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Abstract

One of major problems in spatial analysis is to estimate the value z(so) at an unknown
location s¢ using the information about observations z(s,), a = 1,---,n. In this article,
we will perform a numerical study about some methods for this problem. That is, we
examine both the tranditional statistical method which does not take into account spatial
correlation and the spatial statistical method which takes into account spatial correlation by
applying them to a set of non-stationary spatial data. We compare the predictive powers
of these methods. More precisely, we choose Universal Kriging(UK) and Median-Polish
Kriging(MPK) as spatial statistical methods, and locally weighted regression or LOESS as
a traditional method. As the major criterion for comparison, we use the so-called PRESS
statistic, and also draw the prediction surface plot and the prediction standard error surface
plot as minor criteria. A real numerical example of non-stantionary spatial data is analyzed
for the comparison among the above three methods.

1 Introduction

When a data set is analyzed by traditional statistical methods, the analysis is performed
assumming the observations are mutually independent. But in the case of time-series or spatial
data, as they are correlated with one another, a general assumtion in traditional statistics may
be absurd. That is to say, it is practically natural to assume that the closely located data in
space/time are often more alike than those that are far apart, and this assumption has been
used to model the physical or social phenomenon. Geostatistics, a branch of statistics dealing
with spatial data, is different from traditional statistics in some terminology and has been
developed isolatedly from the mainstream of statistics. And, because there are innumerable
situations in which data are collected at various locations in space, application fields of spatial
statistics. are extensive. The application fields include geology, soil science, image processing,
epidemiology, crop science, ecology, forestry, astronomy, atmospheric science and environmental
science. Although both of time and space can be dealed with in these fields, this article will
discuss only the space problem.

The major aims of this article are to review the available methods of predicting the values
of unobserved points based on the observations at n points in two dimensional space and to
compare their performances numerically. This kind of spatial prediction problem is known as
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“Kriging” in spatial statistics. It is mainly studied by Matheron(1965, 1969). In practice, the
kriging problem is very important in daily life. For example, persons in the region where they
do not have a contamination meter will feel like knowing the degree of contamination in water
or air in the their own region.

On the other hand, many methods have been developed for the purpose of smoothing. They
can be used also for spatial prediction. The difference between kriging and smoothing is that the
former takes into account the spatial correlation while the latter does not. Among various kriging
methods, “universal kriging” and “median-polish kriging” can be used for the analysis of non-
stationary data. We adopt these two kriging methods. Among many methods of smoothing, we
choose LOESS or locally weighted regression for our study. In our expectation, kriging methods
are superior to smoothing methods because the former takes into account the spatial correlation
but the latter do not. However, since each method has its own merits and demerits, it will be
valuable to compare their performances numerically.

At first in Section 2, we introduce a basic ideas of spatial statistics. Universal kriging including
a trend in the presence of nonstationarity is described in Section 3 and then a general idea of
the median-polish kriging ;,one method of removing a trend, is considered in Section 4. LOESS
,one of general smoothing methods, is described in Section 5. And Section 6 presents criteria to
compare the performances of these three methods. In the last Section, the results of analysis of
the real data are summarized and interpreted.

2 Basic ideas of spatial statistics

Spatial data can be considered as a realization of a stochastic process Z(s), i.e.,
{2(s):s € D c R%} (1)

where s indicates a location in D and R? is a d-dimensional Euclidean space. Most often d is
1, 2, or 3. The basic form of spatial data can be expressed as (z;, s;) :1 = 1,---,n, where z;
is the ith observation of a phenomenon of interest at location s;. In spatial data analysis, it is
assumed that the observed data have the following structure;

z(s) = m(s) + e(s), (2)

where m(s) denotes a large-scale variation called drift or trend and e(s) a small-scale variation.
The latter term is a fluctuating random component with zero expectation like random variation
or measurement error within region. In most cases, a spatial data set represents a single real-
ization of a random process. As such, some degree of stationarity must be assumed in order to
make inferences about the data. Stationarity refers to some form of “location invariance” of the
data. It implies that the relationships within any subset of points remain the same no matter
where the points reside in space(mathsoft, 1996). In particular, when the mean, variance and
covariance of stochastic process Z(s) do not depend on the location, i.e.,

E(Z(s+h) - Z(s)) = 0, (3)

Var(Z(s+h) — Z(s)) = 2y(h), s,s+he D, (4)

Z(-) is said to be intrinsically stationary. Here, 2y(h) is called the variogram and (k) the
semivariogram. Futhermore, if 2y(h) = 2v(||h||), the variogram 2+v(-) is called isotropic. If
27(h) depends the direction of h as well as the distance ||h||, it is called anisotropic. Although
it is possible to think the covariance function or correlation function as measures of dependence,
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variogram is usually used in spatial statistics.
When we can assume that the variogram is isotropic, the empirical variogram, a sample
version of the variogram, is computed by

7( QIN(h l Z zj)2) (5)

N(h)

where N(h) is the set of all pairs with Euclidean distance h, |N(h)| is the number of distinct
pairs in N(h), and z; and z; are data values at spatial locations ¢ and j, respectively. When
the variogram is anisotropic, the directional empirical variogram is computed using the same
fomula by replacing & by vector h. In S-Plus, we can calculate the empirical variogram by using
the variogram function, which has some optional arguments such as lag, nlag, lag(distance)
tolerance and angle tolerance. The “lag” is the distance of the lags at which the variograms
are calculated. If missing, it is automatically calculated as “maxdist/nlag”. The “nlag”’ is the
maximum number of lags to calculate, and the “lag tolerance(lag.tol)” indicates that pairs with
distance within “h + lag.tol” are regarded as the pairs in N(k). The “angle tolerance” plays
the similar role in calculating directional variograms. In choosing lag and nlag, there are two
pratical rules that should be considered (Mathstat, P76); Firstly, the empirical variogram should
only be considered for distances h for which the number of pairs is greater than 30. Secondly,
the distance when the variogram is reliable is h < D/2, where D is the maximum distance over
the field of data. Usually, variogram is calculated using equation (5) given by Matheron(1963),
but sometimes there are situations where it would be better to use robust variogram developed
by Cressie and Hawkins(1980) in which the effect of outlier is reduced. It is given as follows.

[ﬂﬁy ZN(h) |2 — 2111/2]4
0.457 + 0.494/|N(h)|

Y(h) = (6)
The next step of the variogram analysis is to fit a variogram model which explains best the
dependence (autocorrelation structure) of the underlying stochastic process. Most variogram
models are defined through several parameters; namely, the nugget effect, sill, and range. The-
oretical variogram has several models(functions) according to its form; for example, sherical,
Gaussian, exponential, power, and linear. S-plus, which is used for this study, provides func-
tions for some theoretical variogram models. They include exponential, spherical and gaussian
models as bounded variogram functions, and linear and power models as unbounded variogram
models.
Exponential model:

co + ce{l — exp(=h/a.), h#0

0 = (cp, ce, ae), where ¢ is nugget effect, c. is sill, and a. is range.
Spherical model:

5(h; 0) = { 0 h=0 (7)

0, h=0
§(h;0) = o+ es{(DE - (D(E)), 0<h<a, (8)
cg + cs, h > a,

0 = (cg, cs, as), where ¢g is nugget effect, ¢, is sill, and a4 is range.

Gaussian model: .
0, h=0
¥hi8) = { co -+ cy{1— cop(~h?/(ag)?), h#0 ®)
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0 = (co, ¢q, ag), Where cg is nugget effect, ¢4 is sill, and a4 is range.
Linear model:

0 h=0
j(h;0) =< 10
7(b; 6) {co+clh, h+ 0 (10)
6 = (co,c1), where cg > 0 and ¢; > 0.
Power model:
. [o, h=0
’Y(h7 9) - { co + bph,\’ h 7( 0 (11)

0 = (co, by, A), where cg > 0, by, > 0, and 0 # A < 2. In our study those models are fitted to
the empirical variogram, omnidirectional or directional, and then the model which fits best is
selected.

Our interest is to estimate or predict the value at an arbitrary unobserved position based on
the observed data as well as possible. In the case where it can be assumed that the stochastic
process underlying the observation is second order stationary, a kriging method called oridinary
kriging is widely used. It is a best linear unbiased prediction method, which is based on two
assumptions; 1) Model assumption: The mean structure m(s) is an unknown constant. 2)
Predictor assumption: Linear predictors in the form Z*(sg) = Y.i- wiZ(s;) are considered. For
unbiasedness, the weights should satisfy > 7 ; w; = 1. By minimizing the prediction variance
E(Z(so) — Z*(sp))? under the equality constraints on the weights, we can obtain the following
system of equations;

‘*wa(si— sj)+v(so—8)—p=0, ¢,j=1,---,n,
> wi=1, (12)

where p is a Lagrange mutiplier. If the semivariogram 7(s; — s;) and y(so — s;) are known, the
optimal weights {w;} can be obtained by solving the above equations. In practical data analysis
we usually do not know the variograms. Therefore, before applying this kriging method we
have to estimate these variograms. More precisely, at first we calculate empirical variograms,
omnidirectional or directional variograms depending on the structure of spatial correlation, and
then find a theoretical variogram model which fits best the empirical variogram.

3 Universal Kriging

In case of non-stationary data, it is assumed that mean structure m(s) can be expressed as
an unknown linear combination of known functions. In our numerical example, we use a family
of polynomial functions up to the second order. In general, the mean function is expressed a
linear combination as follows.

P
m(s) = > Aifi(s), (13)
=0

where Ay, -+, Ap are fixed unknown nonzero parameters and f are known p functions of s. In
particular, the function fy(s) is defined as fy(s) = 1. For predicting the value at sy, we consider
a linear combination '

Z*(s0) = ZwaZ(sa), (14)
a=1
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where w, are weights. From the condition of unbiasedness
E[Z(so) = Z*(s0)] = 0 (15)
which yields

m(sg) — Z wem(sq) = 0. (16)
a=1

Substate equation (13) to equation (19), we obtain

P n
Y AilFi(s0) = D wafj(sa)) = 0. (17)
a=0 a=1
Since A; is nonzero,
> wafilsa) = filso)y  §=0,---,p. (18)
a=1

For the constant function fo(s) this is the usual condition expressed as

iwa = 1. (19)
a=1

Developing the expression for the prediction variance, introducing the constraints into the ob-
jective function together with Lagrange parameters ;; and minizing, we obtain the following
system of equations called the universal kriging system(Wackernagel, 1995).

n P
Z’wﬂC(Sa — Sﬂ) — Z/J'jfj(sa) — C(sa — 50), a=1---,n,
=1 =0 _

> wafi(sp) = fi(s0), G =0,---,p, (20)
g=1

where C'(h) is the covariance between Z(s) and Z(s + h), which has the following relation with
the semivariogram

v(h) = C(0) - C(h). (21)

Note that it is necessary to have the values of covariance functions C(-) or the semivariograms
v(-) to be able to solve the above UK system. In an actual data analysis, the UK method
is applied as follows. 1) Plot the result of an empirical variogram(including the examination
whether or not the variogram is different according to the direction). 2) Search for the theoretical
variogram which fits best the empirical variogram. It is known that the universal kriging has
some shortcomings. 1) The order of polynomial is usually not known and therefore must be
estimated 2) Similarly, the variogram is usually not known and must be estmated from the
residuals 3) The result of universal kriging is biased. 4) In case the variogram for the error
is unknown, it is difficult to calculate. To avoid these thorny problems of Universal kriging,
Cressie(1986) fitted variogram in the direction without trend. Following his idea, we fit the
variogram in the direction in which there seems no trend in our study. The fitted theoretical
variogram is given in Figure 6 of a section 7.2.1.

41



42

J. Fac. Environ. Sci. and Tech., Okayama Univ. 4 (1) 1999

4 Median-Polish Kriging

Median-Polishing is a resistant method for detrending gridded data and is based on an ad-
ditive decomposition(Mathsoft, 1996). As in ANOVA models, it is natural to decompose m(-)
additively into directional components as

m(s) = a+c(z) +r(y), s=(z,9) €D, (22)

where a is the general mean, c¢ is the column effect and r is the row effect. In particular,
if {s;; ¢ = 1,---,n} are actually on a grid {(z;,w)’; ¥ = 1,---p; [ = 1,.--,q}, then, in
obvious notation, s; = (z;,yx) implies m(s;) = a + r, + ¢;. Thus, the row effect rx can be
estimated by exploiting replication in the other dimension; that is, 7, can be estimated from
{2(s:); 2nd coordinate of s; ts yx ; ¢ = 1,---,n}, where k = 1,---,p. Similar considerations
allow the column effect ¢; to be estimated, | = 1,-- -, ¢(Cressie, 1991). Miller and Kahn propose
a formal two-way analysis of variance and claim to test for nonstationarity by performing the
within-rows and within-columns F tests(Cressie, 1991). Unfortunately, the F tests are invalid
because the data are in general correlated; however, underlying the two-way analysis of variance
is an additive decomposition as above, and it is very useful.

The median-polish requires that the data are aligned in rows and columns, and thus is
naturally suited for gridded data. However, the median polishing can be used also on non-
gridded data. In such cases, the non-gridded data must be coerced to grids at first. The method
is performed as follows. Because median-polish yields large-scale spatial variation, and because
these main effects do not necessarilly depend on the data’s precise spatial locations, a natural
way to extend the approach to nongridded data is to draw a low-resolution map. That is to say,
the resolution of the spatial coordinates is often chosen in an ad hoc way so that each (z;,v;)
combination has approximately one observation z(x;,y;) at (z;,y;). In practice, this is done by
overlaying a grid onto the high-resolution map and assigning data location {s;,7 = 1,---,n} to
the nearest nodes of the grid {(z;,y;) ,i=1,---p; j=1,---,q}Cressie, p. 193). Therefore,
z(s;) can be expressed by z(z;,y;) and the median-polish is carried out on the data {z(z;,y;)}.

The median-polish residuals can be considered to be stationary. Therefore, the residuals can
be analyzed by using the ordinary kriging. Taking into account both of the median polishing
and the ordinary kriging, we can obtain the predicted value Z*(sg) and its variance.

5 LOESS

Smoothers can be classified broadly as linear and nonlinear. Linear smoothers are composed
of linear combinations of the data values, where the weights depend upon the Euclidean distances
between the point to be smoothed and the points used for smoothing. Nonlinear smoothers often
rely on combinations of medians and nearby data values. In linear smoothing methods, there are
disk and weighted averages, empirical Bayes, LOESS etc. Nonlinear smoothing methods include
headbanging, resmoothed medians and median polish(Kafadar, 1993). There are many smooth-
ing methods including polynomial regression surface, spline and kriging. We adopt LOESS
method among other possibility as the representative of smoothing methods which do not take
into account the spatial correlation. Locally weighted regression, or LOESS, is a method to
fit a polynomial surface a each point to be predicted using only the nearby data points. It is
explained as follows(Cleveland and Devlin, 1988). Let z;(i = 1,---,n) be measurements of the
dependent variable, and let s; = (z;1,---,Zip), ¢ = 1,---,n be n measurements of p independent
variables. It is assumed that the structure is expressed as

2z = g(si) + €, (23)



S. B. CHOI et al. / Analysis of non-stationary data

where function g is a smoothing function of the independent variables and ¢; is an 7.i.d. normal
variable with mean 0 and variance ¢2. In this article, we consider the case of p=2, two densional
smoother LOESS. The aim of the LOESS is to estimate the regression surface g(s) at any point
s in the 2-dimensional space of the independent variables. For a given fraction f of the data
points, let R be the set of the nearest ¢ = [f - n] points to z;, the value to be smoothed. And
dg be the vector of the (q+1) distances from any s;(one is O for the point itself) and let d(s) be
the maximum distance in the elements of dg. p(sk,s;) is the Euclidean distance from s; to s
as a distance function in the space of the independent variables. The smoothed value of z;, 2,
is the predicted value from the weighted regression of zr on (x1g, X2g), where x1g, Xog and zgp
are the three vectors of length (¢ + 1) corresponding to the points in the set R, and the weight
for the observation (zx, s ) is given by wg(s;) = [1— (o(sk, 8:)/d(s))3]3, k € R. Notice that the
set R changes for i = 1,---,n as in the case of moving averages in a time series(Kafadar, 1993).

6 Criteria for comparison

We wish to compare the performences of the three prediction methods. As a major measure,
we adopt the so-called PRESS statistic defined as

PRESS = i {Z(si) - Z(s_i)}2 , (24)
i=1

where Z(s;) is an observation at the ith location and Z(s_;) is the predicted value of the
ith location using the observed values excepting the i¢th one. The prediction surfaces and the
prediction standard error surfaces are also compared.

7 Numerical example

7.1 Data

Rainfall data observed at 80 observation station are extracted from the chronological table
of science(’97) of Japan. The raw data are shown in Appendix A and the histograms are given
in Figure 1. Histogram(1) is based on the original data themselves. It is noted that this
distribution is highly skewed to the right. Then, we applied log transformation to the rainfall
data. The histogram(2) shows the distribution of the log-transformed data. It is noted that the
distribution of the transformed data is approximately normal and that there exist some outliers.
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Figure 1 Histogram of the rainfall data: histogram 1 is of original data and histogram 2 is of
log-transformed data

Then the coordinates are transformed as follows. At first, the original coordinates corresponding
to latitude and longitude are scaled so that all points are located in the interval (-1, 1) for both
axes. Figure 2(a) shows the data loctions along with contour curves for this scaled data.
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Figure 2 (a) Map of rainfall locations along with contour curves for original data. (b) Map of
rainfall locations for 45° rotated data.

The contours in Figure 2(a) show a ridge of high rainfall values running northeast to southwest
but do not show an evident trend. We shall investigate this spatial trend more carefully, since it
will affect the modeling of our data. To show explicitly a trend and to make it easy to interpret
in a direction of the eastwest and southnorth, the axes are rotated 45 degrees clockwisely from
Figure 2(a) to Figure 2(b). We can see that the trend is clearer in (b) than in (a) of Figure
2. Thus, in this study, the data shown in Figure 2(b) are used for analysis, that is, these data
are analyzed by the order given in analysis flow chart in Figure 3 using S-Plus package.

7.2 Prediction analysis

7.2.1 Universal kriging

In general, kriging is making use of a spatial correlation measure for describing the sample
data variations with a distance and direction. In the spatial analysis, variogram is almost used
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as a standard of the spatial correlation. The delineations of prediction surface and prediction
standard error surface are fitted over a grid of 20 x 20 in this article.

Seiginal dare

w Checking normality

LD gr;-:tr a:lsftjrméd data

G Flti:i;ng;:g. theoretical .

‘wariogram model for -
353 “Kriging:

Figure 8 Analysis flow chart
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Figure 4 Robust omnidirectional empirical variogram of rainfall data.

To estimate spatial parameters of rainfall data, we fit a theoretical variogram model to the
empirical variogram. Fitting a theoretical variogram model to the empirical variogram is often
done by eye to decide the initial values of variogram parameters. Because there are some outliers
as shown in the Figure 1, variogram models are fitted using the robust variogram estimation
method developed by Cressie and Hawkins(1980). Figure 4 shows the sample omnidirectional
variogram for the given data set.
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Figure 5 Robust directional empirical variogram for rainfall data.

As shown, the omnidirectional variogram is generally increasing with distance. This suggests
that large-scale trend may exist or, in other words, stochastic process may be nonstationary.
The directional variogram is based on both the magnitude and direction of h. It is calculated
for the four principle directions using “azimuth” argument of S-plus pakage. Also, we used the
“tol.azimuth” argument setted to 45 so that each directional variogram is based on all pairs
of points that fall with the specified azimuth +45°(Figure 5). In the plot of Figure 5, the
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direction of the southnorth is represented by 0°, whereas that of the eastwest is represented
by 90°. The variograms of the two direction is different. For the most part, the variogram of
the southnorth direction is displayed as an even form, indicating little or no autocorrelation.
The variograms in the other direction are generally increasing with distance, which could be
caused by the existance of trend or anisotropy. To avoid the thorny problems of UK, theoretical
variogram is fitted in the direction that has no trend(Cressie, 1984). Accordingly, it is fitted in
the southnorth direction. Spherical model is fitted to the estimated variogram(Figure 6) and
the estimated parameters are co(nugget) = 0.07875724, cs(sill) = 0.028771 and as(range) =
0.226253. The estimated spherical model is given by

0, h=0
A(h; co, s a5) = { 0.07875724 + 0.028771((2) 5omeses — (3) (gomezzz)’], 0 < h < 0.226253
0.07875724 + 0.028771, h > 0.226253

(25)
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Figure 6 Estimated variogram in the southnorth direction and the superimposed line is the
fitted theoretical variogram.

Figure 7 Surface plot of a rainfall based on universal kriging predictions.
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The resulting surface plot of the UK obtained by utilizing the fitted variogram model is shown
in Figure 7 and the prediction standard errors plot of that is shown in Figure 8. Figure 7
clearly demonstrates that there is a trend in the eastwest direction and Figure 8 shows that
the standard error increases as the location is par from the observed points

s
t- 036

se.fit o35

034

Figure 8 Surface plot of universal kriging prediction standard error.

7.2.2 Median-polish kriging

We have seen the presence of a trend in the eastwest direction from the exploratory data
analysis presented in the section 7.1. First of all, we can identify the effect of Median-polish
method by seeing the variogram of the results in the eastwest direction as shown in Figure 9.
This figure shows that the trend of the original data set is eleminated in the eastwest variogram
with the use of the median-polish residuals.
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Figure 9 Eastwest variogram of the rainfall data calculated from median-polish residuals(top)
and original data(bottom).
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Then the variogram models in section 5 are fitted to the empirical variogram of the median polish
residuals. The best fitted variogram model, which is shown in Figure 10, is a spherical model
with estimated parameters; co(nugget) = 0.006358832, cs(sill) = 0.04862538 and as(range) =
3.168378. The estimated spherical model is given by

0, h=0
(h; co, €s,a5) = ¢ 0.0063588 + 0.04862538(3) 31oma75 — (3)(578375)°), 0 < h < 3.168378
0.0063588 -+ 0.04862538, h > 3.168378
(26)
.E, 3 ] c - - -

0.02
|

0.0

distance

Figure 10 Estimated isotropy variogram based on residuals obteined from MP and the
superimposed line is the fitted theoretical variogram.

The median-polish surface is estimated by adding median-polish estimate 7i2(sp) and the pre-
dicted value obtained by ordinary kriging of the median-polish residuals. Since the median-polish
residuals can be considered as stationary, they can be analyzed by using oridinary kriging. The
surface of a MPK is shown in Figure 11 and it is clear that there is a trend in the eastwest as
the surface of UK.

Figure 11 Surface plot of a rainfall based on median polish kriging predictions.
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The prediction standard error surface is shown in Figure 12. This figure shows that the stan-
dard error is high as far as away from the location of observed points.

se fit

Figure 12 Surface plot of median polish kriging prediction standard error.

7.2.3 LOESS

As explained in section 5, the LOESS is one of traditional methods which fit regression
surfaces locally without taking into account the spatial correlation. The resulting surface plot
of a LOESS is shown in Figure 13 and its prediction standard errors plot is shown in Figure
14. We can see that prediction surface in Figure 13 is quite different from those of UK and
MPK, in particular in the corners where observations are sparse. Also it is noticed that the
prediction standard error surface has different shape from those of UK and MPK especially near
the boundaries of the region.

(DK
it DAY T s
TRERT

Figure 13 Surface plot of the LOESS prediction.
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se fit

Figure 14 Surface plot of the LOESS prediction standard error.

7.3 Comparison of results

The PRESS(Predicted REsidual Sum of Square) statistic is computed to compare the per-
formances of the three methods. The PRESS values are obtained as the results of predicting
each observation, after removing one at a time, using the other observations. Since there are 4
missing values in the data set of 80 observations, values given in the table below are obtained
using the other 76 observations.

UK MPK LOESS
PRESS | 4.588384 | 6.028596 | 6.00258

This table shows that there is no difference between the PRESS values for MPK and LOESS
but that the PRESS value of UK is smaller than the others. Therefore, it can be concluded that,
as expected, spatial analysis method which takes into account spatial correlation is better than
the traditional method which does not take into account spatial correlation. Figure 15, Figure
16, and Figure 17 show scatter plots between original observations and their predicted values
at the 76 locations. In this scatter plots, it can be thought that as the points being closer to 45°
line, its predicting model is performing better. However, we can see that the vertical axis’s scale
of LOESS is different from those of UK and MPK. Therefore, caution should be given when we
interprete about three scatter plots. We may be thought that the result of MPK is similar to
that of LOESS in the figure, but the result of UK shows a little difference compared with them.
It is difficult to conclude from the figures which model is well performing. However, it might be
concluded that UK model is performing better than the other two models. This result coincides
with the conclusion based on the PRESS statistic.

It seems that UK and MPK in the fitted prediction surfaces and prediction standard errors
surfaces given in the section 7.2 are similar with each other. However, the fitted prediction
standard errors of LOESS is generally higher than those of UK and MPK. But the result of
numerical analysis is not necessary. The result of LOESS in the fitting of prediction standard
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errors may be considered as a result of predicting the value of par position from the observed

point.
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Figure 15 Plot of (Z_;(so,), Z(s0,)) for UK.
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Figure 16 Plot of (Z_;(so,:), Z(s04)) for MPK.
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Figure 17 Plot of (Z_i(s0), Z(s04)) for LOWESS.

8 Discussion

In this study, non-stationary data was analyzed with UK and MPK as spatial analysis method
and LOESS as a traditional analysis method. The results of these analyses show that the method
which accomodates spatial correlation structure performs better than any other method which
does not accomodate such spatial correlation structure. However, this is not always the case.
The results may depend on the selected grid pattern of the observation data. Although the
variogram estimation is the Keystone in any spatial analysis, it is not given much attention in
this study. Caution should be given when dealing with such spatial analysis.
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Appendix A: Original data

obs longitude latitude rainfall | obs longitude latitude rainfall

1 141.41 45.25 1123.8 | 41  140.52 35.44 1557.6
2 143.38 43.57 12394 |42 136.31 34.44 1654.8
3 142.22 43.46 1090.8 | 43 137.43 34.42 1884.0
4 144.17 44.07 815.4 44 138.24 34.58 2326.9
5 141.20 43.03 11296 |45 139.46 35.41 1405.3
6 143.13 42.55 917.2 46  136.12 34.04 4001.9
7 144.24 42.59 1042.6 | 47 139.39 35.26 1568.9
8 145.35 43.20 987.5 48  139.22 34.45 2831.1
9 140.14 42.48 1214.0 | 49 139.47 33.06 3073.2
10 142.47 42.10 11315 |50  133.20 36.12 1751.0
11  140.45 41.49 1155.0 | 51  133.04 35.27 1894.8
12 140.46 40.49 1360.6 | 52 134.14 35.29 1949.5
13 140.06 39.43 17464 | 53 132.04 34.54 1730.6
14 141.10 39.42 1265.4 | 54 135.44 35.01 1581.1
15 141.58 39.39 1267.4 | 55  136.15 35.16 1653.7
16 139.51 38.54 1839.5 | 56  130.56 33.57 1659.9
17 140.21 38.15 1126.3 | 57 132.28 34.24 1554.6
18 140.54 38.16 12044 | 58  133.55 34.39 1159.7
19 140.29 37.45 1065.8 [ 59  135.11 34.41 1315.5
20 140.54 36.57 1356.8 | 60 135.31 34.41 1318.0
21 136.54 37.23 22648 | 61 135.10 34.14 1352.6
22 138.15 38.02 1563.2 | 62  135.46 33.27 2640.9
23 139.03 37.55 11784 | 63 135.50 34.41 1354.6
24 136.38 36.35 25924 | 64 129.18 34.12 2139.2
25 137.12 36.42 2296.1 | 65 130.23 33.35 1604.3
26 138.12 36.40 938.3 66 130.18 33.16 1836.4
27 138.15 37.06 2880.4 | 67 131.37 33.14 1637.5
28 139.52 36.33 1382.3 | 68  129.52 32.44 1945.3
29 136.14 36.03 2368.3 | 69 130.43 32.49 1967.7
30 137.15 36.09 1756.8 { 70  130.33 31.33 2236.8
31 137.58 36.15 10105 |71 131.25 31.55 2434.6
32 138.33 36.20 1211.3 |72 128.50 32.42 2372.0
33  139.04 36.24 1130.2 | 73 132.47 33.50 1286.0
34 139.23 36.09 1167.5 |74 134.03 34.19 1147.2
35 140.28 36.23 1307.8 |75  133.33 33.34 2582.4
36 136.04 35.39 24189 |76 134.35 34.04 1614.6
37 136.46 35.24 1933.8 | 77 133.01 32.43 2487.7
38  136.58 35.10 1535.0 [ 78 134.11 33.15 2435.5
39  137.50 35.31 15916 |79 129.30 28.23 2870.7
40 138.33 35.40 1055.0 | 80 12741 26.12 2036.8






