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     Photo－induced ． phenomena such as photoconductive and photovoltaic effects were

investigated for the glasses in CdO－Bi203－A1203 system． Photoconductive effect was characterized

by a slow decay of photocurrent （persistent photoconductivity）． The decay rate decreased with

increasing CdO content and decreasing Bi203 content． Photovoltage was very small at room

temperature but increased to an obvious value on heating． The photocondtictivity and photovoltage

were increased with CdO content and enhanced by heat treatment in air． The valence bAnd spectra

of X－ray photoelectron spectroscopy showed that the hybridization of Cd 4d and O ．2p orbitals

increases with decreasing Bi203 content and increasing CdO cont’ent in the glasses． As the results

of the p－d hybridization， the band structure of the glasses became indirect and the valence－band

maximum tends to flat． This type of band sttucture inhibits the rapid recombination of・electrons

and holes． The persistent photoconductivity of the．glasses may be attribute．d to deep energy level of

DX centers． Deep energy levels of the glasses are able to prevent the recombination becauSe they

have’a repulsive barrier for both electron emission and capture．

Keywords： Photoconductivity， Photovoltage， Persistent photoconductivity， CdO一一Bi203－A1203

glasses， Electronic state

1． INTRODUCTION

     It is well known that oxide glasses containing a large amount of CdO are photosensitive materials．

They show various interesting properties such as photochromism and photoconduction ［1－6］． The CdO－

based glasses currently do not have any practi．cal applications．． Howevet， they have ．received mpch attention

for their photosensitive mechanism because these glasses do not conlain a皿y pho10sensitive crystalline

particles like AgX． lnvestigations on the optical behavior of CdO in variops hos！ glasses may eventually

helpfu1 to fully understand the mechanism of photQ－induced phenomena． Studies on various new host

glasses are， theTefore， of importance for the improvement of the photochromic and photoconductive

properties．

     The structure of CdO－Bi203－A1203 glass ［7］ was found tp be contrary to Zachariasen’s rules in glass

formation． The oxide ions are 3 or 4 cOordinated by Bi3’ ioqs， while the Bi3’ ion．s are 5 and 6 coordinated by

oxide ions in the CdO－Bi203－AJ203 giasses． Moreover， since chemical nature of Bi．一Q．and Al－O bonds is
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distinct ftom an ordinal glass， cbange in the glass composition may affect the chemical environments around

Cd ions， and it may lead to the change of the photo．sensitive properties． On the basis of 1．his viewpoint， the

authors have investigated the photochromic properties of．CdO－Bi，O，一A1203 glasses． ［8］． The photo－induced

coloration was found to strongly depend on the glass composition， and it could be effectively enhanced by

oxidation treatment． The composition dependenge of photochromic properties could be explained as a

change in local chemical environments around Cd ions， which was suggested from Raman scattering and X－

ray photoelectron spectroscopy （XPS）， lt was also．supposed that the effect of oxidation treatment associated

with production of a large amount of monovalent O一 ions ［8］．

     It is known that ZnO and CdS crystals exhibit photoconductiye and photovoltaic effects ［9］・． Although，

Qxide glasses containing CdO are photoconductive， photovdltaic activity of the oxide glasses is stjll not

known． By adjusting’ the condition of photovoltaic measurement or glass composition， CdO－Bi203 glasses

may show the photovoltaic effect， which would give valuable insight into the photo－induced phenomena and

would increase the possibility of practical application for the CdO－based glasses．

     The expe’rim’ents reported in this pqper are related with the studies on the photoconductive and

photovoltaic effects of CdO－Bi203－A1203 glasses． The composition dependence is discussed bY means of the

XPS valence band spectrum．

2． EXPERIMENTAL PROCEDURE

2．1． Sample preparation

     Reagent－grade Bi2Q3，’ CdO and Al（OH）， were used as starting materials． A 20g batch was firstly

sintered at 750 ・一 9500C for 1 hour and then melted in a high－purity alumina crucible at temperatures ranging

from 1100 to 15000C for 20 to 30 min． ． The melt was poured on a stainlessi steel plate and the glass obtained

was a皿ealed below the glass transition temperqture（Tg）for l hr．。Tlle contents of Bi， Cd and A］in the

glass w・・e ch・mically・P・1y・・d．by・n i・d…i・・ly・・叩1・d p1・・Pa・ ・missi…pect・・m・重9・・Th・・e・・1ting

glasses were then heat－treated in air or oxygen atmosphere for 10 一・ 60 hr． below the Tg （340 一・ 6000C）． The

glass samples were then polished． Gold electrodes were vacuum－coated on both surfaces and a guard ring

was also vacuum－coated on one surface． Thickness of the electrode was adjusted so as the electrode was

electrically conductive and the surface was optical，ly semi－transparent． The glass samples were kept in dark

at 100eC for 24 hr． before the photoconductive measurements．

22． Electrical measurements
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     The electrical current through the glass was measured by a resistance meter （Yokogawa－Hewlett－

Packard Ltd．， HP4339A）． A Xe shot arc lamp （Ushio lnc．， UXL－500D－O， wavelength region at about 300 一一

1000 nm） was used as a light source for the irradiation． The electric field of 104 V／cm was applied between

the．sandwich－type electrodes for the photoconductive measureipent； The incident UVIVIS light was directed

parallel to the electric field． Various filters （Toshiba color glass filters， the numbers in parentheses are cutoff

wavelengths of the filters）： V－40 （370 一一 420 nm）， V－42 （390 一 440 nm）， V－44 （410 一 460 nm）， B－46 （420 一一

480 nm）， Y－48 （480 一 nm）， Y－50 （500 一 nm）， Y－52 （520 一 nm）， O－55 （550 一 nm）， R－60 （600 一一 nm）， R－65 （650

一・@nm） were used tQ measure the spectral sensitivity． The light－to－dark current ratio， IL ／ ID， was used as a

parameter for the photoconduction． The ID （dark current） and IL （light current） were the current before and

after the UV ／ VIS irradiation， respective］y． Optical tib＄orption spectrum was measured by using an UV ／

VIS spectrophotometer （Shimadzu・） UV－240）．

     For measurements of the photQvoltaic effect， the Au ／ glass ／ Au cells were equipped with a heating

unit and i恥minated wi重h the light source as．．mentioned above． To avoid the d，amage due to electric field

between glectrodes and surtaces of glasses， we refrained ＃om heating the samples up to 900C．’ PhQtovoliaic

voltage ’ ≠獅?current were measured by a digital multimeter （Takeda riken TR6853） and ．the HP4339A

resistance meter， respectiVely． The photovoltaic voltage and current were defined as the maximum open－

circuit voltage and short－circuit current respectively．

2．3． X－rhy photoelectron spectroscopic measurement．

     The’XPS spectra were irleasured with S－Probe ESCA （SSX一．100S） spectromete； built by Fisons

Instruments； A mongchromatic Al－Ka source was used for excitation （hv ＝ 1486．6eV）． Clean surfaces were

prepared by ffacturing a rod－type specimen under an ultra high vacuum condition at ．a pressure of 6．7 x 10L8

一・
@1．2 x 10一’ Pa． Cls signal of adventitious hydrocarbons at a binding energy of 284．6eV was used as energy

calibration．

3． RESULTS

     Fig． 1 shows the time dependence of the electric current for three glasses． The glasSes were subjected

to the d．c． voltage in dark and then illuminated with a light． The curr’ ?獅?（ID） gradually decreases with time

when the voltage is appljed in dark． The current ’ 奄獅モ窒?≠唐??instantaneously just afier the light illumination

and it reaches a steady state value （IL） after about 4 min．． lnterruption of the irradiation results in a steep

decrease in the photocurrent， but’ 奄?takes a long time fot the residual photocurrent to decay to the value
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before irradiation （ID）． As shown jn Fig． 1

the period for IL to return to the original 1

105， and the ・decay time is longer than 3 daYs in．

dark at room temperature．’ @When BiOi．s content

increases to 13 cation 90 with constant 43 90 CdO，

the ratio and the decay time decrease to 103 and

about 50 min． respectively． lt is noticed that the IL ／

ID ratio is only 102 and the decay time is 5 min． in

the 66BiO，．s’25CdO’9AIO，．s glass． The decay of

the reSidual dark Conductivity．could be accelerated

remarkabl．y when the samples were heated above

1000c． ’

     The photocurrent and the optical absorption

coefficient ct of 5BiO，．s’43CdO’52AIO，．s glass as a

fuRction of photon energy hv are presented in Fig．

2． ct． and hv are expressed as ： （xhv ＝ C（ hv－Eg ）3，

where C is constant． The values of the optical

energy gap E， is obtained by extrapolating the

expression to （（xhv）i／3 ； O． The spectral sensitivity，

namely， the photocurrent as a function of photon

energy ［2］， illustrates a sharp’ peak near Eg． This

clearly shows that this glass is an intrinsic

photoconductor where the electron is excited from

the valence band’ 狽?the conduction band．

     Fig． 3 shows the effects of composition and

heat treatment on the IL ／ ID ratio for xBiOi，s’

43CdO・（57－x）ハjOi．5 （x ＝ 5， 6， 12， 13，．25，．33）

glasses． The IL／ ID ratio increases with decreasing

BiOi．s content． The IL／ ID ratio is enhanced by the

heat treatment in air only as BiOi．s content is lower

thtin 13 cation 90． When the glasses are heat－treaied

， three glasses have different IL／ ID ratio and the decay time that is

D state． The IL ／ ID ratio of 5BiOi，s’43CdO’52hlO，．， glass is about
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Fig． 1． Rise and decay curves of the
photocurrent measured at room temperature for

various glasses by irradiation of UV ／ VIS light．
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in oxygen atmosphere again， there is no apparent change in the IL ／ ID ratio for the glasses in ．contrast to

photochromism． Their photochromic properties have been greatly enhanced by oxidation treatment ［8］． Fig．
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       content is fixed to the minimum in the                                             ， where BiOi．s

                            ratio of tbe as－cast glass slightly decreased with increasillg CdO co皿tent，

                         enhanced by the heat treatment in air．’ With increasing the heat．．treatment

・temperature， the glasses change in color from deep brown to weak pale yellow， and the dark current ID was

decreased． On the other hand， the as－cast glasses have also a long tail jn the decay curve of

photoconductivity． This is same as the result glasses heat treated in air．

     When the Au ／ glass ／ Au cells were heated’and subjected to white light， the cells exhibited the

60

  ・50

s
邑40
跳

E30
g
g 20

記

  10

   0

一 a）

e b）

   8

－g，．，

g，

g
薯

壽

2

o

a）

b）

     40 42 44 46 48 50 40’ 4．2 44 46 48 50
        CdO content （cation％） ． CdO content （cationgo）

Fig． 51 Photovoltaic voltage and current at 900C as a fufiction of CdO content

for 5BiOi．s’yCdO’（95－y）AIOi．s glasses before and after heqt treatment． a） as－

cast； b） heat treated in air below Tg for 10 hours．

151



152 J．Ftic． Environ． Sci． and Tech．， Okayama Univ．4（工）1999

photovoltaic effect． The illuminated side always became positive value． Fig． 5 shows the photovoltaic

voltage and current at 900C as a function of CdO content for 5BiO，．s’yCdO’（95－y）AIOi．s （y ＝ 41， 43， 45， 47，

49）’glasses before and after the heat treatment． At room temperature， ’only Au／5BiOi．s’49CdO’46AIOi．s

glass／Au cell exhibited a small photovoltage of O．6 mV． As for other glasses， the photovoltage was too small

to measure． As shown in Fig． 5， the photovoltage was enhanced at 900C from O．6 mV to 54 mV in the

sBiOi．s’49CdO’46AIOi．s glass and other glasses also could be confirmed to have the photovoltaic effect．

However， without i－11umination at 900C， no voltaic signal was observed for all glasses．

4． DISCUSSION

4．1． Photoconductive effect

     The effects of heat treatment are explainable based ．on the previous studies ［10－11］． The photo－

induced ・effects， as mentioned above， are owing to light absorption due to excitation of electrons from

valence．bapd to conduction band． Therefore， if there are other light absorption sources， such as defects and

imp・・ili・・， th・ph・t・一i・d・c・d p・・P・・ties sh・uld b・i曲・nced． Th・gl・・s・・c・nl・i・i・g Bi、o、 a・e ea・ily

colored in brown or black when theY are melted above 12000C ［10－12］． ln the case of low BiO，．s conteht， the

darker brown May be ．d．ue to a small amount of metallic Bi． When the glasses are heat－tre’ated near Tg for

longer period thap 10 hr． in air， the metallic Bi are oxidized to Bi3’， thus the darker brown color changes to

weak pale yellow and the dark current 1．D decreases by 2 一一 3 orders of magnitude llO］． Therefore the effect

of heat treatment may be resulted from the elimination of lhe deeper color and decrease in dark current．

     The most common interpretation of such photo－induced phenomena for the CdO－based glasses is

micro－phase separation ［1，5］． Usually， the photo－induced phenomena ・such as photochromism and

photoconduction are mainly related to a photo－generation yield of electrons and holes， their recombination

and transport processes． However， the correlation between these processes and micro－phase separation is not

understood in detail． The optical absorption in the UV・／ VIS－region．is attributed to the excitation of

electrons from valence band to conduction band． Thereby， the valence band structure measured with XPS for

these glasses may be helpful to clarify the mechanism of the photo－induced．phenomena． Fig． 6 shpws near

valence bahd spectra of xBi9，ls’43CdO’（57－x）Al．O，．s （x ＝．5， 13，・ 33） and 66BiO，．s’25CdO’9AIOi．s glasses

freshly broken in an ultra－high vacuum． The spectrum of each glass in Fig． 6 （a） is deconvoluted into three

bands： （1） Bi 5d band associated with two peaks’at 25－30 eV， （2） Cd 4d band with a strong and narrow peak

at abopt 10 eV， and （3） valence band with a broad arid weak peak from 8 to 2 eV． The valence band between

Fermi level and’ W eV for the’ @glasses may mainly be formed from O 2p and Bi 6s orbitals． However， the
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An important point to note is that the shift of the

yalence band is larger than that of Cd 4d near the

valence band， that results in an overlap of O 2p and

Cd 4d bands． As for 66BiOi．s’25CdO’9AIOi．s glass，

the energy separation between O 2p and Cd 4d bands

is very obvious． However， the separation becomes

small and’ р奄唐≠垂垂?≠窒?with decreasing BiOi．s content

ip xBiOi．s’43CdO’（57・一x）AiOi．s glasses． This may’

suggest that O 2p and Cd 4d orbitals trend to overlap

when BiOi．s content decreases and CdO content

increases， or the overlap can be controlled by the

glass composition． The shift of，O 2p band is larger

photo－illduced effects of CdO－rich glasses are mainly associated with local chemical environments around

Cd ions， however Cd alld Bi ions． cannot directly form a chemical bond． Further， tlle Bi 6s band is situate． ?al

top of the valence band［13］， namely， the bindillg energy of Bi 6s band is lower than tllat of O 2p band．

Therefore， tlle valence band close to Cd 4d band may primarily derive from O 2p orbita1． The infiuence of

Bi 6s band on Cd 4月頃band may be Ilegligible in the
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Fig．6． （a） Valence band spectra in the

region of O．一・ 35 eV for xBiO，．s’43CdO’（57－

x）AIO，．s’ and 66BiOi．s ’ ZsCdO ’ 9AIOi．s

glasses． （b） the magnification in the region of

O 一・ 14 eV． Note changes of width arid

structure of the Cd 4d and O 一 8 eV bands．

（一 x ＝ 5；一一一一一 x ＝ 13； 一 x ＝33；

       一一一一一 66BiO，．s．25CdO．9AIO，．s）

tha’n that of Cd 4d band， implying that the overlap of O 2p and Cd 4d orbitals is mainly’ @related to the change

of electron density on oxygen atom． The glasses containing a large amount of BiOi．s are characterized by

relatively high electron density of oxygen atom， which are as high as non－bridging oxygens in R20－SiO2 （R：

alkali ion） glasses， and the electron density increases with BiO，．s content ［7， 12］． The high electron density

in oxygen atoms pushes the O 2p band toward lower binding energy and lead to the increase in energy

difference of O 2p and Cd 4d bands． The bond overlap between Cd 4d and O 2p orbitals， and

153
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photoconduction as well as photovoltaic effect show the same compositional dependence． lt is consequently

deduced that the Cd 4d electrons in CdO－rich glasses may play an important roie in the photo－induced

phenomega through the hybridization with O 2p electrons．

     The local stmc加re around Cd atoms in these glasses was considered to be analogous to CdO crystal

［8，13］，中・thas a cubi・・tm・t・・e・f N・Cl typ・with O、 space g・・up・ymm・tty・ lt i・k・・w・th・t the effect・・f

the p－d hybridization and repulsion cannot be ignored in energy band structu’ 窒?calculatipns of IIB－VIA

semiconductors ［14］， such as CdO ［15－16］． The overlap of Cd 4d and O 2p bands may reflect that lhere are

the p－d hybridization and repulsion in th’ ?glasses， and this type of effect results in significant photo－induced

phen6mena． The octahedral symmetry in rocksalt－structure crystals does not allow hybridization of p and d

orbitals at ze．ro wave－vector because．direct mixing of p and d orbitals is symmetr．ically forbidden in

octahedral sYmmetry ［14，17］． The hybridization is， however， qllowed at non－zero wave－vectors． This

hybridization produceS repulsion between the p and d orbitals and forces the top of the valence band up in

energy． Thus， the upper valenc’e band for non－zero waveLvectors is repelled upward． But it does not repelled

upward for zero wave－vector． As a result， the p－d hybridization and repulsion affect the maximum of the

valence band so as to move away from zero wave－vector． And both the highest point of the valence band and

the lowest point of the conduction band move to different wave－vector value． The band structure， therefore，

tends to become indirect， and the valence－band maximum is prone to flatten ［14，17］． The similar re’sults are

observed in CdO crystal， which has． an indirect band gap and a very fiat valence－band maximum ［15－16］． As

showri in Fig． 2， the optical absorption coefficient obeys the othv ＝ C（hv－E，）3 law． This result js analogous to

the variation of an indirect． forbidden transit．ion in crystalline． semiconductQrs（18］． The very flat valence－

band maximum impligs a large hole effective mass ［17］． Therefore the heavy holes have lower mobility， and

they 6an be easily trapped by defects or latticeldistortions． As mentioned above， the polarity．of photovoltage

showed alwAys positive at the illuminated side． This reflects that’ these glasses obey an n－type

semiconductor arid only electrons con’tribute to electric conductivity， whereas the holes have lower mobility．

Moreover， the O ．1s X－ray photoelectron spectra ［8］ showed the presence of a large amount of monovalent O－

ions with holes in their 2p valence bands in the glasses heat－treated in air or oxygen gas． This suggests that

the holes in the glasses can be trapped easily． These facts also support the． hypothesis that lowering BiOl．s

conterit and rising CdO content lead to produce and strengthen the hybridization of Cd 4d and O 2p bands in

the glasses． As the results of the p－d hybridization and repulsion， the band structure becomes an indirect

type and the valence－band maximum trends to be flattened．

     The recombination of an electron ’and a hole is inhibited in an’indirect band gap since transitions．from
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the bottom of the conduction band to the top of the valence band are forbidden ［17］． Holes in the valence

band with flat maximum ・are easily trapped by defects because of ．their higher ・effective mass， and the

recombination ’is also prevented． Obviously， it is favorable to have photo－induced phenomena when the band

structure has the indirect band gap and the flat valence－band maximum． Such as sijver bromide ［19］， there

are also．quite strong effects of the p－d hybridization and repulsion in its band structure． The indirect band

gap and higher effective mass of holes seem to be important in their applications in photography． And silver

bromide exhibits also photovoltaic effect ［20］． Accordingly， the composjtion dependence of

photoconductivity for CdO－Bi203－A120， glasses may mainly be due to change in band structure with glass

composition． Th．e increase of BiOi．s content qnd the decrease of CdO content cause the effects of’ the p－d

hybridization and repulsion in the glasses， then the band structure changes into the indirect band gap with

the flat valence－band maximum． When the many pairs of electrgns ’and holes， which are created by the

incident light， are inhibited rapid recombination because of th’e indirect・band gap， and many holes are

trapped in the valence band， on the other hand many electrons will stay in the conduction band， and

conse叩en重ly tlle higher conductivity will be I）roduced．．

4．2． Photovoltaic effect

     The photovoltaic effect of these’．glasses maY be due to the Dember photov’oltaic effect ［21］， which

re唐浮撃狽?from a spatially inhomogeneous earrier excitqtion and a large difference in． the mobility－lifetime

product paT （T is the carrier lifetime and pt is the drift mobility） betwe6n electrons and holes． Because of the

effects of the p－d hybridization and repulsioh・the holes in the val．enge band are heavy and easily traPped・As

a result， the drifi mobility pt of holes may be much smaller than that of electrons． Upon Photoexcitation， the

holes still stay on the illuminated side and the electrons move fast to an other side． Then， the glasses showed

the photovoltaic effect． However， the photo－diffusion of electrons at room temperature may be slow and

photovoltage’ 奄?very low． As mentioned above， Qnly 5BiOi．s’49CdO’46AIOi．s glass’ @shows weak

photovoltaic effect． After rising temperature up to 90eC， the diffUsion of electrons is accelerated， so that the

photovoltaic effect of the glass is enhanced and other ’ №撃≠唐刀Des also exhibit．an obvious photovoltaic effect．

Because the photoconductive and．photovoltaic properties of the glasses containing a large amount of CdO

depend．strongly on the qffects of the p－d hybridization and repulsion， controlling the p－d hybridization via

optimizatibn of glass composition may be an effective way to improve the Photo－induced phenomena．

4．3． Persistent photoconductivity

     It seems from the decay curve in Fig． ’ 1 that there are at least ’two recombination processes involved，

namely a very rapid one that is referred to general photoconduction， and an extremely slow one that leads to

155
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the ’long tail in the decay curve． The excess non－equilibrium dark conductance afier stoppiqg the

illumination originates from the lgng－lived carriers of photoexcitation． lt reflects that the glasses are not in a

thermal equilibrium state at room tempgrature． This phenomenon is． often called as persistent

photoconductivity ［22－24］． Here，・ two possible interpretations are provided for the persistent

photoconductivity of these glasses． The first assumes that there are micro－phase separations in the glasses．

One phase in the micro－phase separations is rich in CdO that may be an n－type semiconductor． Another is an

A1203 and／or Bi203－rich phase that may behave ’as a p－type semiconductor． The photoexcited electron－hole

pairs can be separated・ by the p－n junction fields （22］． The electrons get preferentially trapped in the n－

region and the holes in the p－region． The recombination lifetime becomes exceedingly long because the

recombination is suppressed by the spatial separation and the junctions or surface barriers．

      However， as for the homogeneous glasses， another explanation based on the model of microscopic

barriers may be most favorable for the persistent photoconductivity． lt is known that the persistent

photoconductivity with a long tail in the decay curve is observed in many III－V semiconductors （25－26］．

This effect is attributed to DX centers， which are deep donor levels and have a repdlsive barrier for both

electron emission and capture that lead to persistent photoconductivity． The DX cepter was considered as a

complex ot the donor imPurity （D） and an unknown defect （X） and thus gave the name of DX center in an

early stagg ［23－24］． Thete．is now strong evidence， hgwever’ C that DX arises from a substitutional donor by

itself ［25一・26］． Deep levels with similar properties of DX centers have also been observed in ’II－VI

semi．conductor materials as well as ionic crystals ［25］． Differerit models have been proposed for this deep

state［25］． Il was sugges重ed lhaロhe neghtive】y charged broken－bond mode1［27］was consistent with a

variety of experimental results for the DX center． ln our previous studies with electron spin resonance （ESR）

measurement ［8，IP］， no ESR signal was observed in these glasses． lt might refiect that the defects in the

glassesl such as dangling bonds tlO］ and color center of photochromic glaSses ［8］， are negatively charged．

The 2’Al－NMR and Raman sPectral measurements indicated ［13］ that the A13’ ions participate in the form of

AIO4 as a network former and there are a lot of Al－O－Cd bonds in the glasses with high AIOi．s and CdO

content． The role of these Cd2’ ions is mainly a charge cgmpensator for the AIO4 tetrahedra． lt． is generally

believed that the chemica］ bonds between’the charge comp’ ?獅唐≠狽奄盾?cations and oxygen iops are weakly

linked in oxide glasses． Moreover， the holes localized in O 2p will still weaken the Cd－O bonds． As

mentioned above， the holes can be easily trapped in the valence bands primarily derived from O 2p because

of the effects of the p－d hybridization and repulsion． This suggests that there may be some broken－bonds

such as Al－O一 and 一Cd， in the glass structure． Based on the negatively charged broken－bond ．model of the DX
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centers ［27］， it is suggested that the deep levels with some ”DX center－like properties” may also exist in

these glasses and they may be responsible for the persistent photoconductjvity． When the glasses are

exposed to light， the electrons are transferred to the conduction band ・and the・deep levels are ionized． When

the light is turned off， the electrons remain in the conduction band because the deep levels bave repulsive

barriers to prevenl the electrons in the coriduction band back to the deep．levels ［23－24］． Tberefore， decays of

the persistent photoconductivity are very slowly． On the other hands， the deep levels in the glasses are more’

stable than those in the semiconductors， because the persistent photoconduction ．of the serpicondtictors

exhibits usually at low temperature （〈 77K） ［25－26］， while the effect of these glasses is still obvious’at room

temperature． This implies that・the deep levels．in thg glasses are somewhat differgnt from ．the DX center in

semiconductors． To understand the defect centers more experiments are necesSary such as measurements of

the donor binding energy and emission and capture kinetics of eleqtrons from the deep levels．

5． CONCLUSIONS

     The significaAt photoconductive and’photovolthic effects were observed in the CdO－Bi203－A1203

glasses． The photoconductivitY gf these glasses was accompanied’by a photo－induqed residual conductivity，

and the decay time increased with increasing CdO content and decreasing BiO，．s content． The photovoltage

was very small at room temperature， and it could be enhanced significantly by heating the glasses． The

light－t・一d・・k・urrent・a重i・， lill。 and ph・t…lt・g・f・紬・glasse・W・・e p・・iti・・］y・6・・elat・d with CdO

content． They could be enhanced by a heat treatment in air for a long time． The effect of the heat treatment

was referred to the eliminatiQn Qf the deeper color ’ 盾?the glasses and drop of the dark current after the heat’

treatment．

     The XPS valgnce band spectra of these glasses showed that Cd 4d ．and O 2p bands bvere． separated．

both states in the case of higher’ aiO，．s content and’lower CdO content， and they’transformed to overlap with

each other as BiOi．s content decreased and CdO content increqsed． This’ 唐浮№№?唐狽?that there is hybridization

in some degree between Cd 4d and the O 2p bands in the glasses， and degree of the hybridization varies with

・h・glass c・mp・・i・i・n．細i…ea・e i血・h・p－d hyb・韮di…i・・a’ Ed t・p・1・i・n wウ曲q・・1・i・・h・1・d童・ec・b・・d

gaps and’the flat valence－bAnd maximtiml The indirect band gap tends． to inhibit the direct radiative・

recombinatioit of electrons and holes． The flat valence－band maximum means that the holes in such band

have a large effective mass，10wer mobility， and they are easily trappedわy defects or by the struc加re

distortion． Thus the recombination is also inhibited． The photoconductive・and photovoltaic properties as

well as their composition dependence may relate to．the p－d hybridization and repulsion． As for the persistent
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photoconductivity， two．possible interpretations were proposed． One is the皿odel of phase separations， in

which the recbmbination of electrons and holes is suppressed bec’ause of the spatial separation and the

junctions or surface barriers． Another is supposed that there are deep levels with DX center－like properties’

in these glasses， and the deep leyels have a repulsive barrier for both electron emission ’and capture which

leads to the persistent photdconductivity．
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