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Abstract—Recently, many researchers studied set containment
characterizations. In this paper, we introduce some set contain-
ment characterizations for quasiconvex programming. Further-
more, we show a duality theorem for quasiconvex programming
by using set containment characterizations. Notions of quasicon-
jugate for quasiconvex functions, especially1,−1-quasiconjugate,
1-semiconjugate,H-quasiconjugate andR-quasiconjugate, play
important roles to derive characterizations of the set contain-
ments.

I. I NTRODUCTION

Motivated by general nonpolyhedral knowledge-based data
classification, the containment problem which consists of
characterizing the inclusionA ⊂ B, whereA = {x ∈ Rn |
fi(x) ≤ 0, i ∈ I} and B = {x ∈ Rn | hj(x) ≤ 0, j ∈ J},
was studied by many researchers. The first characterizations
were given by Mangasarian [5] for linear systems and for
systems involving differentiable convex functions, and key to
this approach was Farkas’ Lemma and the duality theorems of
convex programming, respectively. Jeyakumar [4] established
dual characterizations of the set containment, assuming the
convexity of fi, i ∈ I, and the convexity (the concavity) of
hj , j ∈ J , so thatA is a closed convex set andB is a closed
convex set (a reverse convex set, respectively).

In this paper, we introduce some set containment character-
izations for quasiconvex programming in [9], [10], that is, we
show set containment characterizations, assuming that allfi

are quasiconvex, allhj are linear, or allfi are quasiconvex
and all hj are quasiconcave. These dual characterizations
are provided in terms of level sets ofH-quasiconjugate,
R-quasiconjugate,1, −1-quasiconjugate and1-semiconjugate
functions. Furthermore, we show a duality theorem for qua-
siconvex programming by using set containment characteri-
zations. In [12], Thach established the duality theorem for
quasiconvex programming by usingR-quasiconjugate, but did
not give any specific conditions. In this paper, we give another
proof of this duality theorem and give a specific condition for
the storong duality by using reverse convex set containment
characterization in [10].

II. N OTATION AND PRELIMINARIES

Throughout this paper, letf be a function fromRn to
R, where R = [−∞,∞]. Remember thatf is said to be
quasiconvex if, for allx1, x2 ∈ Rn andα ∈ (0, 1),

f((1− α)x1 + αx2) ≤ max{f(x1), f(x2)}.

Define

L(f, ¦, α) = {x ∈ Rn | f(x) ¦ α}
for anyα ∈ R. Symbol¦ represents any binary relation. Then
f is quasiconvex if and only if for anyα ∈ R, L(f,≤, α) =
{x ∈ Rn | f(x) ≤ α} is a convex set, or equivalently, for
any α ∈ R, L(f, <, α) = {x ∈ Rn | f(x) < α} is a convex
set. We know that any convex function is quasiconvex, but
the converse is not true. A subsetS of Rn is said to be
evenly convex if it is the intersection of some family of open
halfspaces. A subsetS of Rn is said to beH-evenly convex
if it is the intersection of some family of open halfspaces,
and each open halfspace containing0. Note that the whole
space and the empty set areH-evenly convex. Also, any
open convex set and any closed convex set are evenly convex.
Clearly, every evenly convex set is convex and a nonempty
subsetS of Rn is H-evenly convex if and only ifS is an
evenly convex set which contains0. A function f is said to
be evenly quasiconvex ifL(f,≤, α) is evenly convex for all
α ∈ R. A functionf is said to be strictly evenly quasiconvex if
L(f, <, α) is evenly convex for allα ∈ R. A functionf is said
to beH-evenly quasiconvex ifL(f,≤, α) is H-evenly convex
for all α ∈ R. A function f is said to be strictlyH-evenly
quasiconvex ifL(f,<, α) is H-evenly convex for allα ∈ R.
Clearly, every evenly quasiconvex function is quasiconvex,
every lower semicontinuous (lsc) quasiconvex function is
evenly quasiconvex, and every upper semicontinuous (usc)
quasiconvex function is strictly evenly quasiconvex. It is easy
to show that every strictly evenly quasiconvex function is
evenly quasiconvex, but the converse is not generally true,
see [9]. A functionf is said to achieve the minimum value
at the origin if f(xk) → inf{f(x) | x ∈ Rn \ {0}} for any
sequence{xk} ⊂ Rn \ {0} with xk → 0. Let γ0 be the set
of all functions that that achieve the minimum value at the
origin.

Next, we introduce notions of quasiconjugates.

Definition 1 ([3]). The λ-quasiconjugate off is the function
fν

λ : Rn → R suchthat

fν
λ (u) = λ− inf{f(x) | 〈u, x〉 ≥ λ}, ∀u ∈ Rn.

Definition 2 ([7]). The λ-semiconjugate off is the function
fθ

λ : Rn → R suchthat

fθ
λ(u) = λ− inf{f(x) | 〈u, x〉 > λ}, ∀u ∈ Rn.
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Singer [7] defined theλ-semiconjugate in the following
form,

fθ
λ(u) = λ− 1− inf{f(x) | 〈u, x〉 > λ− 1}, ∀u ∈ Rn,

but we redefine theλ-semiconjugate to unify these above
conjugates.

Definition 3 ([11]). H-quasiconjugate off is the function
fH : Rn → R suchthat

fH(ξ) =
{− inf{f(x) | 〈ξ, x〉 ≥ 1} if ξ 6= 0
− sup{f(x) | x ∈ Rn} if ξ = 0.

Definition 4 ([12]). R-quasiconjugate off is the function
fR : Rn → R suchthat, for anyξ ∈ Rn,

fR(ξ) = − inf{f(x) | 〈ξ, x〉 ≥ −1}.
Clearly, fH + 1 = fν

1 on Rn \ {0} and fR − 1 = fν
−1 on

Rn. So, H-quasiconjugate andR-quasiconjugate are special
cases ofλ-quasiconjugate.

Given a setS ⊂ Rn, we shall denote by intS, clS and coS
the interior, the closure, and the convex hull generated byS,
respectively. The evenly convex hull ofS, denoted by ecS,
is the smallest evenly convex set which containsS. The H-
evenly convex hull ofS, denoted by HecS, is the smallestH-
evenly convex set which containsS. Note that coS⊂ ecS ⊂
clcoS, and these differences are slight because clcoS= clecS.
Moreover if S is nonempty, then HecS= ec(S ∪ {0}).

III. SET CONTAINMENT CHARACTERIZATIONS

In this section, we mention about set containment character-
izations by the authors. At first, we introduce characterizations
of the containment of a convex set, defined by infinite quasi-
convex constraints, in an evenly convex set, i.e., letI, J , S,
W be arbitrary sets,fi andgj be quasiconvex functions from
Rn to R for eachi ∈ I and j ∈ J , vs ∈ Rn and αs ∈ R
for eachs ∈ S, uw ∈ Rn andγw ∈ R for eachw ∈ W , and
β ∈ R. Then, we show the characterization ofA ⊂ B, where

A = {x | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β},
B = {x | ∀s ∈ S, 〈vs, x〉 < αs, ∀w ∈ W, 〈uw, x〉 ≤ γw}.

In [9], we show the following set containment characteri-
zation by usingH-quasiconjugate.

Theorem 1. [9] Let J be a finite set,S be an arbitrary set,gj

be an usc quasiconvex function fromRn to R andincluded in
γ0 for eachi ∈ I, vs ∈ Rn \ {0} and αs ∈ (0,∞) for each
s ∈ S. If for all x ∈ Rn \ {0} sup

j∈J
gj(x) > sup

j∈J
gj(0) then

the following conditions (i) and (ii) are equivalent:
(i) {x | ∀i ∈ J, gj(x) < β} ⊂ {x | ∀s ∈ S, 〈vs, x〉 < αs};
(ii) ∀s ∈ S,

vs

αs
∈ Hec

⋃

j∈J

L(gH
j ,≤,−β).

In [10], we show the following set containment characteri-
zation by using1-quasiconjugate.

Theorem 2. [10] Let I, J , S andW be arbitrary sets,β ∈ R,
fi be a evenly quasiconvex function fromRn to R for each

i ∈ I, gj be a strictly evenly quasiconvex function fromRn

to R for eachj ∈ J , vs ∈ Rn and αs ∈ (0,∞) for each
s ∈ S, and uw ∈ Rn and γw ∈ (0,∞) for eachw ∈ W .
Assume thatfi(0) ≤ β for eachi ∈ I, gj(0) < β for each
j ∈ J and int{x ∈ Rn | fi(x) ≤ β, i ∈ I, gj(x) < β, j ∈
J} is nonempty. Then, following conditions (i) and (ii) are
equivalent.
(i) A ⊂ B,

(ii) ∀s ∈ S,
vs

αs
∈ Hec

[
∪i∈I L((fi)ν

1 , <, 1 − β)
⋃
∪j∈JL((gj)ν

1 ,≤

, 1− β)
]
,

∀w ∈ W ,
uw

γw
∈ clHec

[
∪i∈I L((fi)θ

1, <, 1−β)
⋃
∪j∈JL((gj)θ

1,≤

, 1− β)
]
.

where

A = {x | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β},
B = {x | ∀s ∈ S, 〈vs, x〉 < αs,∀w ∈ W, 〈uw, x〉 ≤ γw}.

Next, we present characterizations of the containment of a
convex set, defined by infinite quasiconvex constraints, in a
reverse convex set, defined by infinite quasiconvex constraint,
i.e., let I, J , W be arbitrary sets,fi and gj be quasiconvex
functions fromRn to R for eachi ∈ I and for eachj ∈ J ,
kw be a quasiconvex function fromRn to R andγw ∈ R for
eachw ∈ W , andβ ∈ R. Then, we show the characterization
of A ⊂ B, where

A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β},
B = {x ∈ Rn | ∀w ∈ W,kw(x) ≥ γw}.
In [9], we show the following set containment characteri-

zation by usingH-quasiconjugate andR-quasiconjugate.

Theorem 3. [9] Let J and W be arbitrary sets,gj be an
usc quasiconvex function fromRn to R included in γ0 for
eachj ∈ J , kw be an usc quasiconvex function fromRn to
R and γw ∈ (0,∞) for eachw ∈ W . Assume that for all
x ∈ Rn \ {0} sup

j∈J
gj(x) > sup

j∈J
gj(0) andL(kw, <, γw) 6= ∅

for eachw ∈ W and supj∈J gj(0) < β for someβ ∈ R.
Then, the following conditions are equivalent.
(i) {x | ∀j ∈ J, gj(x) < β} ⊂ {x | ∀w ∈ W,kw(x) ≥ γw},
(ii) ∀w ∈ W ,

0 ∈ Hec
⋃

j∈J L(gH
j ,≤,−β) \ {0}+ L(kR

w ,≤,−γw).

In [10], we show the following set containment characteri-
zation by using1-semiconjugate and−1-quasiconjugate.

Theorem 4. [10] Let I, J and W be arbitrary sets,fi and
gj be quasiconvex functions fromRn to R for each i ∈ I
and j ∈ J , kw be a usc quasiconvex function fromRn

to R and γw ∈ R for each w ∈ W , and β ∈ R. As-
sume that0 ∈ int[(∩i∈IL(fi,≤, β))

⋂
(∩j∈JL(gj , <, β))] and

∩w∈W L(kw, <, γw) is nonempty. Then, following conditions
(i) and (ii) are equivalent.
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(i) A ⊂ B,
(ii) ∀w ∈ W ,

0 ∈ clHec{∪i∈IL((fi)θ
1, <, 1−β)

⋃∪j∈JL((gj)θ
1,≤, 1−

β)}
+L((kw)ν

−1,≤,−1− γw) \ {0}.
where

A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ β, ∀j ∈ J, gj(x) < β},
B = {x ∈ Rn | ∀w ∈ W,kw(x) ≥ γw}.

IV. A DUALITY THEOREM FOR QUASICONVEX

PROGRAMMING

In [10], we show that set containment characterizations
are useful to consider quasiconvex minimization problem. We
consider the following quasiconvex programming problem. Let
I be an arbitrary set,fi be a lsc quasiconvex function from
Rn to R for eachi ∈ I, A = {x ∈ Rn | ∀i ∈ I, fi(x) ≤ 0},
andk be a usc quasiconvex function. Assume that0 ∈ intA,
and consider the following problem(P ),

(P )
{

minimize k(x),
subject tox ∈ A.

In [12], a dual problem of(P ) is defined by

(D)
{

minimize kR(z),
subject toz ∈ −A∗,

and conditions for the strong duality are discussed, but specific
conditions are not given. In this paper, we show another proof
of this duality theorem and give a specific condition by using
reverse convex set containment characterization.

Theorem 5. Let I be an arbitrary set,fi be a lsc quasiconvex
function fromRn to R for eachi ∈ I, A = {x ∈ Rn | ∀i ∈
I, fi(x) ≤ 0}, andk be a usc quasiconvex function. Assume
that 0 ∈ intA. Then, the following equality holds.

inf
x∈A

k(x) = − inf
z∈−A∗

kR(z),

whereA∗ = {z ∈ Rn | ∀x ∈ A, 〈z, x〉 ≤ 1}.
Proof: By using Theorem 4, for eachγ ∈ R, following

conditions (i) and (ii) are equivalent.

(i) ∩i∈IL(fi,≤, 0) ⊂ L(k,≥, γ),
(ii) 0 ∈ clHec∪i∈I L((fi)θ

1, <, 1)+L(kν
−1,≤,−1−γ)\{0}.

Clearly, infx∈A k(x) = sup{γ ∈ R | ∩i∈IL(fi,≤, 0) ⊂
L(k,≥, γ)}. So, we can prove thatinfx∈A k(x) = sup{γ | 0 ∈
clHec∪i∈I L((fi)θ

1, <, 1)+L(kν
−1,≤,−1−γ)\{0}. Also, the

value in the right hand-side is equal to− infz∈T (kν
−1(z) +

1), where T = −clHec ∪i∈I L((fi)θ
1, <, 1). Furthermore,

A∗ = −T and kν
−1 + 1 = kR. Since, infx∈A k(x) =

− infz∈−A∗ kR(z).
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