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Abstract—In this paper, we propose a method to select
support vectors to improve the performance of support
vector regression machines. First, the orthogonal least-
squares method is adopted to evaluate the support vectors
based on their error reduction ratios. By selecting the
representative support vectors, we can obtain a simpler
model which helps avoid the over-fitting problem. Second,
the simplified model is further refined by applying the
gradient descent method to tune the parameters of the
kernel functions. Learning rules for minimizing the reg-
ularized risk functional are derived. Experimental results
have shown that our approach can improve effectively the
generalization capability of support vector regressors.

Keywords: Orthogonal least-squares, over-fitting, gra-
dient descent, learning rules, error reduction ratio, mean
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I. INTRODUCTION

Support Vector Machines which form a new class of
learning algorithms were motivated and derived from the
research of statistical learning theory [8]. The decision
boundary for classification problems is represented with
a small subset of the training examples, called the
support vectors. Although support vector machines were
first developed for classification problems, due to the
introduction of Vapnik’s ε-insensitive loss function [1],
they have been extended to solve a nonlinear regres-
sion estimation problem by representing the regression
hyperplane with support vectors. Clearly, Support vec-
tor regression (SVR) is also expected to inherit the
good support vector characteristic that it generalizes
well to unseen data. Unlike the traditional methods that
minimize the empirical training errors, support vector
regression implements the structural risk minimization
principle [9] which is based on the fact that the gener-
alization error is bounded by the sum of the training
error and a confidential interval term which depends
on the Vapnik-Chervonenkis (VC) dimension. Conse-
quently, SVR can find the optimal regression hyperplane
that minimizes the training error for the training samples
as well as maximizes the generalization capability for
unseen testing samples.

Selecting a proper set of samples or rules to achieve
better performance in system modeling has been studied
for over a decade. In [2], an orthogonal least-squares
(OLS) based learning algorithm for radial basis function
(RBF) networks was proposed. Instead of randomly
selecting RBF centers from samples, the OLS method
selects a suitable set of RBF centers from them. Thus,
the oversize and ill-conditioning problems occurring
frequently in the random selection of centers can au-
tomatically be avoided. The OLS method involves the
transformation of the sample set into a set of orthogonal
basis vectors, and calculates the contribution of each
individual basis vector to the desired output. Therefore,
a significant subset of samples can be selected as RBF
centers according to the error rate that a basis vector
can reduce. Later, this method is adopted in [10] to sim-
plify support vector based or fuzzy rule based models.
However, it doesn’t consider the reduction of similar
(redundant) and correlated centers. By evaluating only
the approximating capabilities of the rules, the OLS
method often assign a high degree of importance to a
set of redundant or correlated rules, and might result in
poor generalization capabilities. To solve the problem,
in [6], a method for detecting redundant and correlated
rules is introduced to the OLS-based rule selection. If
the inner product of a basis vector with itself is close
to zero, it means that its corresponding rule is a linear
combination of the previously selected rules, then it will
not be selected.

In this paper, we adopt and extend the rule base
reduction method in [6] to reduce the number of support
vectors. The orthogonal least-squares method is applied
to evaluate the support vectors based on their error
reduction ratios. By selecting the representative support
vectors, we can obtain a simpler model which helps
avoid the over-fitting problem. Then the simplified model
is refined by utilizing the structural risk minimization
principle. We adopt the gradient descent method to
derive learning rules for tuning the parameters of the
associated kernel functions. Also, in order to capture
the data structure of the training samples, we adjust the
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distribution of all kernel functions in each dimension.
Experimental results have shown that our approach can
improve effectively the generalization capability of sup-
port vector regressors.

The rest of the paper is organized as follows. In
Section II, the background of support vector regression
is introduced. The construction of the regression hy-
perplane in the feature space and the effect of kernel
functions is shown. Section III gives a description of
our method. An Experiment is presented in Section IV.
Finally, concluding remarks are given in Section V.

II. SUPPORT VECTOR REGRESSION

Among the support vector regression (SVR) machines
[7], [8], [1], the most commonly used is ε-SVR. The
ε-SVR does not penalize the approximation errors less
than the pre-specified tolerance ε and seeks to estimate
the function

f(x) =< w,x > +b,w,x ∈ Rd, b ∈ R (1)

based on the following set of training patterns:

(x1, y1), ..., (xn, yn) ∈ Rd ×R, (2)

where n is the number of training patterns and Rd is the
original space of the input patterns.

By ε-SVR, the function estimation problem can be
converted to the following optimization problem:

minimize
λ

2
< w,w > +

n∑

i=1

(ξi + ξ∗i ),

subject to < w,xi > +b− yi ≤ ε + ξi

yi− < w,xi > +b ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0 (3)

which, by introducing Lagrange multipliers, can be re-
placed by the following dual optimization problem:

maximize − ε
n∑

i=1

(α∗i + αi) +
n∑

j=1

(α∗j − αj)yi

− 1
2

n∑

i=1

n∑

j=1

(α∗i − αi)(α∗j − αj) < xi,xj >,

subject to
n∑

i=1

(α∗i − αi) = 0, αi, α
∗
i ∈ [0,

1
λ

]. (4)

Interestingly, the weight vector of the optimal regression
hyperplane can be found to be

w =
n∑

i=1

(α∗i − αi)xi (5)

and therefore the optimal regression hyperplane of Eq.(1)
can be represented as

f(x) = (xT
n∑

i=1

(α∗i − αi)xi) + b

= (
n∑

i=1

(α∗i − αi) < x,xi >) + b (6)

where b can be derived from Eq.(6) as given below:

b =
1
n

n∑

i=1

(yi −
n∑

j=1

(α∗j − αj) < xi,xj >). (7)

To solve a nonlinear problem, we can map the problem
from the original space to a feature space through a
nonlinear transformation with suitably chosen kernel
functions and then finding a linear model in the feature
space. The linear model obtained in the feature space
corresponds to a nonlinear model in the original space.
For this purpose, consider a mapping Φ(x) from the
input space into a feature space as

Φ : Rd → H. (8)

Then the training algorithm would only depend on the
data through dot products in H, i.e. on functions of
the form < Φ(xi),Φ(xj) >. Suppose there is a kernel
function K such that

K(xi,xj) =< Φ(xi),Φ(xj) >, (9)

we would only need to use K in the training algorithm,
and would never need to explicitly even know what Φ
is. The dot product in the feature space can be expressed
as a kernel function. Therefore, for a nonlinear problem,
we have the following regression function

f(x) =
n∑

i=1

(α∗i − αi)K(x,xi) + b, (10)

and b is

b =
1
n

n∑

i=1

(yi −
n∑

j=1

(α∗j − αj)K(xi,xj)). (11)

Note that the summation term of Eq.(10) does not
include all the n training samples. Instead, only those
input vectors xi with |α∗i −αi| > 0 have contributions to
the summation and these input vectors are called support
vectors. In this paper, we will use the Gaussian function
as the kernel function, therefore

K(xi,xj) = e
−(

∑d
k=1

‖xik−xjk‖2

σ2
jk

)
. (12)

Clearly, each support vector is the center of its corre-
sponding Gaussian function.
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III. SUPPORT VECTOR SELECTION

Usually, the number of support vectors derived from
support vector learning is unnecessarily large due to the
settings for the trade-off parameter λ and the kernel
function. Similar or less important support vectors may
be generated, resulting in a higher chance of over-fitting
and decreasing in generalization capability. By selecting
significant support vectors and ignoring insignificant
support ones, we are able to construct a proper model
without the need of optimal settings for the trade-off
parameter and the kernel function, and avoid the over-
fitting problem.

Suppose we are given a set of n training examples.
By using ε-SVR, m support vectors are obtained. For
simplicity, assume that these support vectors are x1, x2,
. . . , xm with associated multipliers α∗1 − α1, α∗2 − α2,
. . . , α∗m − αm. We adopt the orthogonal least-squares
method [3] to provide a systematic way for support
vector selection. Only significant support vectors are
kept and insignificant ones are ignored. As a result, the
support vector regressor can be significantly simplified.
By introducing all the n training patterns into Eq.(10),
we can express the regressor as

y1 = (α∗1 − α1)K(x1,x1) + (α∗2 − α2)K(x2,x1)
+ · · ·+ (α∗m − αm)K(xm,x1) + b + e1

y2 = (α∗1 − α1)K(x1,x2) + (α∗2 − α2)K(x2,x2)
+ · · ·+ (α∗m − αm)K(xm,x2) + b + e2

...
...

...
yn = (α∗1 − α1)K(x1,xn) + (α∗2 − α2)K(x2,xn)

+ · · ·+ (α∗m − αm)K(xm,xn) + b + en

where e1, e2, · · · , en are approximation errors between
the desired and actual outputs. Note that xi is a support
vector if and only if |α∗i − αi| > 0. Let

P =




p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pn1 pn2 · · · pnm


 , (13)

θ = [θ1θ2 · · · θm]T , (14)

y = [y1, y2, · · · , yn]T , (15)

E = [b + e1, b + e2, · · · , b + en]T (16)

where

pij =
(α∗j − αj)K(xj ,xi)∑m
i=1(α

∗
i − αi)K(xj ,xi)

,

θj =
m∑

i=1

(α∗i − αi)K(xj ,xi).

The regressor can be rewritten as

y = Pθ + E.

Note that E includes the bias and the approximation
error. From Eq.(13), we see that there is a one-to-one
correspondence between the support vectors and the
column vectors in P. Each time a support vector is
selected in such a manner that the variance increment
of the desired output is maximized.

By using the Gram-Schmidt orthogonalization, P can
be decomposed as

P = WA (17)

where A is an m×m, upper triangular matrix with 1s
on the main diagonal, and W is an n×m matrix with
orthogonal columns wi, 1 ≤ i ≤ m, such that

wi
T wj = 0, i 6= j. (18)

Substituting Eq.(17) into Eq.(III), we have

y = WAθ + E = Wg + E (19)

where g = Aθ. A least-squares solution for g is given
by

g = (WT W)−1WT y (20)

and the ith coordinate of g is

gi =
wi

T y
wi

T wi
. (21)

Since wi and wj are orthogonal for i 6= j, we have

yTy = gT WT Wg + ET E

=
m∑

i=1

g2
i wi

T wi + ET E. (22)

Note that
∑m

i=1 g2
i wi

T wi is related to the portion of
the output energy explained by the regression, and the
ith term in the summation represents the increment in
the energy introduced by the inclusion of the i column
vector in P . Since there is a one-to-one correspondence
between the column vectors in P and the support vectors.
We can define the error reduction ratio due to the support
vector xi as

[err]i =
g2

i wi
T wi

yTy
, 1 ≤ i ≤ m. (23)

This ratio offers a simple criterion for selecting support
vectors. Each time a support vector is selected such that
the error reduction ratio is maximal.

Note that the error reduction ratio only tries to mini-
mize the training error without considering the model
structure. Thus, it is possible that a fairly redundant
support vector has a high ratio because of its contribution
to the output. Similar to the idea proposed in [6], we
add a requirement of hk ≥ ε on selecting the kth
most significant support vector, with ε > 0 being a
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user-defined value. The reason is that when hk is too
small, the corresponding column vector is nearly a linear
combination of the column vectors corresponding to the
previously selected k − 1 support vectors and thus the
support vector can be ignored.

When a subset of support vectors is selected, we
proceed to refine the simplified regressor by applying the
gradient descent (GD) method to tune the parameters of
the kernels. The GD method is a well-known optimiza-
tion method and can be represented by the following
equation:

ω(t+1) = ω(t) + η · ∂F (ω)
∂ω

|ω=ω(t) , (24)

where ω is the parameter to be tuned, η is the learning
rate and F (ω) is the error function on ω. In this section,
we choose the kernel functions to be Gaussian functions
which are most commonly used because of their good
performance. However, the GD method can be applied
to other differentiable kernel functions as well.

The objective of the learning process is to find a
regression hyperplane f(x) which minimizes the reg-
ularized risk functional

Rref =
λ

2
< w,w > +Remp[f(x)]. (25)

Here, < w,w > is the term which characterizes the
model complexity, and

Remp[f(x)] =
1
n

n∑

i=1

(yi − f(xi))2 (26)

measures the training error, with λ > 0 being a trade-off
constant. Minimizing Eq.(25) captures the main insight
of statistical learning theory. In order to obtain a small
risk, one needs to control both the training error and the
model complexity.

Suppose, after support vector selection, we have s
support vectors x1, x2, . . . , xm with associated Lagrange
multipliers α∗1 − α1, α∗2 − α2, . . . , α∗m − αm. Each
support vector is the center of the corresponding kernel
function. Keeping the centers fixed, we can improve the
performance of the regressor by tuning the variances
of the kernel functions. By applying the GD method,
we are able to derive the learning rules for optimizing
the variances, σij , of the Gaussian functions, under the
given support vectors and Lagrange multipliers. The
learning rules are applied iteratively until convergence is
achieved. Substituting Eq.(10) and Eq.(5) into Eq.(25),

we have

Rref =
λ

2
< w,w > +Remp[f(x)]

=
λ

2

s∑

i=1

s∑

j=1

(α∗i − αi)(α∗j − αj)K(xi,xj) +

1
n

n∑

i=1

(
s∑

j=1

(α∗j − αj)K(xi,xj) + b− yi)2.

Replacing the kernel function by the Gaussian function
given in Eq.(12), we have

Rref =
λ

2

s∑

i=1

s∑

j=1

(α∗i − αi)(α∗j − αj)

e
−∑d

k=1(
xik−xjk

σjk
)2

+
1
n

n∑

i=1

(
s∑

j=1

(α∗j − αj)e
−∑d

k=1(
xik−xjk

σjk
)2

+

b− yi)2

=
λ

2

s∑

i=1

s∑

j=1

(α∗i − αi)(α∗j − αj)

e
−∑d

k=1(
xik−xjk

σjk
)2

+
1
n

n∑

i=1

(
s∑

j=1

(α∗j − αj)e
−∑d

k=1(
xik−xjk

σjk
)2

)2

+
2
n

n∑

i=1

(b− yi)
n∑

j=1

(α∗j − αj)

e
−∑d

k=1(
xik−xjk

σjk
)2

+
1
n

n∑

i=1

(b− yi)2. (27)

Then, we can derive the gradient of Rref with respect
to σfp, 1 ≤ f ≤ s, 1 ≤ p ≤ d, as

∂Rref

∂σfp
= λ(α∗f − αf )

n∑

i=1

(α∗i − αi)
(xip − xfp)2

σfp
3

e
−∑d

k=1(
xik−xfk

σfk
)2

+
4
n

(α∗f − αf )
n∑

i=1

(xip − xfp)2

σfp
3

e
−∑d

k=1(
xik−xfk

σfk
)2

[
s∑

j=1

(α∗j − αj)e
−∑d

k=1(
xik−xjk

σjk
)2

]

+
4
n

(α∗f − αf )
n∑

i=1

(b− yi)
(xip − xfp)2

σfp
3

e
−∑d

k=1(
xik−xfk

σfk
)2

. (28)

Furthermore, the gradient descent method in Eq.(24)
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suggests the following learning rule for σfp:

σfp
(t+1) = σfp

(t) + η · ∂Rref

∂σfp
|σfp=σfp

(t) , (29)

where 1 ≤ f ≤ s and 1 ≤ p ≤ d. Therefore, we can
adjust the variances of the kernel functions by Eq.(28)
and Eq.(29).

IV. AN EXPERIMENT

We use a high-dimensional synthetic dataset in this
experiment to compare the performance of ε-SVR and
our method. Consider the following nonlinear function:

y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4

+5x5 + 0(x6 + x7 + x8 + x9 + x10) + ϕ (30)

where ϕ is a Gaussian noise with zero mean and unit
variance and the inputs x1, ..., x10 are sampled indepen-
dently from a uniform [0,1] distribution. We randomly
generate a training dataset with 1000 patterns, and a
testing dataset with 200 patterns. There are no identical
patterns in the training and testing datasets. We run ε-
SVR and our method, respectively, on the training and
testing datasets, and the results obtained under different
values of σ are shown in Table I and Figure 1.

Table I shows the reduction percentage on the num-
ber of support vectors achieved by our support vector
selection method. From the table, it is clear to see that
support vector selection is effective, especially for the
case with smaller values of σ (or equivalently, larger 1

σ2 ).
For example, for the case with 1

σ2 = 5, about 40% of the
support vectors are removed. Fewer support vectors are
reduced for the case with larger values of σ. The magni-
tude of σ indicates the range a support vector covers, and
a larger value means a broader range covered. Therefore,
it is more difficult to ignore those support vectors with
large values of σ. The error comparison between ε-SVR
and the simplified model after support vector selection
is given in Figure 1(a). Clearly, the simplified model
after support vector selection works almost equally well
with ε-SVR even though the former has fewer support
vectors. This indicates that the ignored support vectors
are indeed insignificant ones, and therefore validates the
effectiveness of our support vector selection method.

Then we proceed to parameter learning to refine
the obtained simplified model. The error comparison
between the refined model and ε-SVR is shown in
Figure 1(b). Clearly, the refined model performs better
than ε-SVR, especially for the case with smaller values
of σ. For the case with a smaller σ, the corresponding
kernel is more localized, and therefore ε-SVR tends to
deteriorate due to over-fitting.

V. CONCLUSIONS

We have proposed an effective approach to improve
the performance of support vector regressors. The or-
thogonal least-squares method is first applied to obtain
a simpler support vector model. Significant support vec-
tors are kept and insignificant ones are removed. The
simplified model helps to avoid the over-fitting problem.
Then the gradient descent method is applied to tune the
parameters of the kernel functions. Learning rules for
minimizing the regularized risk functional are derived.
An experiment have been presented to show that the
generalization capability of support vector regressors can
be improved with a smaller number of support vectors
and learned kernel functions.
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TABLE I
REDUCTION PERCENTAGE ON THE NUMBER OF SUPPORT VECTORS (SVS)

1
σ2 0.05 0.1 0.5 1 2 3 4 5

# of SVs by ε-SVR 218 189 116 140 192 237 285 341
# of SVs after selection 202 173 103 107 129 157 180 207

reduction percentage (%) 7.3 8.4 11.2 23.5 32.8 33.7 36.8 39.2

(a) (b)

Fig. 1. Performance comparison: (a) ε-SVR vs support vector selection; (b) ε-SVR vs (support vector selection + parameter learning).
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