
Hidehiro KATO ∗

Graduate School of Natural Science and
Technology, Okayama University
3-1-1, Tsushima-naka, Okayama,

Okayama 700-8530, Japan

Yasuyuki NOGAMI ∗

Graduate School of Natural Science and
Technology, Okayama University
3-1-1, Tsushima-naka, Okayama,

Okayama 700-8530, Japan

Yoshitaka MORIKAWA ∗

Graduate School of Natural Science and
Technology, Okayama University
3-1-1, Tsushima-naka, Okayama,

Okayama 700-8530, Japan

A square root (SQRT) algorithm in extension field Fpm(m = r0r1 · · · rn−1 · 2d, ri : odd prime,
d : positive integer) is proposed in this paper. First, a conventional SQRT algorithm, the Tonelli-
Shanks algorithm, is modified to compute the inverse SQRT in F

p2d , where most of the computations
are performed in the corresponding subfields Fp2i for 0 6 i 6 d − 1. Then the Frobenius mappings
with addition chain are adopted for the proposed SQRT algorithm, in which a lot of computations in
a given extension field Fpm are also reduced to those in a proper subfield by the norm computations.
Those reductions of the field degree increase efficiency in the SQRT implementation. The Tonelli-Shanks
algorithm and the proposed algorithm in Fp6 and Fp10 were implemented on a Core2 (2.66 GHz) using
the C++ programming language. The computer simulations showed that, on average, the proposed
algorithm accelerated the SQRT computation by 6 times in Fp6 , and by 10 times in Fp10 , compared to
the Tonelli-Shanks algorithm.

1 INTRODUCTION

The task of computing square roots (SQRTs) in a
finite field Fpm is a problem of considerable importance.
Why is the SQRT important? Of course, we may sim-
ply be interested in the problem because it’s there, but
there are also applications to cryptography [1], [2]. In
this paper, an efficient algorithm to compute the SQRT
in Fpm is proposed. First, however, we give a short
overview of several conventional SQRT algorithms in a
prime field Fp. In order to find z such that z2 = x for
a given square x∈ Fp, most of already known efficient
methods are equivalent to or use the same basic ideas
as either the Tonelli-Shanks [3] or the Cipolla-Lehmer
algorithms [4]. The latter has the disadvantage that one
has to require a quadratic non-residue (QNR) that de-
pends on both p and x, while the QNR needed by the
former can be reused for different x. This study is based
on the Tonelli-Shanks algorithm.

∗{kato, nogami, morikawa}@trans.cne.okayama-u.ac.jp

The Tonelli-Shanks algorithm was originally devised
in Fp, but can easily be applied in Fpm by simply replac-
ing the operations in Fp with those in Fpm . We know the
operations in Fpm are more expensive than those in Fp

for m > 1. For example, using the schoolbook method
we need m2 multiplications in Fp to compute one multi-
plication in Fpm . If directly applying the Tonelli-Shanks
algorithm in Fpm , it will require a lot of computations.
So, we need to develop a more efficient SQRT algorithm
in extension fields Fpm .

An extension field Fpm provides us flexibility to choose
system parameters, such as characteristic p and exten-
sion degree m as well as irreducible polynomial. In what
follows m = r2d (r = r0r1 · · · rn−1) without further ex-
planation.

If a given element x∈Fpm is not a quadratic residue
(QR), i.e. x has no SQRT in Fpm , then there is no need
to compute its SQRTs. Before SQRT computations, we
should thus use Euler’s criterion Cm(x) = x(pm−1)/2 to

A High-Speed Square Root Algorithm for Extension fields
–Especially for Fast Extension Fields–

This work is subjected to copyright.
All rights are reserved by this author/authors.

(Received November 19, 2008)

Memoirs of the Faculty of Engineering, Okayama University, Vol. 43, pp. 99-107, January 2009

99

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12530172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

identify whether x is a QR or not, which is called QR
test. Since m = r2d, the exponent in Euler’s criterion
can be factorized into

pm − 1
2

= e · p
2d − 1

2
, e = 1+p2d

+ · · ·+(p2d

)r−1. (1)

Thus, Cm(x) can be evaluated in the following steps:

Cm(x) = x̄(p2d
−1)/2, x̄ = Nm

2d(x) = xe, (2)

where Nm
2d(x), the norm of x with respect to the subfield

Fp2d , is always an element in Fp2d . Instead of directly
evaluating Cm(x), this paper proposes a QR test by
examining vector form of x̄s, where s is an odd number
such that p2d − 1 = s2T (T is an integer not less than
1). This method cuts the unnecessary computations for
a QNR input.

The basic idea of the proposed SQRT algorithm is
described as follows. From Eq.(2), i.e. x̄ = xe, we have

√
x = x(e+1)/2x̄−1/2, (3)

where e is an odd number because r in Eq.(1) is an odd
number. In the proposed algorithm, the SQRT algo-
rithm presented in [5], i.e. MW-ST algorithm, is used
to compute the inverse SQRT x̄−1/2 in a given subfield
Fp2d , where most of the computations in Fp2d can be re-
duced to those in proper subfields F

p2d−i for 16 i6d.
Therefore, the number of computation for x̄−1/2 is far
smaller than that for

√
x. In addition, not only the

binary method, but also the Frobenius mappings with
addition chain are adopted for x(e+1)/2 in Eq.(3). For
exponentiation, we usually resort to the binary method,
however, the number of computations for the Frobenius
mapping φ(x) = xp is far fewer than that for the binary
method in important fast finite fields, such as optimal
extension fields (OEFs) [7], all one polynomial fields
(AOPFs) [8][9] and successive extension fields (SEFs)
[10]. Thus, the square root

√
x can be efficiently com-

puted using the proposed algorithm in these extension
fields. In addition, the simulation results show that the
proposed SQRT algorithm is much faster than the con-
ventional algorithm.

Throughout this paper, Am, Mm, and φm denote
an addition, multiplication, and Frobenius mapping, re-
spectively, in Fpm , and #Am, #Mm, and #φm denote
the respective numbers of these operations.

2 MW-ST ALGORITHM

Let us briefly review QR test and SQRT algorithm
called MW-ST algorithm in F

p2d [5].

2.1 Quadratic Residue (QR) Test In F
p2d

Generally, Euler’s criterion is used to identify whether
or not a nonzero element x in F

p2d is a QR:

C2d

(x)=x(p2d
−1)/2 =

{
1, if x is a QR

−1, if x is a QNR
. (4)

Find an integer T > 0 and an odd number s such that

(p2d

− 1)/2 = 2T s, (5)

and then we have

C2d

(x) = x(p2d
−1)/2 = (xs)2

T

= x2T

0 for x0 = xs. (6)

For the QR test of x, it is no need to compute the
exponentiation x(p2d

−1)/2 directly. If x0 = 1, then we
can assert that x is a QR. If not, we repeatedly square
from x0 t times until -1 is obtained as shown in Fig.1(a).
Note that we do not have to square x0 for the case of
x0 = −1, which implies t = 0. If t < T , then x is a QR;
if t = T , then x is a QNR. This QR test is a part of the
authors‘ previous work[5]. When x0 = 1, i.e. xs = 1,
multiplying both sides by x and taking SQRT of both
sides results in

√
x = x(s+1)/2. When computing x0

in the above QR test, we thus first compute x(s−1)/2,
and then multiply x(s−1)/2 by x to get x(s+1)/2, finally
multiply x(s−1)/2 and x(s+1)/2 together to get x0, which
can avoid the overlapping computations in QR test and
SQRT computation.

2.2 MW-ST Algorithm In F
p2d

When x0 = 1, i.e. xs = 1, multiplying it by x and
applying SQRT calculation to both sides, we have

√
x =

x(s+1)/2. In what follows, we mainly consider x0 6= 1. In
this case, QR test is performed as described in Sec.2.1,
where if t < T , as shown in Fig.1(a), then x is a QR.
If not, as shown in Fig.1(b), then x denoted by c is a
QNR.

From Fig.1, it is clear that cT xt = 1. Moving to the
windows of cT−1 and xt−1, we define σ(1) = cT−1xt−1.
Since cT−1 and xt−1 are the SQRTs of cT and xt, re-
spectively, and since the SQRT of cT xt i.e. the SQRT of
1 must be 1 or −1 in any finite field, we have σ(1) = ±1.
Then, we test the sign of σ(1): if σ(1) = 1, moving to the
windows of cT−2 and xt−2, we define σ(2) = cT−2xt−2;
if not, multiplying σ(1) by cT to get cT cT−1xt = 1, and
then moving to the windows of cT−1, cT−2, and xt−2, we
define σ(2) = cT−1cT−2xt−2. This is the reason why the
proposed SQRT algorithm is called moving window-sign
testing (MW-ST) algorithm. In this way, for 1 6 k 6 t
we have

σ(k) = c
ik−1
T−1c

ik−2
T−2 · · · c

i1
T−k+1cT−kxt−k. (7)

(·)s (·)2 (·)2c
(a) A power series of a QR

- - · · ·- -
x x0 xt−1 xt=−1

(·)s (·)2 (·)2 (·)2c
(b) A power series of a QNR (t < T)

- - - · · ·- -
c c0 c1 cT−1 cT=−1

Figure 1: QR test for x ∈ F
p2d .

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 43

100

Same as σ(1), we can assert σ(k) = ±1. If σ(k) = 1,
then ik = 0. If σ(k) = −1, then ik = 1. For k = t, we
have

σ(t) = c
it−1
T−1c

it−2
T−2 · · · c

i1
T−t+1cT−tx0 = ±1. (8)

Since x0 = xs and cT = −1,Eq.(8) can lead to

cit

T c
it−1
T−1 · · · c

i1
T−t+1cT−tx

s = 1, (9)

where for 1 > k > t, ik have the same definition as in
Eq.(7). Multiplying both side of Eq.(9) by x and taking
SQRT of both sides, we can easily get

√
x = cit

T−1 · · · c
i1
T−tcT−t−1x

(s+1)/2. (10)

MW-ST algorithm is summarized as follows:

MW-ST Algorithm over F
p2d

INPUT: A nonzero element x ∈ Fp2d .

OUTPUT: A square root
√

x ∈ Fp2d .

PRECOMPUTATION:

a. Factorize (p2d − 1)/2 as shown in Eq.(5).

b. Find an appropriate QNR c ∈ F
p2d , compute c0, c1,

· · · , cT as shown in Fig.1(b), and save these values
into the memory.

c. Execute the QR test as shown in Fig.1, and save the
intermediate value of x0, x1, · · · , xt and x(s+1)/2

into the memory. If the input x is a QR execute
the main procedure; if not, terminate.

MAIN PROCEDURE:
1. Check whether x0 equals to 1 or not. If x0 =

1, output
√

x = x(s+1)/2 and terminate; if not,
execute Main Procedure 2 and 3 in order.

2. Let τ0 = T − 1, µ = 1 and k = 1, and then
repeatedly execute Step 1-3 until k becomes t.

Step 1 : Compute σ = xt−k

∏µ−1
i=0 cτi . If σ = −1,

then τµ = T − 1 and µ = µ + 1; if not, then
the values of τµ and µ are not modified.

Step 2 : Let τi = τi − 1 for 0 6< µ.
Step 3 : Let k = k + 1.

3. Compute the value of
√

x = x(s+1)/2
∏µ−1

i=0 cτi .

Remarks:

• The register τi is for the index memory of cq ap-
pearing in Eq.(10).

• µ shows the number of cq in Eq.(10).

As previously shown, MW-ST algorithm in F
p2d reduces

the calculation cost by using the structure of Sylow 2-
subgroup of order 2t. In this paper, the authors pro-
pose SQRT algorithm for a more general case that m=
r0r1 · · · rn−12d where ri is an odd prime number, and
ri > rj for i 6 j, and d > 0 is an integer. According
to Eq.(10), using x(s−1)/2 instead of x(s+1)/2, we can
obtain the inverse square root x− 1

2 .

N30
6 (·) N6

2 (·) C2(·)c c
(a) m = 30 = 2 · 3 · 5

- - - -
x C30(·)

N60
12 (·) N12

4 (·) C4(·)c c
(b) m = 60 = 22 · 3 · 5

- - - -
x C60(·)

Figure 2: Some examples of the structure of Cm(x)

3 THE PROPOSED QR TEST IN Fpm

Same as F
p2d , Euler’s criterion is also used to identify

whether or not a nonzero element x∈Fpm is a QR.

Cm(x)=x(pm−1)/2 =

{
1, if x is a QR

−1, if x is a QNR
. (11)

In Eq.(11), x(pm−1)/2 can be directly computed by the
binary method. However, in what follows, we give an
efficient method for checking Eq.(11) that leads to the
proposed efficient SQRT algorithm.

3.1 Generalized QR Test

For simplicity without loss of generality, assume m=
r̄m̄ in this section, where r̄ is an odd prime number and
m̄ is a composite number or 1, and then the exponent
in Euler’s criterion in Eq.(11) can be factorized as

pm − 1
2

=
[
1 + pm̄ + · · · + (pm̄)r̄−1

]
· (pm̄ − 1)

2
. (12)

Thus, Cm(x) can be evaluated in the following steps

Cm(x)=Cm̄(x̄), x̄=Nm
m̄ (x)=x1+pm̄+···+(pm̄)r̄−1

. (13)

Equation (13) shows that Cm(x) will be reduced into
Cm̄(x̄) by the norm computation of Nm

m̄ (x). Since x is
an element of an extension field Fpm and x̄=Nm

m̄ (x) is
an element of a subfield Fpm̄ , the number of computa-
tions for Cm̄(x̄) is thus far fewer than that for Cm(x)
i.e. C r̄m̄(x). As r̄ becomes larger the efficiency of the
reduction given by Eq.(13) becomes larger. Similar pro-
cedures can be applied to the remaining factors of m̄.
For example, the computation structures of Cm(x) for
m = 30, 60 are shown in Fig.2, in which the sym-
bol N ·

· (·) denotes the norm computation as shown in
Eq.(14).

Though Nm
m̄ (x) can be computed by binary method,

for efficiency, using the i-th iteration of the Frobenius
mappings φ[i](x) = xpi

, Nm
m̄ (x) in Eq.(13) can be ex-

pressed as follows:

Nm
m̄ (x)=

r̄−1∏
i=0

φ[im̄](x). (14)

In what follows, for simplicity, the i-th iteration of the
Frobenius mapping is regarded as the Frobenius map-
ping because their properties are all the same. Since the

January 2009 A High-Speed Square Root Algorithm for Extension fields –Especially for Fast Extension Fields–

101

c c
cr

r r r
rφ[2m̄](·) φ[4m̄](·) φ[4m̄](·)

φ[8m̄](·) φ[m̄](·)

⊗ ⊗ ⊗ ⊗

⊗

- -

- - - - -

- - - -

?

?
6

?

-

?x

Φ̄m
m̄

Φm
m̄

Nm
m̄ (x)

Figure 3: Addition chain to compute Nm
m̄ (x) for r̄ =11.

Frobenius mapping φ[im̄](x)=xpim̄

has the linearity

φ[im̄](aξ + bζ)=aφ[im̄](ξ) + bφ[im̄](ζ), (15)

for ξ, ζ ∈ Fpm and a, b ∈ Fp. In addition, since any el-
ement x ∈ Fpm is expressed as a linear combination of
the basis, the Frobenius mapping of x can be easily com-
puted when the Frobenius mappings of basis elements
are easily obtained. In particular, the computational
complexity for the Frobenius mapping of the basis is
negligibly small in OEFs [7] and AOPFs [8].

Moreover, in order to increase the computational
efficiency of Nm

m̄ (x), we can adopt an addition chain,
which reuses the previously obtained values of the Frobe-
nius mappings. In the proposed addition chain, we first
compute Φm

m̄ and Φ̄m
m̄, and then multiply them to obtain

Nm
m̄ (x), where

Φm
m̄ =

(r̄−1)/2∏
i=1

φ[(2i−1)m̄](x), (16a)

Φ̄m
m̄ =

(r̄−1)/2∏
i=0

φ[(2i)m̄](x). (16b)

In the proposed addition chain, we obtain and save the
value of Φm

m̄ that is required for the proposed SQRT al-
gorithm. An example of the chain for computing Nm

m̄ (x)
with r̄ = m/m̄ = 11 is shown in Fig.3, where φ[im̄](·)
denotes the Frobenius mapping of the input · and ⊗ de-
notes the multiplication in Fpm . If Nm

m̄ (x) is computed
by directly using Eq.(14), then 10 multiplications and 10
Frobenius mappings in Fpm are required. On the other
hand, using the proposed chain, only 5 multiplications
and 5 Frobenius mappings in Fpm are required as shown
in Fig.3.

Using the Frobenius mappings with the addition chain,
Nm

m̄ (x) requires

#Mm =#φm =blog2(r̄)c + w(r̄) − 1, (17)

where b·c and w(·) denote the maximum integer not
more than · and the Hamming weight of ·, respectively.
In what follows, the expression blog2(·)c + w (·) − 1 is
abbreviated as LW (·) for convenience.

3.1.1 Degree Reduction By Odd Prime Factors
In m

In the general case that m = r0r1 · · · rn−12d, where
ri is an odd prime number, and ri > rj for i 6 j and

¡
¡

¡

Nm0
m1

©©©
Nm1

m2 »»»
N

mn−1
mn

x̄s

©©©©

HHHH

HHHH

©©©©x0∈ST − ST−1

?

- - -

x= x̄0

x0= x̄s

x̄n= x̄x̄2x̄1

· · ·
-

¾SQRT
Computation

? ? ? ?

c -

¾¾c No/QR

x0

√
x

?Yes/QNRc

Φm0
m1

Φm1
m2 Φ

mn−1
mn x̄

s−1
2\

\ \ \ \ \

\ \ \ \

Figure 4: Schematic diagram for the proposed QR test.

d > 0, let mn =2d and define

mj =rj · · · rn−12d, 0 6 j 6 n − 1. (18)

Then, we have m0 =m. As in Fig.2, Cm(x) can be re-
duced into C2d

(x̄n) by the series of norm computations
x̄j+1 :=N

mj
mj+1(x̄j) with the Frobenius mappings

x̄j+1 = Nmj
mj+1

(x̄j) =
rj−1∏
i=0

φ[imj+1](x̄j) (19)

∈ Fpmj+1 , 0 6j 6 n − 1,

where x̄0 =x. When implement by the above computa-
tions, we first use the proposed addition chain to com-
pute Φmi

mj+1
and Φ̄mi

mj+1
, respectively, and then multiply

them to get x̄j+1, where

Φmj
mj+1

=
(rj−1)/2∏

i=1

φ[(2i−1)mj+1](x̄j), (20a)

Φ̄mj
mj+1

=
(rj−1)/2∏

i=0

φ[(2i)mj+1](x̄j). (20b)

In the QR test, all the values of Φmj
mj+1 (06j 6n − 1)

will be saved as shown in Fig.4 because the following
SQRT algorithm will use them.

From Eq.(19), we can see that the computations in
a given extension field Fpm , i.e. Fpr0 · · · rn−12

d, can be
reduced to those in proper subfields Fpmj (16j 6n − 1)
by the series of norm computations. When taking the
reduction by the prime factors in m, the largest r0 is
performed first because it will achieve the maximam re-
duction in computation cost.

3.1.2 Degree Reduction By Factors 2 In m

Find an integer T > 0 and an odd number s such
that

p2d

− 1=2T s. (21)

The multiplicative group F∗
p2d is a cyclic group of order

2T s. Therefore, F∗
p2d contains a cyclic group of order

2T , which is called Sylow 2-subgroup, and there is a
descending chain of subgroups of ST ,

ST ⊃ ST−1⊃· · ·⊃S2⊃S1 ={±1} ⊃ S0 ={1}. (22)

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 43

102

For any QNR c in Fpm , c̄ = ce must be a QNR in
F

p2d , where e is given by Eq.(1). It follows that ST

of order 2T is generated by c0 := (c̄)s, ST−1 of order
2T−1 is generated by c1 := (c0)2, and in general, ST−k

of order 2T−k is generated by ck :=(ck−1)2. In general,
for 16k6d − 1, we have

ck∈ST−k−ST−k−1⊂Fp2d−k . (23a)

For the other k, i.e. d6k6T − 2, we have

ck∈ST−k − ST−k−1⊂Fp, if 4 |(p − 1), (23b)
ck∈ST−k − ST−k−1⊂Fp2 , if 4 -(p − 1), (23c)

for k=T − 1, we have

cT−1∈S1 − S0 = {−1}⊂Fp. (23d)

This property is also introduced in [17]

3.1.3 QR Test In F
p2d

In the conventional QR test, for a nonzero element
x ∈ Fpm , we directly compute Cm(x) = x(pm−1)/2 to
identify whether or not x is a QR. In the proposed QR
test, the computation of Cm(x) is reduced into that of
C2d

(x̄) by a series of norm computations as described
in 3.1.1, where x̄∈Fp2d . If x̄ is a QR in Fp2d , then x is
also a QR in Fpm . If x̄ is a QNR in F

p2d , then x is also
a QNR in Fpm . Since any element in ST −ST−1 must
always be a QNR in F

p2d , and since x0 = x̄s must belong
to one of sets Sk−Sk−1 for 1 6 k 6 T , we only need to
identify whether or not x0∈ST−ST−1 as shown in Fig.4.
From Eqs.(23), if T > 2, or T = 1 and 4|(p − 1), then
checking whether x0 belongs to ST −ST−1 is equivalent
to checking whether it belongs to Fp2d − Fp2d−1 .

If Fpm is an OEF with polynomial basis or TypeI-
X AOPF with normal basis, we can identify whether
x0 belongs to F

p2d − F
p2d−1 from the form of vector

representation of x0. For example, in TypeI-X AOPF
F

p2d with normal basis, an element A in the subfield
F

p2d−1 is represented by

A = {a0, a1, . . . , a2d−1−1, a0, a1, . . . , a2d−1−1}. (24)

For a more general case, an element A in Fp2d−i has i+1
repetitions of vector coefficients. Moreover, there exist a
lot of extension fields isomorphic with TypeI-X AOPF,
i.e. p and m are identical to those of TypeI-X AOPF
but only modular polynomial is different from the all
one polynomial. Even in those cases, we can apply the
above QR test after performing basis translation from
the objective field to TypeI-X AOPF [12][14].

3.2 COMPLEXITY OF THE QR TEST

When we directly compute x(pm−1)/2 for QR test by
binary method, it requires

#Mm =LW

(
pm − 1

2

)
. (25)

In the proposed QR test, we first carry out a series
of norm computations N

mj
mj+1(·) for 06 j 6n − 1 to get

x̄, using the Frobenius mappings with a certain addition
chain. From Eq.(17), the norm computations N

mj
mj+1(·)

for 06j 6n − 1 in total require the sum of

#φmj = #Mmj = LW (rj) , 06j 6n − 1, (26)

where mj is given by Eq.(18).
Then, we compute x̄s. To avoid the overlapping

computations in QR test and SQRT computation, we
first compute x̄(s−1)/2, and then take its square to get
x̄s−1, finally multiply x̄s−1 by x̄ to get x̄s (see Fig.4).
The computation of x̄s requires

#M2d =LW

(
s1−1

2

)
+

d(d + 3)
2

+(d − 1)U(p), (27a)

#φ2d =
d(d − 1)

2
, (27b)

where s1 is the odd number such that p2 =2T1s1+1 and
U(p) is defined as follows (see Appendix A);

U(p)=

LW

(
p − 1

4

)
+ 1, if 4|(p − 1),

LW

(
p − 3

4

)
+LW

(
p + 1

2

)
+2, otherwise,

(28a)

Finally, we identify whether or not x̄s = x0 ∈ ST −
ST−1 ⊂ Fp2d from the form of x0, which almost does
not need a computation as described in Sect.3.1.3.

4 PROPOSED SQRT ALGORITHM IN
Fpm

4.1 SQRT Algorithm

From the norm definition Eqs.(13) and Eq.(19), we
have

x̄j+1 = x̄
(pmj+1)rj−1+···+pmj+1+1
j . (29)

Dividing both sides by x̄j x̄j+1 and then taking SQRTs
of both sides, for 0 6 j 6 n − 1, we have

(x̄j)−
1
2 =(Φmj

mj+1
)

1+p
mj+1
2 · (x̄j+1)−

1
2 , (30)

where Φmj
mj+1 is given by Eq.(20a). It follows that

(x̄0)−
1
2 = (x̄n)−

1
2 ·

n−1∏
j=0

(Φmj
mj+1

)
1+p

mj+1
2 , (31)

where x̄0 = x and x̄n = x̄. Therefore, we have

√
x = x̄− 1

2 · x ·
n−1∏
j=0

(Φmj
mj+1

)
1+p

mj+1
2 . (32)

When implementing the exponentiation with (1 + pmj+1)/2,
which can be expressed as

pmj+1 + 1
2

=
(
1 + p + · · · + p(mj+1)−1

)
·p − 1

2
+1, (33)

we apply the Frobenius mappings with the addition
chain to the part in the parenthesis, and then apply

January 2009 A High-Speed Square Root Algorithm for Extension fields –Especially for Fast Extension Fields–

103

the binary method for
(

p−1
2

)
–th power followed by a

multiplication.
Based on Eq.(32), the SQRT in Fpm can be efficiently

computed using the following algorithm via the Frobe-
nius mappings with the addition chain:

Proposed SQRT Algorithm over Fpm

INPUT: An odd prime number p and an integer m and
a random nonzero element x∈Fpm .

OUTPUT: A SQRT z =
√

x ∈ Fpm such that z2 ≡ x,
or “UNSOLVABLE” if no such solution exists.

PRECOMPUTATION: Obtain all factors of extension
degree m as m= r0r1 · · · rn−12d and factorize the
order of F∗

p2d as Eq.(21).

MAIN PROCEDURE:

1. If x = 1 then return 1. Otherwise, execute the
proposed QR test in Sect.3.1. If the input x is
a QR then save the values of x̄, αj ← Φmj

mj+1 for
0 6 j 6 n − 1, and else return “UNSOLVABLE”.
(see Eq.(19)). Note x̄= x̄n =xe∈F

p2d .

2. z ← x̄− 1
2 using MW-ST algorithm[5]

3. About the computations for

x ·
n−1∏
j=0

(Φmj
mj+1

)
1+p

mj+1
2 in Eq.(32):

βj ← α
1+p

mj+1
2

j , for each 06j 6n − 1,

and γ ←
n−1∏
j=0

βj .

4. z ← zxγ.

5. Return(z).

4.2 Complexity Of The Proposed SQRT Algo-
rithm

In the proposed SQRT algorithm, Step 1 is just the
QR test whose complexity has been evaluated in Sect.3.2.
Since αj has been computed in the QR test, we do not
count the complexity of Step 1.

In Step 2, the value x̄ ∈F
p2d has been computed in

the QR test, recomputation by Step 2 is thus not neces-
sary. We only need to modify the MW-ST algorithm [5]
to compute x̄−1/2 in F

p2d . As described in [5] 1, when
4 |(p− 1) and d>1, Step 2 on average requires the sum
of

#M1 =
T 2−T +d2+5d

4
− 2d(d2 + 3d)

2T
, (34a)

#M2d+1−j =
j2 + 3j − 2

4
, 1 6 j 6 d. (34b)

1Also in MW-ST algorithm, we take advantage of degree re-
duction of the descending subgroup chain.

When 4 -(p − 1) and d>2, Step 2 requires the sum of

#M2 =
T 2−T +d2+3d−4

4
− 2d(d2+d−2)

2T+1
, (35a)

#M2d+1−j=
j2 + 3j − 2

4
, 1 6 j 6 d − 1. (35b)

In Step 3, we take the (1 + pmj+1)/2-th power of
α for each 0 6 j 6 n − 1 and multiply them together.
Using the binary method and the Frobenius mappings
with the addition chain, Step 3 requires the sum of the
following computations:

#φmj =#Mmj =LW (mj+1), 06j 6n − 1, (36a)

#Mmj =LW

(
p − 1

2

)
+ 1, 06j 6n − 1, (36b)

#Mmj =rj−1, 16j 6n − 1, (36c)

where mj is given by Eq.(18). Since x, γ∈Fpm and z ∈
Fp2d , Step 4 requires

#Mm =1, (37a)
#M2d =r0r1 · · · rn−1. (37b)

4.3 Complexity Of The Tonelli-Shanks Algo-
rithm

From Eqs.(1) and Eq.(21), it follows that

pm − 1 = e·s·2T (38)

Based on the result in [13], the average complexity of
the Tonelli-Shanks algorithm over Fpm is given by

#Mm =
1
4
(T 2 + 7T − 16) +

1
2T−1

+ LW

(
e·s − 1

2

)
+ 2. (39)

5 COMPUTER SIMULATIONS

Pairing-based cryptographic applications over pairing-
friendly elliptic curves have received much attention.
They are defined over a certain extension field. For
example, MNT(Miyaji-Nakabayashi-Takano) curve [16]
and Freeman’s curve [15] are defined over Fp6 and Fp10 ,
respectively. They need some SQRT calculations for
preparing rational points. Thus, in this section, let us
simulate SQRT calculations over these extension field
with the following parameters:

m = 6 = 2 × 3, (40a)
p = 53956 14237 76153 20457 34007 60106

31315 18176 97922 60564 49333 63744
98577 [216bits]. (40b)

m = 10 = 2 × 5, (41a)
p = 61099 96327 10831 28746 07376 95679

44870 35427 01616 46150 91479 4603
[196bits], (41b)

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 43

104

Table 1: Computational Complexity

Field
Method

A. Complexity
Fpm #φ2 #φm #M1 #M2 #Mm

Conventional QR test − − − − 1957
m = 6 Proposed QR test − 2 − 1244 2

p : 216bits Tonelli-Shanks algorithm − − − − 1974
Proposed SQRT algorithm − − − 12 325

Conventional QR test − − − − 2943
m = 10 Proposed QR test − 3 − 1174 3

p : 196bits Tonelli-Shanks algorithm − − − − 2949
Proposed SQRT algorithm − − − 4 295

SQRT calculations are required for preparing ratio-
nal points on the pairing-friendly curve.

The conventional QR test, the proposed QR test, the
plain Tonelli-Shanks algorithm and the proposed SQRT
algorithm over the extension fields Fp6 , and Fp10 were
implemented on a Core2 (2.66 GHz) computer using the
C++ programming language with the number theory
library (NTL).

The authors constructed the target extension field Fp6

and Fp10 as TypeI-X all one polynomial field, because
we can easily prepare subfield arithmetic operations in
TypeI-X AOPF [14].

Based on Eqs.(21) and (40), we get T and s. Then,
from Eq.(38), we know T1 and s1. Inputting p, m, T ,
s, T1 and s1 to Eqs.(25), (26), (27), (34), (36), (37),
and (39), we explicitly evaluate the complexity of the
algorithms over Fp6 and Fp10 as shown in the column
A of Table 1. Table 2 shows the number of algebraic
operations required for φi and Mj , where i = 2, 6, 10
and j =1, 2, 6, 10. According to the data in Table 2,
we know #A1 and #M1 in the column A of Table 3.

From the column A in Table 1, we see that #Mm re-
quired in the proposed SQRT algorithm is much smaller
than that in the Tonelli-Shanks algorithm, primarily be-
cause in the proposed SQRT algorithm, most of multi-
plications in a given extension field are replaced by those
in its proper subfields.

Inputting a lot of random QRs, the computation
time for the algorithms was measured as shown in the
column B of Table 3. The column A of Table 3 shows
that, using the proposed QR test, the numbers of com-
putations in Fp6 and Fp10 show about 10-fold and 30-fold
reductions, compared to using the conventional QR test,
respectively. Using the proposed SQRT algorithm, the
numbers of computations in Fp6 and Fp10 show 6-fold
and 10-fold reductions for p∼=2216 and p∼=2196, respec-
tively, compared to using the Tonelli-Shanks algorithm.
The computer simulations show that, on average, the
proposed QR test accelerates the QR test by 10 times
in Fp6 and by 30 times in Fp10 , compared to the conven-

tional QR test. They also show that, on average, the
proposed algorithm accelerates the SQRT computation
by 6 times in Fp6 and by 10 times in Fp10 , compared
to the Tonelli-Shanks algorithm, which is supported by
the evaluation of the number of computations.

6 CONCLUSION

This paper has proposed an efficient SQRT algo-
rithm over Fpm based on Eq.(32). Although the main
idea of the proposed SQRT algorithm is based on the
Tonelli-Shanks algorithm, in the proposed SQRT algo-
rithm over Fpm , most of the computations required in
extension fields Fpm can be reduced to those in proper
subfields Fpmj and F

p2d−i for 16 i6d, where

m=r0 · · · rn−12d, mj =rj · · · rn−12d, 06j 6n (42)

However, all computations required for the plain Tonelli-
Shanks algorithm over Fpm must be executed in exten-
sion fields Fpm . In addition, the proposed SQRT algo-
rithm can reuse the intermediate data of the QR test,
such as Φmj

mj+1 for 06 j 6n − 1. The computer simula-
tions showed that, on average, the proposed algorithm
accelerates the SQRT computation by 6 times in Fp6 and
by 10 times in Fp10 , compared to the Tonelli-Shanks al-
gorithm, which is supported by the evaluation of the
number of computations. This concludes that the pro-
posed SQRT algorithm over Fpm is very efficient.

REFERENCES

[1] D. Hankerson, A. Menezes and S. Vanstone:Guide
to Elliptic Curve Cryptography, Springer (2003).

[2] K. Kurosawa, T. Ito and M. Takeuchi:Cryptologia,
12-4 (1988), 225-233.

[3] A. Tonelli:Bemerkung über die Auflösung
quadratischer Congruenzen, Göttinger Nachrichten
(1891), 344-346.

[4] M. Cipolla: “Un metodo per la risolutione
della congruenza di secondo grado,” Rendiconto

January 2009 A High-Speed Square Root Algorithm for Extension fields –Especially for Fast Extension Fields–

105

Table 2: The number of algebraic operations required for φi and Mj , where i=2, 6, 10 and j =1, 2, 6, 10.

φ2 φ6 φ10
†M2

‡M2 M6 M10

#A1 − − − 9 21 57 245
#M1 − − − 4 4 22 56

†subfield of Fp6 , ‡subfield of Fp10

Table 3: Computational Amount and Running Time (CPU: Core2 (2.66GHz))

Field
Method

A. Amount
B. Time [µs]

Fpm #A1 #M1

Conventional QR test 111549 43054 4.1 × 104

m = 6 Proposed QR test 11310 5020 4.1 × 103

p : 216bits Tonelli-Shanks algorithm 112518 43428 3.9 × 104

Proposed algorithm 18633 7198 6.6 × 103

Conventional QR test 721035 164808 1.9 × 105

m = 10 Proposed QR test 25389 4864 5.7 × 103

p : 196bits Tonelli-Shanks algorithm 722505 165144 1.9 × 105

Proposed algorithm 72359 16536 1.9 × 104

dell’Accademia Scienze Fisiche e Matematiche, 9-3
(1903), 154-163.

[5] F. Wang, Y. Nogami and Y. Morikawa:IEICE
Trans., E88-A-10 (2005), 2792-2799.

[6] F. Wang, Y. Nogami and Y. Morikawa:Proc.
ICICS2003 LNCS2836 (2003), 1-10.

[7] D. V. Bailey and C. Paar:Proc. Crypto., (1998),
472-485.

[8] Y. Nogami, A. Saito and Y. Morikawa:IEICE
Trans., E86-A-9 (2003), 2376-2387.

[9] Y. Nogami, S. Shinonaga and Y. Morikawa:IEICE
Trans., E88-A-5 (2005), 1200-1208.

[10] J. L. Fan and C. Paar:Proc. ISIT1997, (1997), 20.

[11] T. Yoshida, Y. Nogami and Y. Morikawa:Proc.
CSS2006, (2006), 43-48.

[12] Y. Nogami, R. Namba and Y. Morikawa:ETRI
journal, 30-2 (2008), 326-334.

[13] S. Lindhurst:CRM Proceeding and Lecture Notes,
19 (1999), 231-242.

[14] H. Kato, Y. Nogami, T. Yoshida and Y.
Morikawa:ETRI journal, 29-6 (2007), 769-778.

[15] D. Freeman:In Algorithmic Number Theory Sym-
posium ANTS-VII, LNCS4076, (2006), 452-465.

[16] A. Miyaji, M. Nakabayashi and S. Takano:IEICE
Trans., E84-A-5 (2001), 1234-1243.

[17] E. Berlekamp:Algebraic Coding Theory, McGraw-
Hill, (1968).

A ALGORITHM FOR x̄s

For 16 i6d, find positive integer Ti and odd integer
si such that p2i − 1= si2Ti . Comparing to Eq.(21), we
see sd = s, Td = T , and so x̄(s−1)/2 = x̄(sd−1)/2. As p is
odd prime, (p2i−1

+ 1)/2 is also odd for i > 1, implying

si =si−1
p2i−1

+ 1
2

, 1 6 i 6 d. (A.43)

On the other hand,

p2 + 1
2

=
p2 − 1

2
+ 1, (A.44a)

and for 3 6 i 6 d,

p2i−1
+ 1

2
=

p2 − 1
2

·
i−2∏
k=1

(p2k

+ 1) + 1. (A.44b)

From Eqs.(A.43) and Eq.(A.44), we obtain

s2 − 1
2

=
(

s1 − 1
2

· 2+1
)

p2 − 1
4

+
s1 − 1

2
, (A.45a)

and for 3 6 i 6 d,

si−1
2

=si−1 ·
p2−1

4
·

i−2∏
k=1

(p2k

+ 1) +
si−1−1

2
. (A.45b)

Equation (A.45a) implies that x̄(s2−1)/2 can be com-
puted by first taking the (s1−1)/2-th powers of x̄ and its

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 43

106

square, second multiplying xs1−1 and x together, third
taking (p2−1)/4-th power of x̄s1 and finally multiplying
x̄s1(p

2−1)/4 and x̄(s1−1)/2 together, as shown in Fig.5(a).
Note we may simultaneously get x̄s2 by multiplying x̄
and the square of x̄(s2−1)/2. Similarly Eq.(A.45b) im-
plies that a pair of x̄(si−1)/2 and x̄si can be computed, as
shown in Fig.5(b), using the Frobenius mappings with
the input pair of x̄(si−1−1)/2 and x̄si−1 . The objective
value of x̄sd is obtained at the last stage of ladder con-
nections of the units shown in Fig.5(b) preceded by the
unit shown in Fig.5(a).

(·)2

(·)
s1−1

2

(·)
p2−1

4 (·)2c c
c

r
rr

r ⊗

⊗

⊗

x̄s2

x̄
s2−1

2

x̄
(a) 1-st unit

- -

- -

- -
66

6 ?

??

φ[2i−2](·) φ[2](·)
(·)

p2−1
4

(·)2

c
c c

c
r
r

rr
⊗

⊗
⊗ ⊗ x̄

si−1
2

x̄six̄si−1

x̄
si−1−1

2

(b) i-th unit, 3 6 i 6 d

· · ·
- -

- -

-
- - -

-

66
6

?

?

Figure 5: Addition chain units for computing x̄sd .

B ALGORITHM FOR x̄s

Since x̄ ∈ F
p2d as describe in Sect.3, all the arith-

metic operations for x̄ are implemented in F
p2d . We

begin with the first unit shown in Fig.5(a). From the
Figure we see that the required operations are only

#M2d =LW

(
s1 − 1

2

)
+LW

(
p2 − 1

4

)
+5, (A.46)

where we counted a square as 1 multiplication.
On the other hand, the i-th unit, shown in Fig.5 (b),

consists of (i − 2) Frobenius mappings, a (p2 − 1)/4-th
power, i multiplications, and a square, which totally
require the following operations

#M2d = LW

(
p2 − 1

4

)
+ i + 1, (A.47a)

#φ2d = i − 2. (A.47b)

Adding up Eqs.(A.47) for 3 6 i 6 d and Eq.(A.46), the
total counts for computation of x̄sd result in

#M2d = (d − 1) · LW

(
p2 − 1

4

)
+ LW

(
s1 − 1

2

)
+

d(d + 3)
2

, (A.48a)

#φ2d =
(d − 1)(d − 2)

2
. (A.48b)

However, a room of applying the Frobenius mapping
remains in the (p2 − 1)/4-th power in Eq.(A.48a).

· When 4|(p− 1), as (p− 1)/4 is an integer and (p + 1)-
th power is implemented by 1 Frobenius mapping and
1 multiplication, LW ((p2 − 1)/4) may be replaced as

LW

(
p2−1

4

)
M2d←

{
LW

(
p−1

4

)
+1

}
Md2+φd2 . (A.49a)

· When 4 - (p − 1), we have

p2 − 1
4

=
p − 3

4
(p + 1) +

p + 1
2

, (A.49b)

and so the following replacement may be induced,

LW

(
p2−1

4

)
M2d

←
{
LW

(
p−3

4

)
+LW

(
p+1

2

)
+2

}
Md2+φd2 . (A.49c)

Equation (A.48a) with the replacement of Eqs.(A.49)
leads us to Eqs.(27) in the main part of the paper.

January 2009 A High-Speed Square Root Algorithm for Extension fields –Especially for Fast Extension Fields–

107

