is also a casimir element.
 - d) $\sum_{i,j} \tilde{a}_i(\tilde{x}_{ij}) \tilde{y}_{ij} = \tilde{1}$ and $\sum_{k,l} \widetilde{w}_{kl} \widetilde{\beta}_k(\tilde{z}_{kl}) = \tilde{1}$.

The above assertions a), b) and d) can be easily verified. Since \widetilde{A}_{B} is f. g. projective by a), a mapping $\widetilde{A} \otimes_{\widetilde{B}} \widetilde{A} \ni u \otimes v \longmapsto (\gamma \longmapsto \eta(u)v)$ $\in \operatorname{Hom}(\widetilde{B}\operatorname{Hom}(\widetilde{A}_{B},\widetilde{B}_{B}),\widetilde{B}_{B})$ is bijective. Hence, to see c), it is enough to show the following equation

$$\sum_{t} \tilde{\varphi}_{s}(\tilde{x}_{t}) \tilde{y}_{t} \cdot [f] = \sum_{t} \tilde{\varphi}_{t}([f] \cdot \tilde{x}_{t}) \tilde{y}_{t} \text{ for } [f] \in \widetilde{A},$$

where $(\tilde{\varphi}_s, \tilde{a}_s)_s$ is a dual basis for $\widetilde{A}_{\tilde{s}}$ induced by a dual basis $(\varphi_s, a_s)_s$ for A_B . So, let $f: JA \longrightarrow \overline{A}(J \in \mathfrak{F})$ be a representative of $[f] \in \widetilde{A}$. Then we have

$$\tilde{y}_t \cdot [f] = [JA \ni bx \longmapsto \overline{y}_t f(b)x \in \overline{A}],$$

$$\tilde{\varphi}_t(\tilde{x}_t) = [A \ni x \longmapsto \overline{\varphi}_t(\overline{x}_t)x \in \overline{A}],$$

where, for $a \in A$, \overline{a} denotes the image of $a \in A$ under the canonical mapping $A \longrightarrow \overline{A}$ and $[X \ni x \longmapsto y \in Y]$ denotes a class to which a mapping $X \ni x \longmapsto y \in Y$ belongs. Therefore the left hand of the above equation is equal to $[JA \ni bx \longmapsto \sum_{t} \overline{\varphi}_{t}(\overline{x}_{t})\overline{y}_{t} f(b)x \in \overline{A}]$. On the other hand, $\bigcap_{t} x_{t}^{-1}(JA)$ contains some member J_{1} in \mathfrak{F} , and so, $\bigcap_{t} y_{t}^{-1}(J_{1}A)$ contains some member J_{2} in \mathfrak{F} . We have then

$$\bar{y}_t = [A \ni x \longmapsto \bar{y}_t x \in \overline{A}],
\bar{\varphi}_s([f] \cdot \bar{x}_t) = [J_1 A \ni bx \longmapsto \bar{\varphi}_s(f(x_t b)) \cdot x \in \overline{A}].$$

Furthermore, for any b in $J_2 \cap J \in \mathcal{F}$, we have $y_i b \in J_1 A$, and so, in an equation $y_i b = \sum_{i,j} \alpha_i(y_i b x_{ij}) y_{ij}$, every $\alpha_i(y_i b x_{ij})$ is contained in J_1 . It follows that the right hand of the above equation is equal to

QUOTIENT RINGS OVER A QUASI-FROBENIUS EXTENSION

$$[(J_2 \cap J)A \ni bx \longmapsto \sum_{\iota} \sum_{i,j} \overline{\varphi}_{\epsilon}(f(x_{\iota}\alpha_{\iota}(y_{\iota}bx_{\iota j})))y_{ij}x \in \overline{A}].$$

However, we have

$$\sum_{i} \sum_{i,j} \overline{\varphi}_{s}(f(x_{t}\alpha_{i}(y_{t}bx_{ij})))y_{ij} = \sum_{i,j} \overline{\varphi}_{s}(f(b\sum_{i} x_{t}\alpha_{i}(y_{t}x_{ij})))y_{ij}
= \sum_{i,j} \overline{\varphi}_{s}(f(b)\sum_{i} x_{t}\alpha_{i}(y_{t}x_{ij}))y_{ij}
= \sum_{i} \overline{\varphi}_{s}(f(b)x_{t})\sum_{i,j} \alpha_{i}(y_{t}x_{ij})y_{ij}
= \sum_{i} \overline{\varphi}_{s}(f(b)x_{t})y_{t}
= \sum_{i} \overline{\varphi}_{s}(\overline{x}_{t})\overline{y}_{t}f(b),$$

where the first and the last equalities are followed by the fact that $\sum x_i \otimes y_i \in A \otimes_B A$ is a casimir element. Therefore we have the desired equation. Thus we have shown that $\widetilde{A}/\widetilde{B}$ is a QF extension with a right QF system $(\tilde{a}_i; \sum_j \tilde{x}_{ij} \otimes \tilde{y}_{ij})_i$ and with a left QF system $(\tilde{\beta}_k; \sum_l \widetilde{w}_{kl} \otimes \tilde{z}_{kl})_k$. As $\widetilde{\alpha}_i(\tilde{a}) = \alpha_i(a)$ and $\widetilde{\beta}_k(\tilde{a}) = \widetilde{\beta}_k(a)$ for $a \in A$, mappings

$$\widetilde{B} \otimes_{\scriptscriptstyle{B}} A \equiv v \otimes a \longmapsto v\widetilde{a} \in \widetilde{A}$$

and

$$A \otimes_{\scriptscriptstyle{B}} \widetilde{B} \ni a \otimes v \longmapsto \tilde{a}v \in \widetilde{A}$$

are isomorphisms whose inverses are given respectively by

$$\widetilde{A} \ni u \longmapsto \sum_{i,j} \widetilde{\alpha}_i(ux_{ij}) \bigotimes y_{ij} \subseteq \widetilde{B} \bigotimes_B A$$

and

$$\widetilde{A} \ni u \longmapsto \sum\limits_{k,l} w_{kl} \otimes \widetilde{eta}_k(z_{kl}u) \in A \otimes {}_{\scriptscriptstyle{B}}\widetilde{B}.$$

Similarly, we can show that if A/B is a Frobenius extension with a Frobenius system $(h; r_i, l_i)_i$, then $\widetilde{A}/\widetilde{B}$ is a Frobenius extension with a Frobenius system $(\widetilde{h}; \widetilde{r}_i, \widetilde{l}_i)_i$. To summarize, we have the following proposition.

Proposition 1.6. Let \mathfrak{F} be an idempotent filter of B such that $\widetilde{\mathfrak{F}}$ defined in Proposition 1.1 is also an idempotent filter of A. If A/B is a QF (resp. Frobenius) extension then $Q_{\widetilde{\mathfrak{F}}}(A)$ is a QF (resp. Frobenius) extension of $Q_{\mathfrak{F}}(B)$ such that the canonical mappings

$$Q_{\mathfrak{F}}(B) \otimes_{B} A \ni x \otimes a \longmapsto xa \in Q_{\mathfrak{F}}(A)$$

and

$$A \otimes_{B} Q_{\mathfrak{F}}(B) \ni a \otimes x \longmapsto ax \in Q_{\mathfrak{F}}(A)$$

Produced by The Berkeley Electronic Press, 1975

64

are both isomorphisms. In particular, if $Q_{\mathfrak{F}}(B)$ is flat as a left (resp. right) B-module then $Q_{\mathfrak{F}}(A)$ is flat as a left (resp. right) A-module.

We are now ready for proving the following main theorem.

Theorem 1.8. If A/B is a QF (resp. Frobenius) extension satisfying the condition (*) or (**)_A (or (**)_B), then $Q_{\max}(A)$ is a QF (resp. Frobenius) extension of $Q_{\max}(B)$ such that the canonical mappings

$$Q_{\max}(B) \otimes_B A \ni \mathbf{x} \otimes a \longrightarrow \mathbf{x} a \in Q_{\max}(A)$$

and

$$A \otimes_B Q_{\max}(B) \ni a \otimes x \longmapsto ax \in Q_{\max}(A)$$

are both isomorphisms. In particular, if $Q_{\max}(B)$ is flat as a left (resp. right) B-module, then $Q_{\max}(A)$ is flat as a left (resp. right) A-module.

Proof. Let \mathfrak{F} be the filter of dense right ideals of B. Then \mathfrak{F} defined in Proposition 1.1 coincides with the filter of dense right ideals of A by Propositions 1.4 and 1.5. It follows that the theorem is a direct consequence of the above proposition.

If the injective hull of B_B is torsionless, then the condition $(**)_B$ is enjoyed by Lemma 1.3. Thus we have the following as a consequence of the theorem.

Corollary. If A is a $\c QF$ (resp. Frobenius) extension of B such that the injective hull of B_B is torsionless, then the same conclusion as in the theorem holds.

As will be seen from the following examples, the conditions (*) and $(**)_B$ for a ring extension A/B are independent even when A/B is a Frobenius extension.

Example 1. Let **Z** be the ring of integers. A group ring $\mathbb{Z}[G]$ of a finite group G over **Z** is a Frobenius extension of **Z** with a Frobenius homomorphism $h: \mathbb{Z}[G] \ni \sum a_g \cdot g \longrightarrow a_e \in \mathbb{Z}$ (e the identity of G). Obviously, $\mathbb{Z}[G]/\mathbb{Z}$ satisfies (*). However **Z** does not satisfy (**)_z.

Example 2. Let R be a triangular matrix ring $\binom{K}{K} \binom{0}{K}$ over a field K and A the 2×2 matrix ring $(R)_2$ over the ring R. As is well known, R satisfies the condition $(^{**})_R$ (in fact, R is a QF-3 ring), and so, A does $(^{**})_A$. Let us denote by σ the inner automorphism of the ring A induced by the element $\binom{0}{1} \binom{1}{0}$ in A, by G the group generated by σ , and by B the subring of A consisting of elements of A left fixed by

every element of G. Put $x_1 = y_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $x_2 = y_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in A$. It is then easy to see that

$$\sigma\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & c \\ b & a \end{pmatrix} \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in A,$$
$$x_1 \cdot y_1 + x_2 \cdot y_2 = 1, \ x_1 \cdot \sigma(y_1) + x_2 \cdot \sigma(y_2) = 0.$$

Therefore, A/B is a G-Galois extension. Hence it is a Frobenius extension with a Frobenius system $(h; x_i, y_i)_{1 \le i \le 2}$, where h is the trace homomorphism of A to B defined by

$$h(x) = x + \sigma(x)$$
 for $x \in A$.

It follows that B satisfies $(**)_B$ by Proposition 1.4. However, to be easily seen, A/B never enjoies the condition (*).

Now assume that ${}_BA_B|_BB_B$, that is, there exist $f_k\colon {}_BA_B\longrightarrow {}_BB_B$ and $a_k{\in}V_A(B)$ $(k=1,\cdots,t)$ such that $\sum a_k\cdot f_k(a)=a$ for all $a{\in}A$. Since each f_k sends $V_A(B)$ into the center C of B, $V_A(B)$ is an f. g. projective, faithful C-module. Hence we have $V_A(B){\sim}C$ as C-modules. Moreover mappings $V_A(B){\otimes}_CB\longrightarrow A$, $x{\otimes}y\longmapsto xy$, and $A\longrightarrow V_A(B){\otimes}_CB$, $x\longmapsto \sum a_k{\otimes} f_k(x)$, are the mutually inverse isomorphisms. Similarly we have $B{\otimes}_CV_A(B)\cong A$ by the correspondence $y{\otimes}x\longmapsto yx$, and so, ${}_BA_B\sim {}_BB_B$.

Proposition 1.8. Suppose that A/B is QF (resp. Frobenius) such that B is right artinian with ${}_BA_B|_BB_B$. Let M be an f. g. right B-module which is a generator and a cogenerator. Put $N=\text{Hom}(A_B, M_B)$, $A'=\text{End}(N_A)$ and $B'=\text{End}(N_B)$. Then there holds the following:

- a) B'/A' is QF (resp. Frobenius).
- b) B' and A' are both semi-primary QF-3 rings.
- c) $A = \operatorname{End}(A'N)$ and $B = \operatorname{End}(B'N)$.

Proof. As is mentioned above, ${}_BA_B \sim {}_BB_B$, and so, $N_B = \operatorname{Hom}(A_B, M_B)_B \sim \operatorname{Hom}(B_B, M_B)_B \cong M_B$; $N \otimes {}_BA_A \sim N_A$. Thus a) is a consequence of [5, Theorem 1.1]. Next, to be easily seen, N_A and N_B are f. g. generators and cogenerators. Hence b) is a direct consequence of [7, Theorem 3.1]. Finally c) is well known.

Remark. If B is a commutative artinian ring then such a module M does always exist. Indeed, the injective hull $E(B/J_B)$ is an f.g. cogenerator, where J is the radical of B (see [1, Proposition 10.5]). Hence $M=B(B/J_B) \oplus B$ is a required one.

66

As an immediate consequence of the above proposition, we have the following.

Corollary. Every QF (resp. Frobenius) algebra over a commutative artinian ring can be obtained as an endomorphism ring of a semiprimary QF-3 ring which is a QF (resp, Frobenius) extension of a semiprimary QF-3 ring.

2. Supplements. A right R-module whose f. g. submodules are torsionless is said to be locally torsionless. In connection with [3, Proposition 2.12], we shall show the following.

Proposition 2.1. Suppose A/B to be QF extension, Then $E(A_A)_A$ is locally torsionless if and only if so is $E(B_B)_B$.

Proof. In general, to be easily seen, if M_R is locally torsionless then so is every submodule of M_R^n . This remark will be used freely in the sequel. First we assume $E(A_A)_A$ locally torsionless. Since $E(A_A)_B$ is injective, we can consider as $E(B_B) \subset E(A_A)$. If Y_B is an arbitrary f. g. submodule of $E(B_B)$, then $Y \subset YA \subset E(A_A)$. Thus, by our assumption, YA_A , and so, YA_B is torsionless. Hence Y_B is torsionless. Conversely, assume $E(B_B)_B$ locally torsionless. Since $A_A | \operatorname{Hom}(A_B, B_B)_A$ $\subset \operatorname{Hom}(A_B, E(B_B)_B)_A$, we have $E(A_A)_A | \operatorname{Hom}(A_B, E(B_B)_B)_A$, and so, we have only to show $\operatorname{Hom}(A_B, E(B_B)_B)_A$ locally torsionless. To this end, take an arbitrary f. g. submodule X_A of $\operatorname{Hom}(A_B, E(B_B)_B)_A$. Then, recalling that A_B is f. g., we have $X_A \subset \operatorname{Hom}(A_B, Y_B)_A$ for some f. g. (torsionless) submodule Y_B of $E(B_B)$. Hence X_A is torsionless as a submodule of the torsionless module $\operatorname{Hom}(A_B, Y_B)_A$.

Proposition 2.2. Suppose A/B a right QF extension. Then $_BA$ is a generator if and only if there exists a right A-module which is a cogenerator as a B-module.

Proof. Let $(\alpha_i; \sum_j x_{ij} \otimes y_{ij})_{1 \leq i \leq p}$ be a right QF system for A/B. Then the trace ideal $\operatorname{Hom}(_BA,_BB)(A)$ of $_BA$ coincides with $\sum \alpha_i(A)$. Accordingly, $_BA$ is a generator if and only if $\sum \alpha_i(A) = B$. First assume $_BA$ a generator. Then, for every right B-module Y, α_Y : $Y \longrightarrow \operatorname{Hom}(A_B, Y_B)^p$ defined as in the proof of Proposition 1.4 is monic. Hence every right A-module which is a cogenerator (such a module exists always) is a cogenerator as a B-module. Conversely, assume that there exists a right A-module V which is a cogenerator as a B-module. If $_BA$ is not a generator, then there exists a maximal right ideal J of B

http://escholarship.lib.okayama-u.ac.jp/mjou/vol18/iss1/7

QUOTIENT RINGS OVER A QUASI-FROBENIUS EXTENSION

67

containing $\sum \alpha_i(A)$. Since V_B is a cogenerator, there exists some $f \in \operatorname{Hom}(B/J_B, V_B)$ with $f(1+J) \neq 0$. However, $\operatorname{Ann}_A(f(1+J)) = \{a \in A \mid f(1+J) \mid a=0\} \supset JA \supset \sum \alpha_i(A) \cdot A = A$, which yields a contradiction f(1+J)=0.

REFERENCES

- [1] G. AZUMAYA: A duality theory for injective modules, Amer. J. Math. 81 (1959), 249 —278.
- [2] J. P. Jans: Torsion associated with duality, Tohoku Math. J. 24 (1972), 449-452.
- [3] Y.KITAMURA: On Quasi-Frobenius extensions, Math. J. Okayama Univ. 15 (1971), 41-48.
- [4] Y. KITAMURA: A note on quotient rings over Frobenius extensions, Math. J. Okayama Univ. 15 (1972), 141—147.
- [5] Y. KITAMURA: Centralizers of a module over a Quasi-Frobenius extension, 17 (1975), 103—123.
- [6] J. LAMBEK: Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math. 177, Springer-Verlag, Berlin, 1971.
- [7] K. MORITA: Duality in QF-3 rings, Math. Z. 108 (1969), 237-252.
- [8] Y. UTUMI: On quotient rings, Osaka Math. J. 8 (1956), 1-18.

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY

(Received March 12, 1974) (Revised January 31, 1975)

Produced by The Berkeley Electronic Press, 1975