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Abstract—The purpose of this paper is to improve the per-
formance of the kernel fuzzy clustering model by introducing a
self-organized algorithm. A conventional kernel fuzzy clustering
model is defined as a model which is an improved additive fuzzy
clustering. The purpose of this conventional model is to obtain
a clearer result by consideration of the interaction of clusters.
This paper proposes a fuzzy clustering model based on the idea
of self-organized dissimilarity between two objects.

I. INTRODUCTION

Recently, in the area of data analysis there is a tremendous
amount of interests in the analyses of noisy data. As a tech-
nique for analyzing these data, clustering techniques are well
known. Clustering has several methods, including exploring
data structure directly from the data, and another based on the
model assumption. [1], [2], [3] This paper focuses on the later.

In this paper, we discuss a fuzzy clustering model using self-
organized similarity. [4] The proposed model is an extension
of a kernel fuzzy clustering model. [5] The kernel fuzzy
clustering model classifies data, using similarity between two
objects. This model estimates the degree of belongingness of
objects to clusters in a mapped space by using kernel function.
We define a self-organized similarity between objects from
the classification structure under an assumption that similar
objects have similar classification structures.

The proposed model estimates the degree of belongingness
using the kernel fuzzy clustering model, calculates the self-
organized similarity from the results of kernel fuzzy clustering
model, and repeatedly estimates the degree of belongingness
from the self-organized similarity.

The purpose of the kernel fuzzy clustering model [5] is
to obtain a clear result by consideration of the interaction
of clusters. However, if the data have noise, the result of
the model tends to be uniformity. In order to solve this
problem, we use the self-organized similarity for the kernel
fuzzy clustering model and investigates the performance with
several numerical examples.

II. KERNEL FUZZY CLUSTERING MODEL

The kernel fuzzy clustering model is defined as follows:

sij = κ(ui, uj) + εij . (1)

sij is similarity between i-th object and j-th object. Degree
of belongingness of i-th object is ui = (ui1, · · · , uiK), and

uik is a degree of belongingness of i-th object with respect to
k-th cluster. uik satisfies the following conditions:

uik ≥ 0,

K∑

k=1

uik = 1. (2)

κ is a kernel function which satisfies the following conditions:

κ(ui, uj) = κ(uj, ui). (3)
n∑

i=1

n∑

j=1

κ(ui, uj)uiuj ≥ 0, u1, . . . , un ∈ RK . (4)

When κ satisfies the condition shown in equation (5), the
model (1) is a non-linear clustering model which includes
the conventional additive fuzzy clustering model [3], when
parameter d is 1.

κ(ui, uj) = 〈ui, uj〉d, d ≥ 1. (5)

In the additive fuzzy clustering model, sum of each cluster

(
K∑

k=1

uikujk) explains similarity between objects. But, in the

kernel fuzzy clustering model, not only sum of each cluster but
also interaction of clusters uikujl explains similarity between
objects, when d > 1 in equation (5).

The additive fuzzy clustering model estimates uik in lower
dimensional space (K dimensional space). In contrast, the ker-
nel fuzzy clustering model estimates uik in higher dimensional
space, when d > 1 in equation (5).

The kernel fuzzy clustering model defined in equation
(1) consists of applying similarity data to equation (1) and
estimating uik which minimize the sum of squared erros F as
follows:

F =
n∑

i=1

n∑

j=1

(sij −
K∑

k=1

κ(ui, uj))2.

III. SELF-ORGANIZED KERNEL FUZZY
CLUSTERING MODEL

We propose a self-organized kernel fuzzy clustering model
which consists of a kernel fuzzy clustering model and self-
organized similarity. The model is defined as follows:

s̄ij = κ(ui, uj) + ε̄ij . (6)

In this model, s̄ij shows the self-organized similarity be-
tween i-th object and j-th object.
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We obtain the self-organized similarity based on an assump-
tion in which if dissimilarity of objects is similar to each
other, classification structure obtained in solution space is also
similar. We define the self-organized similarity as follows:

S̄ = UU t, S̄ = (s̄ij). (7)

U = (uik) is a matrix estimated by using the kernel fuzzy
clustering model shown in equation (1).

Figure 1 shows the change of values of self-organized
similarity shown in equation (7) by the change of the values
of degree of belongingness of clusters, when the number of
clusters is two.
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Fig. 1. Self-Organized Similarity between i-th Object and j-th Object

A value of the self-organized similarity between objects i
and j

s̄ij =
2∑

k=1

uikujk (8)

depends on ui1 and uj1 from the condition
2∑

k=1

uik = 1 shown

in equation (2). Therefore, we show the value of change for
s̄ij with respect to the change of values of ui1 and uj1.

In figure 1, the first axis shows the value of ui1, the second
axis shows the value of uj1 and the third axis shows the value
of s̄ij shown in equation (8).

The common line of the curved surface of s̄ij and plane of
ui1 = uj1 is a downward convex line, and the minimum value
of the line is 0.5 when ui1 and uj1 are 0.5. That is, if two
objects have the same classification structures, then objects
which have crisper classification structures have a larger value
of the self-organized similarity.

Additionally, the common line of the curved surface of s̄ij

and plane of ui1 + uj1 = 1 is a convex rising line. And the
maximum value of the line is 0.5 when ui1 and uj1 are 0.5,

the minimum value is 0 when (ui1 is 1 and uj1 is 0) or (ui1

is 0 and uj1 is 1). That is, larger difference of classification
structures between objects causes the smaller value of self-
organized similarity between the objects.

Thus, the self-organized similarity measures similarity of
the classification structures between two objects. Moreover,
the self-organized similarity is a weighted similarity in which
the weight becomes larger when the classification structure is
crisper.

The proposed model defined in equation (6) consists of the
following 5 steps.

1. Apply similarity data to equation (6), obtain the
solution uik.

2. Using the obtained uik, calculate the self-organized
similarity S̄.

3. Apply S̄ to equation (6), obtain solution Ū = (ūik).
4. Calculate ‖U − Ū‖. ‖ · ‖ means norm.
5. If ‖U − Ū‖ < ε then stop. Otherwise calculate self-

organized similarity by using Ū , and repeat from step
3.

IV. NUMERICAL EXAMPLES

The data is artificial data which consists of 100 objects,
and each object has 2 variables. The values of 50 objects are
obtained as random values from the normal distribution with
µ = (4, 4)t, σ = 2I. The values of the other 50 objects are
values from the normal distribution with µ = (−4,−4)t, σ =
2I. Figure 2 shows the artificial data.
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Fig. 2. Artificial Data

Figure 3 shows a result by using the kernel fuzzy clustering
model on the artificial data. In this figure, the abscissa shows
the value of variable 1, and the ordinate shows the degree of
belongingness of cluster 1. We applied the proposed model to
the artificial data. The first time, the model did not converge,
so we repeated from step 3 once more. This result is shown in
figure 4. Figure 5 shows a result which is repeated once more
from the result of figure 4. Figure 6 shows a converged result.
From these results, we can see that the degree of belongingness
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using the self-organized similarity is gradually crisper than the
result of the kernel fuzzy clustering model shown in figure 3.
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Fig. 3. Result of Kernel Fuzzy Clustering
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Fig. 4. Result of Self-Organized Kernel Fuzzy Clustering (After One
Iteration)

The next data is transport data of Japanese freight [6] which
was surveyed in 2005. The value of the data shows the amount
of freight moving among prefectures in Japan. The data is
shown by a 47 × 47 matrix. Row shows starting point,
column shows destination. xij shows amount of freight from
a prefecture i to a prefecture j.

We apply this data for the kernel fuzzy clustering model
and the proposed model. The number of clusters is assumed
to be 3. Since the data is obtained as an asymmetric matrix,
in order to apply these models, we transform the asymmetric
data to a symmetric data.

1. Calculate averages for i th row and j th column,
which are ri and cj , and obtain normalized matrix
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Fig. 5. Result of Self-Organized Kernel Fuzzy Clustering (After Two
Iteration)
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Fig. 6. Result of Self-Organized Kernel Fuzzy Clustering (After Converged)

X̂ = (x̂ij) as follows:

x̂ij =
xij

ri × cj
.

2. Calculate symmetric data Y by using the following
equation:

Y =
X̂ + t(Ŝ)

2
.

3. For obtaining similarity matrix S = (sij) in which
each element is scaled in an interval [0,1], calculate
following equation:

sij = 1 − 1
exp(yij

µ )
,

where µ is mean of yij , ∀i, j.

Figures 7 - 9 show results of the kernel fuzzy clustering
model. Figure 7 shows a result of cluster 1, figure 8 shows
a result of cluster 2, and figure 9 shows a result of cluster
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3. Darker colors in these figures show a larger degree of
belongingness of clusters. Figures 10 - 12 show results of
the proposed model after one iteration. Figures 13 - 15 show
results of the proposed model after convergence.

From these results of the kernel fuzzy clustering model
shown in figures 7 - 9, it can be seen that objects of the Kinki
district mainly belong to cluster 1, objects of the Kanto and
Tohoku districts mainly belong to cluster 2, and objects of the
Kyushu and Tohoku districts mainly belong to cluster 3.

From the result of the proposed model (after one iteration),
it can be seen that we obtain result in which objects mainly
classified into 2 clusters. And, from the result of the proposed
model (after converged), it can be seen that all objects belong
to cluster 1 which is not good. However, we can see the
tendency of the clustering model result becoming crisper. For
practical use, we need to stop before we obtain the results
shown in figures 13 - 15.

From this point, selecting the adaptable stopping threshold
ε is an important issue. By selecting the adaptable stopping
threshold, an adaptable number of clusters can be automati-
cally selected, since the result shows that the proposed model
tends to eliminate unexplainable and noisy clusters.

Fig. 7. Result of Cluster 1 Kernel Fuzzy Clustering

Fig. 8. Result of Cluster 2 Kernel Fuzzy Clustering

Fig. 9. Result of Cluster 3 Kernel Fuzzy Clustering

Fig. 10. Result of Cluster 1 Self-Organized Kernel Fuzzy Clustering (After
One Iteration)

Fig. 11. Result of Cluster 2 Self-Organized Kernel Fuzzy Clustering (After
One Iteration)
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Fig. 12. Result of Cluster 3 Self-Organized Kernel Fuzzy Clustering (After
One Iteration)

Fig. 13. Result of Cluster 1 Self-Organized Kernel Fuzzy Clustering (After
Converged)

Fig. 14. Result of Cluster 2 Self-Organized Kernel Fuzzy Clustering (After
Converged)

V. CONCLUSION

We propose a self-organized kernel fuzzy clustering model.
This model includes self-organized similarity which calculates
similarity of the classification structures between two objects.

The kernel fuzzy clustering model tends to obtain a crisper
result for noisy data when compared with a conventional fuzzy
clustering model. However, if the data have uniformity struc-

Fig. 15. Result of Cluster 3 Self-Organized Kernel Fuzzy Clustering (After
Converged)

ture, the two models tend to obtain similar results. In order
to solve this problem, we use the self-organized similarity for
the kernel fuzzy clustering model.

Numerical examples show a better performance.
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