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This paper proposes a method for generating a certain composite order ordinary pairing–friendly
elliptic curve of embedding degree 3. In detail, the order has two large prime factors such as the modulus
of RSA cryptography. The method is based on the property that the order of the target pairing–friendly
curve is given by a polynomial as r(χ) of degree 2 with respect to the integer variable χ. When the bit
size of the prime factors is about 500 bits, the proposed method averagely takes about 15 minutes on
Core 2 Quad (2.66Hz) for generating one.

1 INTRODUCTION

Recently, pairing–based cryptographic applications
such as ID–based cryptography [13] have received much
attention. Pairing is a bilinear map from two rational
point groups denoted by G1 and G2 to a multiplica-
tive group denoted by G3. In addition, these groups
are defined over a certain extension field Fpk , where p
is the characteristic and k is the extension degree, espe-
cially called embedding degree. The rational points are
defined over a certain pairing–friendly elliptic curve. In
other words, the security of pairing–based cryptography
partially depends on elliptic curve cryptography. Since
pairing–friendly elliptic curve is a special class of ellip-
tic curves, the parameters p, k, and the defining equa-
tion of elliptic curve are restricted by some tight condi-
tions. Pairings are simply classified into two types. One
is symmetric pairing and the other is non–symmetric
pairing. The former uses super–singular curve and the
latter does non super–singular, in other words ordinary,
pairing–friendly curve. Accordingly, the symmetric and
non–symmetric pairings have some different advantages.

RSA cryptography has a long history compared to
elliptic curve cryptography and pairing–based cryptog-
raphy. Thus, various RSA–based cryptographic applica-
tions and mathematical techniques have been proposed.
RSA cryptography is defined over an integer ring of a
certain secure composite order r, in detail r needs to
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have two large prime factors such as more than 500–bit.
As also introduced in [5], in order to apply these RSA–
based conventional techniques to pairing–based cryptog-
raphy, pairing–friendly elliptic curve also needs to have
such a secure and large composite order r [3]. Accord-
ing to [5], such a large composite order pairing–friendly
curve has been already introduced as

• super–singular pairing–friendly curve of k = 2 with
ρ = 1,

• ordinary pairing–friendly curve of k = 1 with ρ =
2,

where ρ = blog2 pc/blog2 rc. From the viewpoint of ef-
ficiency, ρ · k is preferred to be small. According to [5],
ρ · k = 2 is recommended and the above curves satisfy
it. However, this paper especially focuses on that, in
the cases of the above curves, the order r is given by a
polynomial of degree 1 with respect to the integer vari-
able χ, that is denoted by r(χ) in this paper, and thus
it is possible to efficiently generate such a secure and
large composite order pairing–friendly curve. When the
degree of r(χ) is larger than or equal to 2 such as the
following Eq.(1c), it becomes difficult. Though ρ ·k will
become a little larger, it will be one of theoretically in-
teresting problems. This paper deals with the case that
the degree of r(χ) with respect to the integer variable χ
is equal to 2.

This paper proposes a method for generating ordi-
nary pairing–friendly curves of composite order espe-
cially when the embedding degree k is equal to 3. Let v
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and w be 500–bit prime numbers, construct the order r
such that vw divides r. In the case that k = 3, accord-
ing to [10], a class of ordinary pairing–friendly curves
whose parameters are given as follows is known.

E : y2 = x3 + b, b ∈ Fp , (1a)
p(χ) = (χ4 − χ3 + 2χ + 1)/3, (1b)
r(χ) = χ2 + χ + 1, (1c)

where χ is an integer parameter. Then, this paper
proposes an efficient algorithm that generates ordinary
pairing–friendly curves whose order r has two almost
500–bit prime factors by changing χ. It can achieve
ρ · k = 6. The basic idea first solves r(χ) = 0 modulo a
certain prime number v. Then, using the result α and
β, those are certain positive integers, the idea checks
the almost primarities of r(α)/v and r(β)/v since it is
shown in this paper that r(χ) is divisible by 3. If ei-
ther of them becomes an almost prime number w, the
idea correspondingly checks the primarities of p(α) and
p(β) for preparing the prime field Fp . Then, one obtains
an ordinary pairing–friendly curve E(Fp) with p(α) or
p(β). Otherwise, try another prime number v. After
that, this paper experiments how much calculation time
is required for generating an ordinary pairing–friendly
curve whose order has such two large prime factors. Let
the bit sizes of the prime factors be about 500–bit, it
is shown that it averagely takes 15 minutes on Core 2
Duo (3.0GHz). After that, in order to check the ef-
ficiency, some experimental results of Ate pairing and
some other elliptic curve operations are shown. The
proposed method is basically available for some other
pairing–friendly curves whose order is given as a poly-
nomial of degree 2 such as Eq.(1c).

Throughout this paper, p, k, and r denote charac-
teristic, embedding degree, and order, respectively. Fp

denotes a prime field and Fpk does its extension field.
Small and capital alphabets such as a and A denote ele-
ments in prime and extension fields, respectively. X | Y
and X - Y mean that X divides and does not divide Y ,
respectively.

2 FUNDAMENTALS

This section briefly reviews elliptic curve, a class
of pairing–friendly curves of embedding degree 3, cubic
twist, and Ate pairing.

2.1 Elliptic curve and pairing–friendly curve of
embedding degree 3

Let Fp be prime field and E be an elliptic curve
over Fp . E(Fp) that denotes the set of rational points
on the curve, including the infinity point O, forms an
additive Abelian group. Let #E(Fp) be its order, con-
sider a large prime number r that divides #E(Fp). The
smallest positive integer k such that r divides pk − 1 is
especially called embedding degree. One can consider a
pairing such as Tate and Ate pairings on E(Fpk). Usu-

ally, #E(Fp) is written as

#E(Fp) = p + 1− t, (2)

where t is the Frobenius trace of E(Fp). The target
pairing–friendly curve whose embedding degree k is 3
has the following parameters with a certain integer χ.

p(χ) = (χ4 − χ3 + 2χ + 1)/3, (3a)
r(χ) = χ2 + χ + 1, (3b)
t(χ) = χ + 1, (3c)

where r(χ) is the order of groups G1, G2, and G3. In
addition, since the discriminant D is equal to 3 in this
case, the defining equation E is given as

E : y2 = x3 + b, b ∈ Fp . (4)

As also introduced in [5], the parameters of recent ordi-
nary pairing–friendly curves are mostly given as Eqs.(3).
In this case,

ρ = blog2 pc/blog2 rc = 2. (5)

This ratio ρ is often used for evaluating the redundancy
between the order r and the characteristic p. Especially
based on Eq.(3b), this paper considers how to generate
an ordinary pairing–friendly curve of embedding degree
3 whose order has two large prime factors as the modu-
lus of RSA cryptography.

2.2 Twist

When the embedding degree k is equal to 3e, where e
is a positive integer, cubic twisted curve E′ of Eq.(4) and
the isomorphic map ψ3 that accelerates not only pairing
calculation but also some other operations such as a
scalar multiplication in G2 [1],[6] are given as follows.

• k = 3e (cubic twist)

E : y2 = x3 + b, b ∈ Fp , (6a)
E′ : y2 = x3 + bz−2, (6b)

where z is a cubic non residue in Fpe and 3 | (p−1).

ψ3 :

{
E′(Fpe) → E(Fp3e),
(x, y) 7→ (xz2/3, yz).

(6c)

In this paper, the case of e = 1 is mainly dealt with.
Thus, ψ3 and its inverse ψ−1

3 needs two multiplications
between Fp and Fp3 elements as Eq.(6c).

2.3 Cross twisted (Xt) Ate pairing

Let E(Fp3) be a pairing–friendly curve of embedding
degree 3 and E(Fp3)[r] be its subgroup of rational points
of order r. Then, consider two rational point groups G1

and G2 of order r as follows.

G1 = E(Fp3)[r] ∩Ker(φ− [1]), G1 ⊆ E(Fp), (7a)
G2 = E(Fp3)[r] ∩Ker(φ− [p]), G2 ⊂ E(Fp3), (7b)
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where φ and [l] denotes Frobenius map with respect to
Fp and l times scalar multiplication for a rational point
in E(Fp3), respectively. Then, for P ∈ G1 and Q ∈ G2,
Ate pairing e(Q,P ) is defined as

e :

{
G2 ×G1 → F∗

p3/(F∗
p3)r,

(Q,P ) 7→ e(Q,P ).
(8)

Let t be the Frobenius trace of E over Fp and let ft−1,Q

be a certain rational function, e(Q,P ) is given by

e(Q,P ) = ft−1,Q(P )(p
3−1)/r, (9)

where ft−1,Q(P ) is efficiently calculated by Miller’s al-
gorithm [8]. Suppose the twist degree 3, according to
Eq.(6c), the cubic twisted groups G′1 and G′2 are respec-
tively given as

G′1 = ψ−1
3 (G1), (10a)

G′2 = ψ−1
3 (G2). (10b)

Fig.1 shows an image of the relation among G1, G2, G′1,
and G′2. In this case, based on the parameters Eqs.(3),
cross twist (Xt) Ate pairing e(·, ·) [1] achieves an efficient
bilinear map by

e(Q,P ) = fχ,Q′(P ′)(p
3−1)/r, (11)

where Q′ = ψ3(Q) and P ′ = ψ−1
3 (P ). Then, according

to the algorithm Fig.2 and also Fig.1, most of calcula-
tions are carried out in the prime field Fp .

3 MAIN IDEA FOR GENERATING AN
OBJECTIVE CURVE

The purpose of this paper is to generate pairing–
friendly curves of embedding degree 3 whose order r has
two large prime factors. In detail, when r(χ) is given
as Eq.(3b), one would like to find an integer χ such
that r(χ) has two large prime factors v and w. Fig.3
shows the calculation procedure. In what follows, each
calculation step is explained.

3.1 Step 1 : preparation of the first prime fac-
tor v

Prepare the first prime number v ob bit size b such
that 3 | (v− 1). It is the necessary and sufficient condi-
tion that the following Step 2 has two roots α and β in
Zv since r(χ) = x2 +x+1 is the cyclotomic polynomial
of order 3.

3.2 Step2 : calculation of the two roots of r(χ)
modv

Calculate the two roots α and β of χ2 +χ+1 mod v.
First, generate a random number γ less than v. Then,
calculate γ(v−1)/3 mod v. If the result is not equal to
1, it is α and then β = α2 mod v. The most important
point is that, of course these roots are smaller than v,
blog2 αc and blog2 βc are mostly equal to blog2 vc = b.
Accordingly, blog2 r(α)c and blog2 r(β)c mostly become

2b, moreover r(α) and r(β) are divisible by v because α
and β are the roots of r(χ) mod v. Thus, the first prime
number v is embedded.

3.3 Step3 : primarity check for obtaining the
second prime factor w

Check the almost primarities of r(α)/v and r(β)/v.
If either r(α)/v or r(β)/v is an almost prime, a cer-
tain almost b–bit prime number is obtained as the sec-
ond prime number w. Strictly speaking, w maybe 1–
bit smaller than v at least because, as previously intro-
duced, r(χ) is divisible by 3. Otherwise, return to Step
1. Of course, one can try r(jv + α)/v and r(jv + β)/v,
where j is some integer. If one would like to make the
bit sizes of v and w the same, at Step 2 solve two roots
α and β of χ2 +χ+1 modulo 3v though much more cal-
culation time will be needed. Thus, the second prime
number w is embedded.

3.4 Step4 : primarity check for p(χ) as the char-
acteristic of Fp

Corresponding to the almost primarity of r(α)/v or
r(β)/v, p(α) or p(β) needs to be a prime number for
preparing the prime field Fp . Finally, since r is divisible
by two large prime numbers v and w, the purpose is
achieved.

3.5 Remark

The reasons why this paper mainly considers the
pairing–friendly elliptic curve introduced in Sec.2.1, it
is related to the proposed algorithm, are as follows.

• Though ρ · k = 2 will be the best [5], this curve
can achieve ρ · k = 6.

• Since the discriminant D is equal to 3, a lot of
pairing–friendly curves can be generated. It con-
tributes to the proposed probablistic algorithm.

• In addition, the implementation of pairing such as
Ate pairing becomes efficient because cubic twist
is available.

If it is allowed that the bit sizes of two prime factors
v and w are different such as 500–bit and 1000–bit, the
proposed method will be directly used for the cases that
the degree of r(χ) is larger than 2 though ρ · k will
become worse.

4 EXPERIMENTAL RESULT

In order to check the efficiency, under the compu-
tational environment shown in Table 1, the following
sections show some experimental results with b = 500,
where b also defined in Fig.3 is related to the bit size of
prime factors v and w.

4.1 Generating the objective curve

Table 2 shows the average computation time for
generating one objective pairing–friendly curve. In the
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Table 1: Computational environment

CPU Core 2 Quad ∗† 2.66GHz
Cash size 4096KB

OS Linux(R)† 2.6.27
Language C
Compiler gcc 4.3.2
Library GNU MP 4.2.2 [7]

∗Pentium(R) is a registered trademark of Intel Corporation. †Linux(R) is the
registered trademark of Linus Torvalds in the U.S. and other countries.
†Only single core is used though it has four cores.

simulation, 30 pairing–friendly curves of embedding de-
gree 3 whose order is a 2b–bit composite number and
has two almost b–bit prime factors have been gener-
ated. For example, generating one objective curve with
b = 500 averagely took about 15 minutes. An exam-
ple is shown in App.A. Thus, the proposed calculation
procedure is sufficient practical. The proposed method
can be applied for the other cases that the order r(χ) is
given as a polynomial of degree 2 such as Eq.(3b).

It has been theoretically found that r(χ) is divisible
by not only v, w but also 3, thus in this paper w is an
almost b–bit prime. In order to obtain just b–bit prime
factors v, w, α and β at Step 2 can be calculated by
χ2 + χ + 1 mod 3v. For example, when the bit size of v
and w is 512 bit, the calculation for generating one curve
took a few hours on average although it will become
more efficient.

4.2 Arithmetic operations in Fp3

For the following experiment, the base extension field
Fp3 needs to have efficient arithmetic operations such as
multiplication. According to the characteristic p given
by Eq.(3a), the integer parameter χ at least needs to
be chosen such that the denominator 3 divides the nu-
merator χ4 − χ3 + 2χ + 1. In detail, χ mod 3 must be
1. Then, using such an integer χ, it is theoretically
shown that p(χ) − 1 is also divisible by 3. It is an im-
portant property because it means that OEF (optimal
extension field) technique [2] is always available for con-
structing the base extension field Fp3 . OEF has efficient
arithmetic operations including Frobenius map. Table
3 shows the average timings of arithmetics in Fp3 .

4.3 Miller’s algorithm of Xt–Ate pairing

In the case of Barreto–Neahrig (BN) curve, it is well–
known that the Hamming weight of the loop parame-
ter χ for Xate pairing is easily optimized so as to be
small [11]; however, it is difficult for the target purpose.
Thus, this paper has also applied NAF technique for the
Miller’s algorithm.

Since the embedding degree is equal to 3, many in-
versions by the vertical lines at Step 4 and 7 in the
Miller’s algorithm Fig.2 are needed. According to the
original paper [10], an efficient technique is introduced.

It needs 10 Fp–multiplications. In what follows, based
on OEF technique, this paper introduces a more efficient
inversion of the vertical lines.

Let a be the value of vertical line that is a certain
non–zero element in Fp3 such as v2T ′(P ′) in Fig.2. Ac-
cording to Itoh–Tsujii inversion algorithm [9], the in-
verse of a is given by

a−1 = N(a)−1 · ap+p2
, (12)

where N(a) ∈ Fp is the norm of a. Since the final ex-
ponentiation is carried out after Miller’s algorithm cal-
culation, N(a)−1 automatically becomes 1. Thus, only
ap+p2

needs to be calculated. Then, let a be repre-
sented as a = a0+a1ω+a2ω

2, where a0, a1, a2 ∈ Fp and
{1, ω, ω2} is the polynomial basis of OEF with x3−u as
the modular polynomial, ap+p2

is efficiently calculated
as follows.

ap+p2
= (a2

0 − a1a2u) + (a2
2u− a0a1)ω

+(a2
1 − a0a2)ω2. (13a)

The following relation also helps the calculation.

a2
1 − a0a2 = (a0 + a1 + a2/2)(−a0 + a1 − a2/2)

−a2
0 − a2

2/4. (13b)

Table 4 shows the average computation time of Xt–Ate
pairing.

4.4 Final exponentiation

Let n be (χ−1)/3. In this case, according to Eq.(3a),
χ − 1 needs to be divisible by 3. Based on Eqs.(14),
the final exponentiation is optimized as shown in Fig.4.
Table 5 shows the average computation time of final
exponentiation.

p(χ)3 − 1

r(χ)
= (p(χ)− 1) · p(χ)2 + p(χ) + 1

r(χ)
, (14a)

p(χ)2 + p(χ) + 1

r(χ)
=

χ6 − 3χ5 + 3χ4 + 4χ3 − 6χ2 − 3χ + 13

9

=
(χ2 − 2χ + 1)

3
p(χ) +

χ3 − χ2 − χ + 4

3
,

(14b)

p(χ)2 + p(χ) + 1

r(χ)
= (3n2)p(χ) + (9n3 + 6n2 + 1). (14c)
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Table 2: Average computation time for generating an objective pairing–friendly curve

bit size b average computation time [min.]
500 15

Table 3: Average timings of arithmetic operations in Fp3

bit size b bit size of p field operation timing [µsec.]
S1 16.0

Fp M1 16.1

500 2000 I1 119
S3 68.1

Fp3 M3 68.7
I3 317

4.5 Other operations

Pairing–based cryptography needs not only pairing
but also some other elliptic curve operations. Table 6
shows the average computation times of scalar multipli-
cations in G1,G′2 and an exponentiation in G3.

According to Sakemi et al. [14], an arbitrary ratio-
nal point P (xP , yP ) in G1, strictly speaking in E(Fp),
satisfies the following relation. Thus, χ–adic represen-
tation of scalar s < r accelerates scalar multiplication
[s]P in G1.

[p]P = [t− 1]P = [χ]P = (εxP , yP ), (15a)

where ε ∈ Fp is a primitive cubic root of unity such that
ε = z(p−1)/3. On the other hand, according to Galbraith
et al. [6] and Nogami et al. [12], an arbitrary rational
point Q′(xQ′ , yQ′) ∈ G′2 satisfies the following relation.

[p]Q′ = [t− 1]Q′ = [χ]P = φ̃(Q′) = (ε2xQ′ , yQ′), (15b)

where, according to OEF technique, the vector repre-
sentation of ε2 can be (0, c, 0) or (0, 0, c) with a certain
non–zero c ∈ Fp . It helps the calculation of Eq.(15b).
In the same of Eq.(15a), A ∈ G3 satisfies the following
relation.

Aχ = Ap. (15c)

Then, Aχ is calculated by Frobenius map with respect
to Fp . Thus, as shown in Eqs.(15), χ–adic representa-
tion plays an important role. For this experiment, that
is Table 6, joint–sparse form (JSF) technique [15] is
additionally applied.

In this case, co–factors #E(Fp3)/r(χ) and #E′(Fp3)/r(χ)
are respectively given as follows. Thus, as Scott et al.
[4] have introduced, the above relations will also ac-
celerate hashing for G1 and G′2 in E(Fp) and E′(Fp),

respectively.

#E(Fp)
r(χ)

=
χ2 − 2χ + 1

3
, (16a)

#E′(Fp)
r(χ)

=
χ2 − 2χ + 4

3
=

#E(Fp)
r(χ)

+ 1.(16b)

As previously introduced, r(χ) is divisible by 3, there-
fore the denominator 3 of the above equations can be
canceled by r(χ).

5 FUTURE WORK

The proposed method is basically applicable for the
other cases that the order r(χ) is given as a polynomial
of degree 2 with an integer parameter χ. As a future
work, the cases that the degree of r(χ) is more than 2
should be considered.
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A EXAMPLE
(almost 500–bit prime factors case)

The following case has the order r = v · w · a1 · a2.

v = 26700841069732778135114495494534346094053196666
16059775695163577820431665683017338496961772468
03580794349173722586245197119539903741896078195
0836010287927 (510–bit) (17a)

w = 32855552531522278212685340392885576388313543114
24555503779720722424349615003749310188863960566
09938913630219340628856422967691440527271102130
9073672543 (501–bit) (17b)

a1 = 3 (2–bit) (18a)
a2 = 79 (7–bit) (18b)

χ = 144191955419633786207569414903811651922618446
646532304694683661729232025409028052167109287
201882440020159877857226385639948583570121033
2437354990985337892 (509–bit) (19)

r(χ) = 2079132000773765721073545399327355299587140573
9969196297386210946379006971866965088668425602
0056269379672529057071523293052924387792921887
2755235069246370362386841931055537300387300991
7088789914617268705687744720103146080225460760
7740587290547505802397707484475149722322253765
6444603995609212807912396341557 (1018–bit) (20a)
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Table 6: Average computation times of scalar multiplications in G1,G′2 andan exponentiation in G3

bit size b operation calculation time [ms]

500 scalar multiplications † in G1 and G′2 65.6
exponentiation in G3 33.5

† : scalar multiplications are implemented with mixed coordinates.

p(χ) = 1440929958880507380990959525832343138787119471
4564589392408537717920204686331297227747572645
8861926451806982928183857712286831095733313071
1109868255028197409808068356741979906142528802
1851220873677997500715236961934625595784686472
0592194298041295432883369378913703237960022183
5174375300803379271874731492302771249809401739
7276819166189803856181904920684892270191965764
2787613326486979727039405869831835815458193646
7961583648115867531361866348290943779781801987
9593869060732608161404895862732479109671009563
6769636770307723882887827132712961267686700558
8637467035390422989096505823203761095795112445
865235300688131 (2034–bit) (20b)
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(Fp3)

(Fp)

P ∈ G1

(Fp)

(Fp3)

Q′ ∈ G′2

Q ∈ G2E

E′ P ′ ∈ G′1

cubic twist

ψ−1
3

ψ−1
3

Figure 1: Relation among G1, G2, G′1, and G′2

Input : s = t− 1 = χ, P (xP , yP ) ∈ G1, Q(xQ, yQ) ∈ G2

Output : fs,Q(P )
1. P ′(xP ′ , yP ′) ← ψ−1

3 (P ), Q′(xQ′ , yQ′) ← ψ−1
3 (Q)

2. f ← 1, T ′ ← Q′

3. for i = blog2 sc downto 1 do
4. f ← f2 · lT ′,T ′(P ′)/v2T ′(P ′)
5. T ′ ← 2T ′

6. if s[i] = 1 then
7. f ← f · lT ′,Q′(P ′)/vT ′+Q′(P ′)
8. T ′ ← T ′ + Q′

9. end if
10. end for
11. return f

Figure 2: Miller’s algorithm of Xt–Ate pairing

Input: bit size b
Output: an integer χ such that r(χ) has two almost b–bit prime factors

1. Generate b–bit prime number v such that 3 | (v − 1).
2. Find two roots α = γ(v−1)/3 6= 1 and β = α2 of χ2 + χ + 1 mod v,

where γ ∈ Zv is randomly chosen.
3. Check the almost primarities of A = r(α)/v and B = r(β)/v. †

4. If either A or B is prime, correspondingly check the almost primarity of
C = p(α) and D = p(β). Otherwise, return to Step.1.

5. If either C or D is a prime, output α or β correspondingly.
Otherwise, return to Step.1.

† One can try r(jv + α)/v and r(jv + β)/v, where j is some integer.

Figure 3: Proposed calculation procedure
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Input : f, p, n = (χ− 1)/3

Output : f (p3−1)/r = (fp−1)(3n2)p+(9n3+6n2+1)

1. f ← fp · f−1

2. a ← (f3)n2

3. b ← (a3)n · a2 · f
4. f ← ap · b
5. return f

Figure 4: Final exponentiation
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