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Recently, pairing–based cryptographies have attracted much attention. For fast pairing calculation,
not only pairing algorithms but also arithmetic operations in extension field should be efficient. Especially
for final exponentiation included in pairing calculation, squaring is more important than multiplication.
This paper proposes an efficient squaring algorithm in extension field for Freeman curve.

1 INTRODUCTION

In recent years, pairing–based cryptographies such
as ID–based cryptography [1] and group signature [2]
have attracted much attention. For their implementa-
tions, pairings such as Weil pairing [1], Tate pairing,
Ate pairing [3] and Xate pairing [4] can be efficiently
applied. In order to implement these pairings, sev-
eral kinds of ordinary pairing–friendly curves such as
Miyaji–Nakabayashi–Takano (MNT) curve [5], Barreto–
Naehrig (BN) curve [6] and Freeman curve [7], [8] have
been proposed. As the definition field of these curves,
most of researchers use optimal extension field (OEF)
[9] because OEF carries out arithmetic operations effi-
ciently. However, it is known that OEF is not available
for the definition field of Freeman curve due to the mis-
match of some conditions [10]. On the other hand, Kato
ea al. have proposed type–X all one polynomial field
(AOPF) [11, 12]. It can carry out arithmetic operations
as efficient as OEF, and is available for the definition
field of Freeman curve.

As our previous work [10], the authors have con-
sidered how to construct type–X AOPF for Xate pair-
ing with Freeman curve and optimized the multiplica-
tion algorithm. However, especially for final exponenti-
ation included in Xate pairing calculation, squarings are
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more important than multiplications. Thus, this paper
proposes an efficient squaring algorithm in the type–X
AOPF. Then, it is shown that the proposed algorithm
makes a squaring about 10 percent faster than the con-
ventional algorithm.

Notation: Fp, Fpm , F∗
pm , and E(Fpm) denote a prime

field, an m–th extension field over Fp, the multiplica-
tive group in Fpm , and the elliptic curve defined over
Fpm . For two integers m and n, m |n means that m
divides n. Mm, Sm, Am, and Dm denote the computa-
tional costs of a multiplication, a squaring, an addition
(a subtraction), and a doubling in Fpm , respectively.

2 FUNDAMENTALS

This section runs over Freeman curve, Xate pair-
ing, type–X all one polynomial field (AOPF), and effi-
cient multiplication and squaring algorithms in type–X
AOPF.

2.1 Xate pairing with Freeman curve

The smallest positive integer d such that r | (pd − 1)
is called embedding degree, where r is the group order
for pairing.

Freeman curve is a class of ordinary pairing–friendly
curves of embedding degree d = 10 [7], [8]. The charac-
teristic and order of Freeman curve E(Fpm) are given as
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p(χ) = 25χ4 + 25χ3 + 25χ2 + 10χ + 3, (1a)

r(χ) = 25χ4 + 25χ3 + 15χ2 + 5χ + 1, (1b)

where χ is an integer such that p(χ) becomes a prime
number.

Nogami et al. have proposed integer χ–based (Xate)
pairing [4]. In this paper, the authors focus on Xate
pairing with Freeman curve. Let G1 and G2 be

G1 = E(Fpd)[r] ∩ Ker(φ − [1]), (2a)
G2 = E(Fpd)[r] ∩ Ker(φ − [p]), (2b)

where E(Fpd)[r] denotes the set of rational points of
order r in E(Fpd). Let P ∈ G1 and Q ∈ G2, in the case
of Freeman curve, Xate pairing ε is given as

ε :

{
G2 × G1 → F∗

pk/(F∗
pk)r,

(Q, P ) 7→ f̂χ,Q(P )(p
10−1)/r.

(3a)

f̂χ,Q(P ) =
(
fχ,Q(P )(1+p) · gχQ, pχQ

)1+p3

· gχQ+pχQ, p3(χQ+pχQ). (3b)

where gQ1, Q2 denotes the line passing through two
points Q1, Q2. It gives a non–degenerate and bilin-
ear map. Xate pairing consists of two principal steps,
one is fχ,Q(P ) calculation by Miller’s algorithm, and the
other is the calculation called final exponentiation that
f̂χ,Q(P ) is raised to the ((pd − 1)/r)–th power.

Additionally, Nogami et al. have improved Xate
pairing by using subfield–twisted curve. It is called
cross–twisted Xate (Xt–Xate) pairing [4]. In the case
of Freeman curve E(Fp10), we can use quadratic twisted
curve E′(Fp5) as the subfield–twisted curve, for which
we need to prepare subfield Fp5 besides the definition
field Fp10 .

2.2 Type–X All One Polynomial Field

Kato ea al. have proposed type–I eXtended all one
polynomial field (type I–X AOPF) [11] and type–II eX-
tended AOPF (type II–X AOPF) [12]. This paper calls
them type–X AOPF collectively. Type–X AOPF F(pn)m

is constructed by m–th towering over Fpn with a speciall
class of type–〈k,m〉 Gauss period normal bases (GNBs)
[13] when gcd (m,n) = 1. Type–〈k,m〉 GNB is defined
with a certain integer k as follows.

Define 1 : Let km+1 be a prime number not equal
to p. Suppose that gcd (km/e,m) = 1, where e is the
order of p in Fkm+1. Then, for any primitive k–th root
θ of unity in Fkm+1 and primitive (km+1)–st root β of
unity in F(pn)e ,

γ =
k−1∑
i=0

βi ∈ F(pn)m (4)

generates a normal basis {γ, γp, · · · , γpm−1} in F(pn)m .
It is called type–〈k,m〉 GNB. ¥

There exists a special class of type–〈k,m〉 GNBs of
type–X AOPF for every pair of characteristic p and ex-
tension degree m when p > m [11, 12]. Thus, type–X
AOPF is available for the definition field of Freeman
curve. For example, we can prepare the subfield Fp5 by
5–th exteding over Fp with the type–〈k1,m = 5〉 GNB,
and the definition field Fp10 as type–X AOPF F(p5)2 by
2–nd towering over the Fp5 with the type–〈k2,m = 2〉
GNB as shown in Fig.1. In what follows, in order to
make squarings in this F(p5)2 more efficient, we consider
an efficient squaring algorithm in type–X AOPF F(pn)2 .

F(p5)2

Fp5

Fp

6

6

2nd towering with
type–〈k2,m = 2〉 GNB

5th extending with
type–〈k1,m = 5〉 GNB

Fig 1: Type–X AOPF F(p5)2

2.3 Cyclic Vector Multiplication Algorithm

As an efficient multiplication algorithm in type–X
AOPF, Kato et al. have proposed cyclic vector multi-
plication algorithm (CVMA) [11, 12]. This subsection
shows CVMA in type–X AOPF F(pn)2 .

Let X, Y , Z ∈ F(pn)2 be

X = x0γ + x1γ
p, x0, x1 ∈ Fpn , (5a)

Y = y0γ + y1γ
p, y0, y1 ∈ Fpn , (5b)

Z = XY = z0γ + z1γ
p, z0, z1 ∈ Fpn , (5c)

and k′ be

k′ =

{
(k + 1)/2 (when k is odd)

−k/2 (when k is even)
, (6)

then CVMA calculates a multiplication in F(pn)2 as fol-
lows.

z0 = k′(x0 − x1)(y0 − y1) − x0y0, (7a)
z1 = k′(x0 − x1)(y0 − y1) − x1y1. (7b)

Its calculation cost is given as

M2n = 3Mn + 4An + Kn, (8)

where Kn is the computational cost of a scalar k′ mul-
tiplication in Fpn .
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On the other hand, let X, Z ∈ F(pn)2 be

X = x0γ + x1γ
p, x0, x1 ∈ Fpn , (9a)

Z = X2 = z0γ + z1γ
p, z0, z1 ∈ Fpn , (9b)

then CVMA calculates a squaring in F(pn)2 as follows.

z0 = k′(x0 − x1)2 − x2
0, (10a)

z1 = k′(x0 − x1)2 − x2
1. (10b)

Its calculation cost is given as

S2n = 3Sn + 3An + Kn. (11)

When k = 1 or 2, Kn of Eqs.(8) and (11) becomes 0.
Therefore, in these cases, multiplications and squarings
with CVMA are the most efficient, respectively.

2.4 Efficient Squaring Algorithm When k = 1

Kato et al. have proposed an efficient squaring algo-
rithm in type–X AOPF constructed by type–〈k = 1,m〉
GNB. It is based on the idea as

A2 − B2 = (A − B)(A + B). (12)

For example, the algorithm calculates a squaring in
F(pn)2 as

z0 = −x1{(x0 − x1) + x0}, (13a)
z1 = x0{(x0 − x1) − x1}, (13b)

then its calculation cost is given as

S2n = 2Mn + 3An. (14)

Thus, when Mn/Sn < 1.5, this algorithm makes squar-
ings more efficient.

However, type–〈k = 1,m = 2〉 GNB exists in only
50 percent for every characteristic p. Additionally, as
shown in [10], type–〈k = 1,m = 2〉 GNB can not be con-
structed the definition field F(p5)2 for the four kinds of
Freeman curves shown in [7, 8] although type–〈k = 2,
m = 2〉 GNB can. Thus, we need an efficient squar-
ing algorithm in the case of the other type–〈k,m = 2〉
GNBs.

3 PROPOSED ALGORITHM

This section proposes an efficient squaring algorithm
in type–X AOPF constructed by type–〈k,m = 2〉 GNB.

3.1 Efficient Squaring Algorithm When k 6= 1

Let U and V in F(pn)2 be

U = uγ + uγp, V = vγ − vγp, (15a)
u = (x0+x1)/2, v = (x0−x1)/2. (15b)

With U and V , X of Eq.(9a) is written as

X = U + V = x0γ + x1γ
p, (16a)

x0 = u + v, x1 = u − v. (16b)

then Z of Eq.(9b) is given as

Z = X2 = U2 + V 2 + 2UV = z0γ + z1γ
p. (17)

U2, V 2 and UV is calculated by using Eqs.(7), (10) as

U2 = −u2γ − u2γp, (18a)

V 2 = (4k′ − 1)v2γ + (4k′ − 1)v2γp, (18b)
UV = −uvγ + uvγp. (18c)

Thus, z0 and z1 of Eq.(10) are given as

z0 = −u2 + (4k′ − 1)v2 − 2uv

= −(u + v){(u + v) − 4k′v} − 4k′uv, (19a)

z1 = −u2 + (4k′ − 1)v2 + 2uv

= −(u + v){(u + v) − 4k′v} − 4(k′ − 1)uv, (19b)

then they are calculated by using Eq.(15b) as

z0 = − x0{x0 + 2k′(x0 − x1)}
− k′(x0 + x1)(x0 − x1), (20a)

z1 = − x0{x0 + 2k′(x0 − x1)}
− (k′ − 1)(x0 + x1)(x0 − x1). (20b)

When Eq.(20) is calculated with the algorithm as Fig.2,

1. a0 ← x0 + x1, a1 ← x0 − x1.

2. a2 ← x0 + 2k′a1.

3. b0 ← x0a2, b1 ← a0a1.

4. z0 ← −b0 − k′b1, z1 ← z0 − b1.

(End of algorithm)

Fig 2: The improved squaring algorithm in F(pn)2

the computation amount of a squaring in F(pn)2 is given
as

S2n = 2Mn + 5An + Kn + K(2)
n , (21)

where K
(2)
n is the computational cost of a scalar 2k′

multiplication in Fpn . Thus, when Mn and Sn >> An

and K
(2)
n , this algorithm often makes squarings more

efficient than CVMA. Additionally, when k = 2 then
this algorithm is the most efficient because Kn and K

(2)
n

become 0. On the other handd, when k = 1 then the al-
gorithm of Sec.2.4 is more efficient than this algorithm.

3.2 Efficiency for Freeman Curve

The CVMA optimized in [10] makes squarings in
both the Fp5 and F(p5)2 more efficient than original
CVMA. Moreover, the squaring algorithm of the pre-
vious subsection converts the computation amounts of
a squaring in the F(p5)2 as shown in Table 1, where
“original”, “1st improved” or “2nd improved” denote
squarings with original CVMA, the CVMA optimized
in [10], and the algorithm of the previous subsection in
addition to “1st improved” algorithm, respectively.
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Table 1: The computation amounts of a squaring

original
1–st 2–nd

improved imporoved

Fp5 (15, 70, 0) † (15, 40, 10) † —
F(p5)2 (45, 230, 0) † (45, 140, 30) † (30, 125, 25) †

† For example, (15, 40, 10) denotes 2M1 + 3A1 + 4D1 (S1 =M1).

The next section concretely shows the efficiency of
the proposed algorithm for Freeman curve.

4 EXPERIMENTAL RESULTS

This experiment used Freeman curve with 196–bit
characteristic the same as in [10]. Table 2 shows the
calculation timings of a squaring in each Fp5 and F(p5)2

with the computational environment Table 3. As shown
in Table 2, the proposed algorithm makes squarings
about 10 percent faster.

Table 2: The calculation timings of a squaring

original 1–st improved 2–nd improved

Fp5 8.04 µs 7.03 µs —
F(p5)2 20.3 µs 18.1 µs 16.3 µs

Table 3: Computational environment

CPU Pentium4 3.00GHz
Cache Size 512 KB

OS Linux 2.6.27
Language C
Compiler gcc 4.3.1
Library GNU MP 4.2.4 [15]

Finally, Table 4 shows the experimental result of
Xt–Xate pairing with Freeman curve. As shown in Ta-
ble 4, the proposed squaring algorithm is more efficient
for Xt–Xate paring with Freeman curve.

Table 4: The calculation times of Xt-Xate pairing

original
1–st 2–nd

improved improved

Miller’s 7.74 ms 6.94 ms 6.73 msalgorithm

Final 4.28 ms 3.79 ms 3.53 msexponentiation

Total 12.0 ms 10.7 ms 10.3 ms

REFERENCES

[1] R. Sakai, K. Ohgishi and M. Kasahara: SCIS 2000,
(Jan. 2000), Okinawa, 26–28.

[2] D. Boneh, X. Boyan and H. Shacham: Proc.
of Crypto2004, Lect. Notes Comput. Sci., 3152
(2004), 41–55.

[3] H. Hess, N. P. Smart and F. Vercauteren, “The eta
pairing re-visited,” IEEE Trans. Inf. Theory, Vol.
52, pp. 4595-4602 (2006).

[4] Y.Nogami, M.Akane, Y.Sakemi, H.Kato and
Y.Morikawa: Pairing 2008, LNCS, 5209 (Aug.
2008), 178–191.

[5] A. Miyaji, M. Nakabayashi and S. Takano: IEICE
Trans. Fundam., E84–A(5) (2001), 1234–1243.

[6] A. J. Devegili, M. Scott and R. Dahab: LNCS, 4575
(2007), 197–207.

[7] D. Freeman: ePrint (2006).

[8] D. Freeman: LNCS, Springer Berlin/Heidelberg,
4076 (Oct. 2006), 452–465.

[9] H. Cohen and G. Frey, “Handbook of elliptic
and hyperelliptic curve cryptography,” Chapman
& Hall/CRC (2005).

[10] K. Nekado, H. Kato, Y. Nogami, Y. Morikawa:
Memoirs Faculty Eng. Okayama Univ., 43–14
(2008), pp. 107–112 .

[11] H. Kato, Y. Nogami, T. Yoshida and Y. Morikawa:
ETRI Journal (Dec. 2007), 29–6 .

[12] H. Kato, Y. Nogami, T. Yoshida and Y. Morikawa:
IEICE Trans. Fundam., E92–A(1) (Jan. 2009),
173–181 .

[13] S. Gao: Doctoral thesis (1993), Waterloo, Ontario,
Canada.

[14] H. Kato, Y. Nogami and Y. Morikawa: ITC–
CSCC2008 (Jul. 2008), 273–275.

[15] GNU Multiple Precision Arithmetic Library, avail-
able at “http://gmplib.org”.

72

Kenta NEKADO et al. MEM.FAC.ENG.OKA.UNI. Vol. 44




