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Otsuki and Tashiro: On curves in Kaehlerian spaces

ON CURVES IN KAEHLERIAN SPACES

Tommnosuke OTSUKI and Yosumaro TASHIRO

The main purpose of our present paper is to study local proper-
ties of holomorphically planar curves in Kéihlerian spaces. For the
sake of Kidhlerian or more general Geometry on a complex space, it
would be useful to reflect upon its foundations in the first section.
In Section 2 we shall sketch the definitions and the results on Her-
mitian and Ké&hlerian spaces. After considering geodesics in Section
3, we shall define, in Section 4, holomorphically planar curves by
equations similar to those of geodesics. In Sections 5 and 6, we shall
reconstruct Fubini spaces and know what holomorphically planar
curves are in these spaces. On the other hand, in Section 7, geo-
desic complex curves will be also introduced as a generalization of
real geodesics, and in Section 8 we shall prove theorems on the
relation between these and holomorphically planar curves. In Section
9, we may introduce holomorphically projective correspondences play-
ing the rdle for real projective ones in Riemannian spaces, although
the non-existence of the latter in Hermitian spaces will be proved in
the last section.

Throughout this paper latin indices #, 4,7, 2, { will run from 1
to 2n and greek indices «, 4, #, v, w, o from 1 to 2 Barred index will
indicate the value of the index increased or decreased by # units if
the index is less than or greater than #, say

i=4i+n A =2+n

We shall sometimes use 2* for z* and x* for .

§1. Complex spaces. In this paper we shall occupy ourselves
on a complex analytic space V with the usual definitions, see, e.g.,
Bochner and Martin, [5]:

a) The underlying manifold of ¥V is a connected point set of
topological dimension 22 in which a topology is defined by open sets.

by There exists a covering consisting of coordinate neighbor-
hoods {U}, each being homeomorphic to a domain in a Euclidean
2n-space. The homeomorphism assigns to each point p of U a set of
parameters (x,, ----- s Xy Piy oveer ,¥.), and the set of complex para-
meters 2* = x* + ¢y* is called a complex coordinate of the point.

57
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¢) If two coordinate neighborhoods intersect with non-empty set,
then the transformation between the two coordinates has to be ex-
pressible by analytic functions

(1.1) 2h = A e , 2%,

These coordinate systems are called allowable ones and the trans-
formations also allowables, the set of these allowable transformations
being denoted by G.

To each point having coordinates 2* in a neighborhood U of the
complex space, we assign the set of the conjugate parameters 2z
= x*—{y*, and denote the point assigned with these conjugate para-
meters by p, It is compatible since the conjugate operation is in-
dependent of coordinate neighborhoods because of

1.2) A = f—'\(gl, ...... , 2V,

where the coefficients of the power series of f" are the conjugates
of those of f* in (1.1).

We denote by U the set of points p corresponding to the points
p of U. Then we obtain a complex space V, said to be conjugate to
the original V, having the following properties:

a’) the underlying manifold is the same as of the original V,

b’) the covering of coordinate neighborhoods consists of s, and

¢’) the set G of allowable transformations consists of analytic
transformations (1.2).

For convenience, in this section we shall denote points neighbor-
ing to a point » by g and their complex parameters in a neighbor-
hood U by z* instead of another letter to be used. An allowable
transformation (1.2) of G is then expressed in form

1.3) . 2 = f_"('él, ...... , 27)

inUnU'.

If we consider the product space V x V = {(p, )}, then the
space V may be imbedded on the diagonal subset of the product
space by an inclusion map

1.4) 6:V — VxV
defined by
(1.5 0(p) = (b, D).
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The union W of products U x U7 corresponding to neighborhoods
U of V covers 8(V) in the product space, and it has as allowable
transformations the transformations defined by (1.1) and (1.3) together,.
these forming the diagonal subset of the product set G x G.

All quantities of V appearing in sequel are supposed to be half-
analytic [Schouten and Struik, 7], that is, that all components of
quantities are in general complex valued and are analytic in 2z real
parameters x¥* and y*. If in first we continuate analytically the real
parameters x* and y* to the corresponding complex domains and next.
carry out a transformation

(1.6) X = %(zA + 24, y» = zii(z" — 34,

considered as a transformation (x* Y — (2% 2%) between complex
parameters, then, for a given half-analytic function F*(x, y), we have
a unique function Fl(z, Z) analytic in 2% complex variables 2, z* in W
such that

1.7 F(z, z) = F*(x, y).

Here and hereafter the phrase “analytic in W means *“analytic in
a neighborhood of 6(U) for every envisaged U in V.

Conversely, if there is given a function Flz, Z) analytic in 2*, z*
in W, then the map ¢* induced by the inclusion map 6 gives a.
function

(1.8) F*(x,y) = (0*F)(x,y) = Fz,2)

in V. Therefore the map 0* gives a one-one correspondence belween:
analytic functions in W and half-analytic functions in V, and is called
the realization.

When there is given a half-analytic tensor or a connection in V,
by the same means as for functions, we can construct a tensor or a
connection analytic in W, and conversely, we can realize a tensor or
a connection given in W into V.

For a haif-analytic function F*(x, y) in V and its analytical con-
tinuation Fl(z, Z) in W, we have

oF
(1.9 'y

=z 2 \ox* a3y

3z 2\0% T oy

1 /6F* oF* oF
) and Z55

1oF* .OF*)!

in V. To write briefly in symbol, the differentiation 8* on V is
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given by
(1.10) o% = 0%9,

0 being the differentiation in W. When a connection is given in W
or when a connection given on V is continuated analytically into W,
from (1.10) together with property of the realization 6* on tensors
and connections, we may have a relation D* = 6*D, D* and D being
the covariant differentiations on V and in W respectively.

Two half-analytic functions F and G in W are said to be conju-
gate, written in symbol G = F, if the power series of one of them, in
which all the coefficients are replaced by their conjugates and 2z* and
z* are interchanged, is identical to the power series of the other. If
and only if F and G are conjugate in W to each other, 6*F and 0*G
are conjugate in ordinary sense in V.

A half-analytic function F in W is said to be real-valued if it
is self-conjugate, i.e., FF = F, and to be positive if 6*F is positive in
V in addition to self-conjugateness. A half-analytic function F is
said to be holomorphic if it is independent of Z*, i.e., g;— =0.

Two tensors S and T or two affine connections I and 4 are
said to be comjugate, written in symbol 7=S or 4=T, if each
component with indices barred simultaneously of one is conjugate to
the corresponding component of the other. We have clearly

0*T = 6% T,

where the bar in right hand side denotes the conjugate value in
ordinary sense.

A tensor T (or an affine connection) is said to be self-conjugate
if T=Tin W, and then and only then all the components of T are
real-valued because of 6*T = 6*T = 6* T and of the biuniqueness of §*.

Self-conjugateness is closed with respect to arithmetical and dif-
ferential operations, and consequently, to covariant differentiation
in W.

In conformity to the consideration in this section, when a Geo-
metry with half-analyticity is given on V, first we imbed V into the
product space V x V by the diagonal map, and extend analytically
quantities in V into W, next we construct formally a Geometry in
W, and finally we may return to the original Geometry on V by
realization of the Geometry constructed in W.
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To keep in mind on the things stated above and without repeating
them we shall investigate Hermitian or K#hlerian Geometry on V in
the following sections.

The following lemma will be used frequently.

Lemma. If the induced function 0*F of a half-analylic function
Flz, 2) defined in W vanishes identically on 0(V), then F(z, Z) vanishes
identically in W.

§2. Preliminaries on Hermitian and Kahlerian spaces. (see Boch-
ner, [1]-[4]). Now we introduce as a fundamental tensor on V a
self-conjugate positive definite symmetric Hermitian tensor gz, 2)
half-analytic on V, whose components are

0 Era
(gi.i) it (ggﬂ 0 ) »

2.1) e = 8a = Gin-

where

The fundamental form on V is defined by
2.2) ds* = g,dz'dz’ = 2g,.dz"dz".

The geometry based on such a fundamental form is called a Hermi-
tian Geomelry on V.
Its amne connection defined by formulas as usual,

1 (98 98« 0gu
2.3) ry = _Z_gu 62?_‘_ azik _ aii‘

has components

1 . (08&. b 0&:
A — xf — Sxx XV
Tow = 58N\ G + azg).
@4 \ 1 (08 Og
— AR L 4724
rll'7 - 2 g azv azx ) ’
rai = Oy

here and hereafter partially differential operators meaning the left
hand sides of (1.9). When we introduce by usual way the covariant
differentiation with respect to the connection 7',, denoted by comma,
equations
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(2.5) s =0 and gY, =20

hold for all combinations i =21, A; j =4, Z#; B=v, ¥, and we may
use them for pulling indices up and down.

If the fundamental tensor g,; satisfies the metric condition of
Kihler

4 agAn — agvn

26) 92 — 02

then the space is called a Kahlerian space. In such a space there
exists locally such a function #(z, z) that

0*0

2.7) fu = Gopg

and the components I'}; and their conjugates I'}! vanish. The com-
ponents of Riemann-Christoffel curvature tensor R';, of a Kihlerian
space all vanish except R*,;, given by

ars,

2.8 Ry = —57—-

Its covariant components are given in form

__%gu gy 08w
Ry = 520 —&° 32 oz
@9 a0 &0 50

= 2207020z & 070702 070705
and satisfy relations

me = —Rmm = _Rmv-:) = Rm\u »

me: = R).mwi = VEAD *

(2.10)

Moreover, for the Ricci tensor R, = g¥R,;,, we have components

(2.11) R, =R, =0
and

0" log G
(2.12) R“f, == W 3

where G is the determinant

(2.13) G = det (g

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/issl/4
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and is positive real-valued. The scalar curvature is

(2.14) R = g*R, = 2g"R,,.

§3. Geodesics. We consider a curve in a Hermitian space V
defined by parametric reprqsentations in a real parameter

3.1) 2 = zM1).
Its arc-length is given by

L3 L _dz dz
32 s = o = | Flaagrgr)ar
where we have put

_ o dzt dz*
(3.3) F = / 28(2, 2) —— a3 ar’

which is positive real valued because of self-conjugateness.
Let us seek for curves which make their arc-lengths extremal.
Such curves are called geodesics in V. By calculus of variations,

3 Sz;ds - San dt

I

(L (g2 g | 0d2 i | 2 sy,

W F\°8Tgr gr T 8uTgr g T 8wgr

H_L[ 0g. dz’ az g dz» dz* 0g dz¥ dz*

w FL\02" df di ~— 9z df df ~ 0z df
drz+ dz* dlog F

— 8 gpe + B af dr
(8&2 dzr d* 0g, dz¥ d*  0g, dZ dz

9z" dt dt T azr dt dt 0z° dt dt
az* dz* dlog F)& :Idt

Il

T &wg t &g
In order that the arc-length becomes extremal, it is necessary and
sufficient that the expression in brackets vanishes, and, by Lemma, it

is equivalent to the vanishing of the coefficients of éz* and ¢z*.
Hence, from the coefficients of é2*, we obtain

d*zt  1(0g; , 0gy\ dz* dz gy, 0g,\ dz¢ d¥
S gr + 2(az’ * %) ar at t\%z " ezx) at di
dz*
= o(t)gxn-at—,
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and, o(¢) = d(log F)/d¢ being real-valued, we observe that the coef-
ficients of 6z'*_are the conjugates of the coefficients of 8z Pulling
up the index 1 — 2, we obtain in final as equations of geodesics

d:z o dzt dz dz* dz¥ dz*

@t g g 20

34 AT o(t) g5

These equations show that the geodesics are autoparallel with respect
to the connection '}, defined by (2.3). If we take the arc-length s
as parameter, then p(s) is equal to zero.

In the following, unless otherwise stated, we shall confine our-
selves to Kihlerian spaces, and then the equations (3.4) of geodesics
are reduced to

Dz d:z dz* dz dat
@9 =+ Thgrar = g

and, when t_:he arc-length s is taken as parameter,

Dz a2 A d2¢ dz

G0 & = TS

= 0.

§4. Holomorphically planar curves. Next we consider curves
defined by equations, similar to (3.5),

Dz daz dz* dz dz
@1 g = gir tTagr g = D —g >

in which p(¢) is not real-valued, but complex-valued in general. Al-
though we take the arc-length s as parameter, o(s) does not vanish
for these curves, and we have

D
4.2) dgl = o(s)e,,

A
where, for simplicity, e, denotes the unit tangent vector [f;g in vector

symbol. Since the tangent vector e, is unitary, we have
o(s) +5(s) = 0.

Hence o(s) is pure imaginary, and we put p(s) = {a(s), o(s) being a
real-valued function. Moreover, if we put e, = ie,, then the vector
e, is also unitary and unitary orthogonal to the vector e,, and the
equation (4.2) is put in form

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/issl/4
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(4.3) 12,:‘ = da(s)e,,
and we have
(4.4) Ddsee = —a(s)e,.

These equations (4.3) and (4.4) are the first two of Frenet-Serret
formulas of the present curves in V, and the remainders of the for-
mulas do not appear. Conversely, if a real-valued function o(s) is
given, then a curve satisfying (4.3) and (44) is uniquely determined
within situation, since

%(e, —ie) = —io(s)(e. —ie)

vanishes by the initial condition e, = 7e,.

The two vectors e, and e, form a holomorphic section and (4.3)
and (4.4) show that these curves are planar in this holomorphic sec-
tion. Conversely, it is evident that a curve osculating the holo-
morphic section partaining to its tangent vector has (4.3) and (4.4) as
Frenet-Serret formulas. We say these curves to be holomorphically
Dlanar.

The ahove arguments are also applicable to curves in more general
Hermitian spaces defined by -

29N " v A SV A
@ G+ TG G TG g = e G
o(f) being complex valued, which are also called holomorphically
planar curves in Hermitian space.

§5. Fubini spaces. In preparation for the next section, we re-
construct here a Fubini space in one way appropriate to our purpose.
In a complex projective space P, we take a fundamental domain

F whose points have homogeneous coordinates (&) = (&, &,, -+ s &)
such that

_ _ kB n _
(5.1) Q($, 6) = 6050"‘ ?)Z;,EAEA > 0

corresponding to a complex elliptic space for 2 > 0 and to a complex
hyperbolic space for %2 < 0. The hyperquadric in P, defined by
equations
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(%.2) QE¢. 8§ =0

is called the absolute of the space F.
The complex line joining two analytic points (y) and (£) in F is
parametrically represented such as

(5.3) €) = () + a0,

where ¢ is a complex parameter, ¢ = 7¢'®. The origin ¢ =0 of
Gaussian o-palne corresponds to the point (), the infinity ¢ = co to
the point (£), and the straight line for each value of ¢ to a Mgdbius
circle passing (7) and (¢). The chain of the complex line (5.3), i.e.,
the intersection of the line with the absolute, is the set of points
which are parametrized by solutions ¢ of equation

G4) Q¢ &) = Qr,7) +7QM O + oQE &) + Q) = 0.
If we put

(5.5) R, 7 =a Q0 =8 =0be?, QG =c¢,
then (5.4) is reduced to '

(5.6) a+ 2rbcos (p —8) +7%¢c = 0.

This equation with a fixed value of 6 gives an involution on the cor-
responding Mobius circle,
Among the Mgbius circles passing through the two points () and
({) we choose a special one characterized by ¢ = 6, this condition
being independent of the analytic representation of homogeneous co-
ordinates of the two points. In fact, the special circle is characterized
by the property that /8 is real, and if the two points have another
homogeneous coordinates (7,) = 4(») and ({) = «(¢), then the complex
line
(9 4
© =00 0

is parametrized by ¢, = %0, and then 8, = Q(#,, {,) = AzB. Hence we
see

o _ 1 o
Bl_ p7y B

to be real. If we put (») = (») and ({) = B({), then ¢, = % is real,

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/issl/4
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say put 7z, and the circle is parametrized by the real parameter 7
such as

(5.7) (é) = (n) + 7r(Z).

In other words, when we choose the homogeneous coordinates () and (£)

such as Q(», &) is real, the circle corresponds to the real axis of +-plane.

Consequently, for any two points on the circle, the circle joining the

two points of the characteristic property just stated is identical to

the former. We call it the geodesic joining the points (») and ().
Along geodesic, (5.6) is reduced to

(5.8) a+2rb+7rc =0

and it has real conjugate roots p, =7, and p_ = r_ for hyperbolic
case and conjugate imaginary roots p, = 7¢'* and p_ = 7e~'® for elliptic
case. Then a signed distance between (7) and (£) is defined by

. 1 1 0
= —a E » ’.‘ = - == e s
(5-9) dlS (77, C) .\/'—k lOg (7;- c’ +9 S ) _‘/:k log o
where we make £, and é_ correspond to ¢, = p,¢'® and o_ = p_g'®
respectively and (3, £, £,, §_) indicates the harmonic ratio of the four
points. '
For any three points (x), ({), () on a geodesic, the relation

dis (», §) + dis ({, #} = dis (», #)

holds.
The distance (5.9) is given by explicit formula
_ 2 o [0 DG O — [Qir, HQE ) — @, HQE DHIF
g — 1 T e
vV —k [Q@, D QE, DT

If a point ({) is infinitesinally near by a point (7), i.e., (&)
= (y + d¥), then, after some infinitesimal calculations, we can obtain
the differential form of the distance

ds® = [dis (v, 7 + dn)]?

4 1 =
= % Q@ ar [Q, M Q(dy, d7) — Q, d7)Q(, dn)],

at which we can also arrive in different ways on infinitesimal analysis.
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In normalized homogeneous coordinates

Q(77, 7) = %% + % Siad =1

the formula of distance has simpler form
4
st = 5 {Qdn, d7) — Q(, d7) Q(%, dn)}

4 _ k _
{5.10) = =z {(dm,d?;(, + —Z—Edmdv )

- (ﬂod7 + —g*Emd%)(%dv., + '%Eixdﬂx)} .

If we introduce non-homogeneous coordinates z, = —ZL, then we can
0
verify that, the fundamental form has the expression

ds? 31| da, |’+—§—(2i2)‘ 33 | dz, |* — | 32:dz, 1)
2

511 = 3
- (1 + '2—2 [ 2x lz)

which is a so-called Fubini metric. In consequence, we know that
the fundamental domain of an elliptic or a hyperbolic complex geo-
metry is locally equivalent to a Fubini space with 2> 0 or 2<0.
Fubini space is a special Kdhlerian space.

The fundamental tensor of a Fubini space has covariant com-
ponents

(512 gu = -5 B
and contravariant components

(5.13) g" = (o + % 2%
where we have put

(5.14) S=1+ %Zazk .
Its Christoffel symbols are

.15 M = - s @12 + 82)

and the curvature tensor satisfies the equations

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/issl/4
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k.
(5.16) Ryo = "‘_2—(gmgms + Zrali) o

Therefore a Fubini space is locally equivalent to a space of constant
holomorphic curvature, see [2, Theorem 6].

§6. Holomorphically planar curves in Fubini space. In a Fubini
space the equations (4.1) of holomorphic planar curves are reduced,
by (5.15), to

az Bk, _ dzv dz dz'
©.1) T S Bh g ar = PO g

To find what holomorphically planar curves are in a Fubini space,
let us consider curves in complex analytic lines of a complex projective
space with a Fubini metric. Any curve lying in a complex line
represented by (5.3) is represented by parametric equation

(6.2) E@®)) = (@) + a1,

where o(f) is a complex valued function of one real parameter £ In
non homogeneous coordinates, the curve is represented by

v 7a + a(#) 8,
63 G T

Differentiating (6.3) successively, we have
dz} _ 708y — 7o) do

dt = (m + o)) df ’
déo do
2 a2 @ Xogr ap
dt* = dt dos 2 + o(®)g, dt ’
dt

from which, taking account of (5.16), there is obtained the differential
equations of the curve (6.3)

dzt . dz dz dz*
€4 @ g g = tOgr
where
*(t)
(6.5) d's _
- o _[ 2¢, k. (6A+v(t)c_k)(vn:k—mc..)]du.
Z; G+ 9@ S G+ @A) (20 + o()C)? ] at

Produced by The Berkeley Electronic Press, 1954 13
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In order to show that the integral curves of (6.1) with a given
p(f) lie always in complex lines of projective space, it suffices to
prove the existence of the solution of differential equations (6.5) in
a(t), where =(f) is equated to p(f) given arbitrarily. To do this we
may assume that the points (»), (¢) have homogeneous coordinates

since the integral curve of (6.1) is determined within motion in Fubini
space. For hyperbolic case, although the point (£) lies outside our
fundamental domain, it is enough to restrict ourselves in the part of
the line inside the absolute. Then the current point of the curve
(6.3) is represented by

zl. = O'(t), 22 = eeesee = 2, = 0’

and (6.5) is reducible to

d?o
drt ki da

6.6 doe PR T o(t).
ar 1t

Separating this equation into real and imaginary parts, we obtain a
system of ordinary differential equations of order two in two unknown
functions, which are the real and imaginary parts of o(¢). In virtue
of the uniqueness of solutions of such a system, the integral curves
of (6.1) lie in complex lines of a projective space.

§7. Geodesic complex curves. Let us now consider a complex
curve defined by analytic functions of one complex parameter -

7.1 2 = 2Mo).

A complex curve is an analytic subspace of topological dimension two.
There is defined the induced metric whose fundamental tensor has
one covariant component

N dz* dz*
(7'2} ng(T: ?) = g(!‘, T) = S —&T— dr
and one contravariant component
@3 g7 = g

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/issl/4
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Its Christoffel symbol is only

- 0g5 9 log
(7.4) rr=r = gt ag;u = PP g .

An analytic change of parameter of the curve

(7.5) v = '(7)
causes the above quantities to be transformed as follows:
, dT, dT,
(7.6) £ =870 dr
and
dzrl
. dr dr?
(7'7) r=r dT dT,
dr
We put
(7.8) ‘Z = pe.
The vector «* defined by
-L dz
(7.9) & = (28) T

is unitary and, under change of parameter (7.5), it accepts the change
(7.10) et = ¢tfe’t,

that is, it rotates in the holomorphic section containg itself. We call
it the unitary tangent vector of the complex curve.

We put
dz* dz+ dz¥ olog g dz*
(7.11) W= gr o g @~ ar  dr
and define a vector «* by
(7.12) £ = —l—h"
[ - 2g .
Under (7.5), the vector %#* is changed by
(Y
(7.13) w o= (=),

Produced by The Berkeley Electronic Press, 1954
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and, in virtue of (7.8), the vector #* by
(7.19) g = gMxlr

the latter meaning that the vector #* rotates in the holomorphic
section containing itself.

Taking account of (7.6), (7.11) and (7.12), we can easily verify
that :

(7.15) Zurrét = 0,

that is, the vector #* is unitary orthogonal to the tangent vector &,
in other words, the holomorphic section attendant to the former is
unitary orthogonal to that attendant to the latter.

We call the vector «* the vector of the first curvature of complex
curve [Schouten and Struik, 7], and a complex curve with vanishing
vector of the first curvature a geodesic complex curve. From (7.11)
and (7.12) the differential equations of geodesic complex curve are

dz* o dz* dz* o1 L7 dz*
I = e

§8. Theorems on geodesic complex curves. Any curve in a geo-
desic complex curve (7.1) is given by (7.1) in which v is a complex
valued function =(f) of a real parameter ¢ and satisfies the equations

dz N o dz* dz¥ dz*
8.1) ar T i, (2(z(2)), Z(T(t))——dt ar = pl(t)_—dt ,
p,(1) being a complex-valued proportional factor. From the above
equations, we can obtain at once the following

Theorem 1. Any curve on a geodesic complex curve is holomor-
phically planar, and conversely.

Besides geodesic complex curves, we may have extensions of real
geodesics, uniquely determined by analytic continuation of real para-
meter ¢ into a neighborhood of the real axis in the Gaussian r-plane.
The extension of a geodesic (3.5) is given by

dz* _ dz dz’ dz*
82) e T 20) (g~ = e g
p(r) being real-valued.

Theorem 2. In order that the system of extensions of real geode-

sics and that of geodesic complex curves are identical to each other, it
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is necessary and sufficient that the space is a Fubini one.
Proof. Subtracting (7.16) from (8.2), we have

(8.3) i (2(0), 2(r)) — I}, (2(), 2())} wtaw® = o7, D)u?,

p,(r, 7) being a complex proportional factor and »* denoting (cli

brievity. Since, in the neighborhood of ?-axis, by neglecting terms of
higher order in (r—7%),

() = 2°(F) = 2\0) + 2\@) — 2\0) = 2'@) + WE) (- 7)

hold, we have, from (8.3)

\

(r—r)

Eawtwm = p.fr, Dt
or, by (2.8),
8.4) R " w'w” = p,(r, D',

o, being a proportional factor. In order that (8.4) hold for any vector
w*, we must have, by Lemma in §1,

Rt}ﬂwag + Réwﬁaz + Rl}pu’«'»a; = R'f,w.;,@‘}; + R'f\'p&az + R'-‘p#‘at’
from which it can be easily verify that-

R
(8.5) R = —z—nm(gmgm + Zra&vi) -

Thus the space is a Fubini space with 2= —R/n(n + 1). The suf-
ficiency is easily verified.

§9. Holomorphically projective correspondence. The differential
equations (4.5) of holomorphically planar curves in a Hermitian space:
are equivalent to

d:z* dz¢ dz . 42t dzv) d=
(dt“ + Doy —ar T 2T g ar ) ar

(dgz" e dzt dz’ o dz* dz \ dz*
=\ar t e gr ar Y40wat ~at Jar

9.1

Now we consider two Hermitian spaces with fundamental tensors g

and %, and denote their Christoffel symbols by I” and 4 respectively.
If the two spaces have all holomorphically planar curves in common,.
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then the equations (9.1) with I" replaced by 4 are also satisfied, and,
by subtracting (9.1) from these, we have identities

9.2 (AL w*w® + 2BXw*m")yw* = (AL, w*w’ + 2BSw wY)w*,

where we have put

dz"
Al = £, —Th, By = &4—Th and w =

nY Y {139

From the above identities, by Lemma in §1, we have equations

9.3) A}, 05 + A or + ALOy = Af o) + AL6L + AL
and
9.4) BA®S + BAGS = BxoA + BLa.

By contracting « and « in both equations, we have

A;).v = 6;)(’1: + Jt(oy. ’

9.5
,2\9 = 33‘1"5:
where we have put
1 1 .
@y = n_{_lA.\r’ ‘1’v=7-Bi\w'

Therefore the Christoffel symbols 7" and 4 are related by formulas

A:v = Pﬁv + 32?’3; + 3:("“
iy = iy + 8345,

We shall call such a correspondence a holomorphically projective one,
which was introduced and called “Bahntreue Transformation” by
Schouten and Struik [7], however, their introduction seemed rather
formally.

After these, we can state the following

Theorem 3. If a Hermitian space is holomorphically projective to
a Kahlerian space, then the former is also Kahlerian.

Proof. 1f a metric g, is Kihlerian, then I'j; vanish and we have
from the conjugates of the seconds of (2.4) and of (9.6)

h*‘( ah,d1 _ ah,-.,) = By,

9.6)

or
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oh oh,
(9-7) —a;\Tn‘ - azxn_ = hAn ‘[“v .

Since the left hand sides are alternative in 2 and v, we have
h.\ﬁ'll"v + hun‘[":\ = 0’

from which, by contracting #**, we see +», vanishing. Thus the tensor
k.. satisfies the condition of Kédhler (2.6). Then 4}; are equal to zero
and the non-vanishing symbols are only
.y
9.8) a4, = Iz“-a—z—.,“-
In the following we return to Kihlerian spaces. If we contract
4 and 2 in (9.6), we have equations

9 H 91
9.9) lgf., = gf, G + (n + e, ,

H and G being the determinants | 4,, | and | g\ | respectively, both
real-valued and positive, and consequently ¢, is gradient.

Expressing the condition that the covariant derivatives of %,. with
respect to the symbols 45, are equal to zero and replacing the sym-
bols 4}, by (9.6), we get equations

(9.10) ha,, = Paney + Buon

where comma denotes the covariant differentiation with respect to-
the original I'},. In virtue of Ricci identities and the fact that the
components R'.,, vanish, the integrability conditions of (9.10) in #%,,
are reducible to, by substitution of (9.10) themselves,

9.11) 0 = @0 — PuP) — Bra (@, — 900
and

9.12) R + bR = Buos o — Maa®a,y -
The equations (9.11) are equivalent to, for n > 1,
9.13) Cuyy = Pu®y.

If we denote by S,z.. the Riemann-Christoffel tensor for #%,., then
they are related to the original ones by formulas

X a‘d;ﬁ X Aep s A
Staa = W = Rina + 8n¢m,v + 6m9”n.v ’
(9.14) ‘ 2
S:\“w, = - 32“:’ = R'\;m:, — 3,)2(%,-:. - 53%,;, .
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From these it follows that the equations (9.12) are equivalent to the
identities
S)leu'a + Sﬁ)wc.s = 0,

Differentiating (9.9) and taking account of (2.12), we have

{9.15) Sy = Ry + (n+ Doy 5.

‘Substituting these into (9.14), it can be seen that a tensor
1

(9.16) Pl = Ry — 7+ 1 (O Rs, + 0L R;,)

is invariant under holomorphically projective correspondence (9.6).
We call it kolemorphically projective curvature temsor, which is the
same that was introduced by Bochner [4, p. 85].

A Kihlerian space is said to be holomorphically projectively flat
if its holomorphically projective curvature tensor 2%, vanishes.
Then we have

) 1
(9.17) Ri50 = m(ganim + ZRy)

and, by contracting g*’,
ZnR;w = ngR'

From these equations we can state the following
Theorem 4. A holomorphically projectively flat space is equivalent
20 a Fubini space.

§10. Holomorphically projective correspondence between Fubini
spaces. For a Fubini space (5.16) hold and then the equations (9.12)
are reducible to

(10-1) k,\E,A,,n i 'kw}A}“;, = 0
and (9.14) to
(10-2) Sm-ma) = ”“h,\nAvs - hmAvﬁ ’
‘where we have put

k
'(10.3) Ap.*; = Tgui — Pu,5p -

From (10.1) we get relations
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!
10.4) Aw = -z‘h‘\n .

/ being a real proportional factor. Then (10.2) become
Save = — %(hmhm + Bz i),

and, as soon verified, / is constant. Hence we have a generalization
of Beltrami’s theorem:

Theorem 5. The only spaces corresponding holomorphically pro-
jectively to a Fubini space are Fubini spaces.

This theorem is also proved more geometrically as follows. Let
R be a Fubini space, S a Kdhlerian space and ¢ a holomorphically
projective correspondence S — R. If C is a real geodesic in S and ¢
is its analytic extension, then ¢(C) is a holomorphically planar curve.
As R is a Fubini space, the extension % of ¢(C) is also geodesic
complex curve containing ¢(C), ¢~'(y) is the extension of C and is
also the geodesic complex curve containing C. Consequently, ¢~'(y)
is identical with £, and the theorem follows from Theorem 2.

Theorem 6. Any two Fubini spaces correspond holomorphically
Drojectively to each other, locally.

Proof. Since Fubini space is locally equivalent to an elliptic or
a hyperbolic domain of a complex projective space, two Fubini spaces
are imbedded locally into a projective space. A complex projective
collineation mapping the image of one into the image of the other
carries complex straight lines to complex straight lines, and it is this
collineation that is seeked for.

However, in grobal case, it shows different looks, and the follow-
ing theorem is obtained.

Theorem 7. A compact Kahlerian space V cannot correspond holo-
morphically projectively to .a space with Ricci curvature null if its
scalar curvature is non-negative (or non-positive) and somewhere positive
(or negative) strictly.

In fact, under our assumption we have

-1

P = mR“

and consequently
(n+1de = 2(n +1)g¥¢ ... = —R.

If we integrate this over the space, we have
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(+1){d0ar = ~[Rav>0 (r <o),
which is contrary to the fact that qupdz) = 0 for any scalar ¢, see [1].

8§11. Non-existence of real projective correspondence. We can
state a theorem due to Bochner [2, Theorem 2] in somewhat gene-
ralized form.

Theorem 8. If a Hermitian space corresponds to a Kahlerian
space. real-projectively, that is, such as all geodesics are keld in common,
then the former is also Kahlerian and is identical to the latter.

Noting for p(¢) to be real valued in (3.4), we have not only the
identities (9.1) but also

d:z dzt dz¥ L dzt dz\ dz
(G + Tgr - + 2ugr ~af ) ar
d*z . dzr dz . dz* dz’\ di*
=\ t o g g g g ) ar

By the same way to get (9.3) and (9.4), besides these we have
sz = 6:"1!"» + 63‘1’% .

Since our present correspondence is a special holomorphically pro-
jective ome, ¥, vanish as in the proof of Theorem 3. Hence A3,
vanish also, and we have 43, = I'}

[
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