Mathematical Journal of Okayama University

Volume 30, Issue 1

1988

Article 1

JANUARY 1988

A note on universally going-down

David E. Dobbs*

^{*}University of Tennessee

Math. J. Okayama Univ. 30 (1988), 1-4

A NOTE ON UNIVERSALLY GOING-DOWN

DAVID E. DOBBS

We shall assume throughout that all rings and algebras are commutative with identity and that all homomorphisms are unital. Recall that a ring-homomorphism $R \to T$ is said to be universally going-down in case $S \to S \otimes_R T$ satisfies going-down (henceforth abbreviated GD) for each change of base $R \to S$. This concept was introduced in [7] and studied extensively in [4]. The most natural examples of universally going-down homomorphisms $R \to T$ arise when dim (R) = 0 or T is R-flat [4, Proposition 3.3]. It is interesting that, in some cases, universally going-down reduces to one of these two archetypes. For zero-dimensionality, this is essentially well known and summarized in Proposition 1 below. Our main result, Theorem 3, is that any universally going-down overring extension of an integrally closed domain must be flat. This will follow easily from the main results of [4] and [5], with which we assume familiarity.

Proposition 1. For a ring R, the following five conditions are equivalent:

- (1) $R \to T$ is universally going-down for each R-algebra T;
- (2) The canonical map $R \to R/P$ is universally going-down for each nonminimal $P \in Spec(R)$;
- (3) The canonical map $R \to R/P$ satisfies GD for each non-minimal $P \in Spec(R)$;
 - (4) R/P is R-flat for each nonminimal $P \in Spec(R)$;
 - (5) dim(R) = 0.

Proof. The equivalence of (3), (4), and (5) was observed in [3, Proposition 2.1]. As noted above, [4, Proposition 3.3] yields that $(5) \Rightarrow (1)$; and $(1) \Rightarrow (2) \Rightarrow (3)$ trivially, to complete the proof.

The above theme that (universally) GD-behavior often entails flatness was also noted in [3, Remark 2.6 (c)]. It was shown there that if R is a reduced ring, then the canonical map $R \to R/P$ satisfies (universally) GD for each nonmaximal $P \in \operatorname{Spec}(R)$ (if and) only if each such R/P is R-flat. As this result is false without the "reduced" hypothesis [3, Remark 2.6 (b)], we are motivated to consider the "reduced" case of Proposition 1.

D. E. DOBBS

Corollary 2. For a ring R, the following six conditions are equivalent:

- (1) R is reduced and $R \rightarrow T$ is universally going-down for each R-algebra T;
 - (2) Each R-algebra is R-flat;
- (3) R is reduced and the canonical map $R \to R/P$ is universally going-down for each maximal ideal P of R;
- (4) R is reduced and the canonical map $R \to R/P$ satisfies GD for each maximal ideal P of R;
 - (5) R/P is R-flat for each maximal ideal P of R;
 - (6) R is von Neumann regular (i.e., absolutely flat).

Proof. As cited in [3], the equivalence $(2) \Leftrightarrow (6)$ is in well known work of Harada and Auslander. Also, Akiba [1, Corollary 4] (and, much later, [3, Remark 2.6 (e)]) established $(6) \Leftrightarrow (5)$. Moreover, since (6) is well known to be equivalent to the condition that R be reduced and zero-dimensional, Proposition 1 yields $(1) \Leftrightarrow (6)$. Similarly, $(4) \Rightarrow (6)$, as it is easy to see that the GD condition in (4) implies dim (R) = 0. Finally. $(1) \Rightarrow (3) \Rightarrow (4)$ trivially, completing the proof.

Before stating our main result, we recall a definition from [4]. A ring-homomorphism $f \colon R \to T$ is said to be quasi-going-up (in short, QGU) if, for each pair of primes $P_1 \subset P_2$ of R such that $f(P_2)$ $T \neq T$ and each $Q_1 \in \operatorname{Spec}(T)$ such that $f^{-1}(Q_1) = P_1$, there exists $Q_2 \in \operatorname{Spec}(T)$ such that $Q_1 \subset Q_2$ and $f^{-1}(Q_2) = P_2$. The key fact used in the next proof is that universally going-down overring extensions of domains satisfy this weak form of going-up, even after change of base.

Theorem 3. Let T be an overring of a domain R such that R is integrally closed in T. Then the inclusion map $R \to T$ is universally going-down (if and) only if T is R-flat.

Proof. The parenthetic assertion holds since flat implies universally going-down. Conversely, to show T is R-flat, a criterion of Richman (cf. proof of [8, Theorem 2]) reduces us to verifying the following: if $P \in \text{Spec }(R)$ and $PT \neq T$, then $T_P = R_P$. (As usual, T_P denotes the ring of fractions $T_{R \setminus P}$.) For any such P, the hypothesis yields that R_P is integrally closed in T_P . Thus, it suffices to verify that, for each $P \in \text{Spec }(R)$ such that $PT \neq T$, one has that T_P is integral over R_P . In the terminology of [5], our task is thus to show that the inclusion map $f: R \to T$ is quasi-

integral. By the main result of [5], namely [5, Theorem 3.2], this is equivalent to showing that f is universally QGU, in the sense that $S \to S \otimes_R T$ is QGU for each change of base $R \to S$. However, the main result of [4], namely [4, Theorem 3.17], assures that each universally going-down overring extension of a domain is universally QGU. The proof is complete.

- Remark 4. (a) A result of Papick (cf. [6, (3.14)]) asserts that if T is an overring of a coherent domain R such that R is integrally closed in T, then $R \subseteq T$ satisfies GD (if and) only if T is R-flat. One may regard the assertion of Theorem 3 in the same vein, where the finiteness hypothesis of coherence has been eliminated, at the expense of enhancing the GD hypothesis to universally going-down.
- (b) One way to motivate the "integrally closed in" hypothesis in Theorem 3 is via Corollary 2, for any von Neumann regular ring is trivially integrally closed. Another way is to note that the "dual" situation, that of an *integral* overring extension of domains that is universally going-down, has been extensively characterized (cf. [4, Corollaries 3.19 and 3.20]).
- (c) The above "flat" impact of universally going-down should be contrasted with the effect of another type of "enhanced GD" condition considered in some of our recent work. Let R be a domain such that $A \subseteq B$ satisfies GD for all pairs $A \subseteq B$ of subrings of R. Then by [2, Theorem 2.1 and Proposition 2.5], $\dim(A) \le 1$ and $\dim(B) \le 1$ for all subrings $A \subseteq B$ of R, but it need *not* follow that B is A-flat.

References

- T. AKIBA: Remarks on generalized rings of quotients, II, J. Math. Kyoto Univ. 5-1 (1965), 39-44.
- [2] D. E. Dobbs: Going-down underrings, Bull, Austral, Math, Soc, 36(1987),503-513.
- [3] D. E. DOBBS and M. FONTANA: Classes of commutative rings characterized by going-up and going-down behavior, Rend. Sem. Mat. Univ. Padova 66 (1982), 113-127.
- [4] D. E. Dobbs and M. Fontana: Universally going-down homomorphisms of commutative rings: J. Algebra 90 (1984), 410-429.
- [5] D. E. DOBBS and M. FONTANA: Going-up, direct limits and universality, Comm. Math. Univ. St. Pauli 33 (1984), 191-196.
- [6] D. E. DOBBS and I. J. PAPICK: Going-down: a survey, Nieuw Arch. v. Wisk. 26 (1978), 255-291.
- [7] A. GROTHENDIECK and J. A. DIEUDONNÉ: Eléments de Géométrie Algébrique, I, Springer-Verlag, 1971.
- [8] F. RICHMAN: Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.

4 D. E. DOBBS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TENNESSEE
KNOXVILLE, TENNESSEE 37996-1300, U. S. A.

(Received February 15, 1987)