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Recently, pairing-based cryptographies such as ID-based cryptography and group signature have
been studied. For fast pairing calculation, not only pairing algorithms but also arithmetic op-
erations in extension field must be efficiently carried out. The authors show efficient arithmetic
operations of extension field for Xate pairing especially with Freeman curve.

1 INTRODUCTION

In recent years, pairing-based cryptographies such as
ID-based cryptography [1] and group signature [2] have
been studied. For their implementations, pairings such
as Weil pairing [1], Tate pairing, Ate pairing [3] and
Xate pairing [4] have been used. In order to implement
these pairings, several kinds of ordinary pairing-friendly
curves such as Miyaji-Nakabayashi-Takano (MNT)
curve [5], Barreto-Naehrig (BN) curve [6] and Freeman
curve [7, 8] have been proposed. As the definition field
of these curves, many researchers use optimal extension
field (OEF) [9] because OEF carries out arithmetic oper-
ations efficiently. However, it is known that OEF is not
available for the definition field of Freeman curve due to
the condition of OEF. Our previous work namely Type
I-X all one polynomial field (AOPF) [11] is available for
the definition field of Freeman curve. Type I-X AOPF
can carry out arithmetic operations as efficient as OEF.

In this paper, the authors consider how to const-
ructed type I-X AOPF and optimize a multiplication
algorithm for Xate pairing with Freeman curve. Addi-
tionally, this paper shows some experimental results of
Xate pairing with Freeman curve defined over the type
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I-X AOPF. Then, it is shown that the proposed method
works approximately 10 percent faster than the conven-
tional method.
Notation : Fp, Fpm , and F∗

pm denote a prime field,
m-th extension field over Fpm , and the multiplicative
group in Fpm . For two integers m and n, m|n means
that m divides n. E(Fpm) denotes the elliptic curve
defined over Fpm .

2 XATE PAIRING WITH FREEMAN

CURVE

This section briefly reviews Ate pairing, Freeman
curve, and Xate pairing.

2.1 Ate Pairing

The smallest positive integer d such that r|(pd − 1)
is called embedding degree, then let G1 and G2 be

G1 = E(Fpd)[r] ∩ Ker(φ − [1]), (1a)

G2 = E(Fpd)[r] ∩ Ker(φ − [p]), (1b)

where E(Fpd)[r] denotes the set of rational points of
order r in E(Fpd). Let P ∈ G1 and Q ∈ G2, Ate pairing
e is defined as

e :

{
G2 × G1 → F∗

pd/(F∗
pd)r,

(Q,P ) 7→ fT,Q(P )(p
d−1)/r.

(2)
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It gives a non-degenerate and bilinear map. The pa-
rameter T is given as

T = (t − 1)i mod r (1 ≤ i < d), (3)

where t is Frobenius trace. Ate pairing consists of two
steps, one is fT,Q(P ) calculation by Miller’s algorithm,
and the other is the calculation called final exponentia-
tion that fT,Q(P ) is raised to the ((pd−1)/r)-th power.
The number of iterations in Miller’s algorithm of Ate
pairing is given by blog2(T )c.

Devegili et al. have improved Ate pairing by using
subfield-twisted curve [6]. However, this technique can
not be applied to Ate pairing with Freeman curve be-
cause in order to apply this technique we need to use
OEF as the definition field. On the other hand, Nogami
et al. have also improved Ate pairing by using the simi-
lar technique [10]. It is called cross-twisted Ate (Xt-Ate)
paring and can be used even in the case of Freeman
curve.

2.2 Freeman Curve

Freeman curve is a class of ordinary pairing-friendly
curves of embedding degree d = 10 [7, 8]. The parame-
ters of Freeman curve E(Fp) are given as

p(χ) = 25χ4 + 25χ3 + 25χ2 + 10χ + 3, (4a)

r(χ) = 25χ4 + 25χ3 + 15χ2 + 5χ + 1, (4b)

T (χ) = (t(χ) − 1)2 = 5χ2, (4c)

where χ is an integer such that p(χ) becomes a prime
number. Xt-Ate pairing with Freeman curve E(Fp10)
uses its quadratic twisted curve E′(Fp5). Thus, we need
to prepare subfield Fp5 besides the definition field Fp10 .

2.3 Xate Pairing

Nogami et al. have proposed integer variable χ-based
Ate (Xate) pairing [4]. In the case of Freeman curve,
Xate paring e′ is given as

e′ :

{
G2 × G1 → F∗

pd/(F∗
pd)r,

(Q,P ) 7→ f̂χ,Q(P )(p
d−1)/r.

(5)

It also gives a non-degenerate and bilinear map. f̂χ,Q(P )
can be calculated by Miller’s algorithm, and the number
of iterations becomes only blog2(χ)c. Moreover, we can
apply Xt-Ate paring technique to Xate pairing, namely
Xt-Xate pairing.

3 EXTENSION FIELD FOR FREEMAN

CURVE

Bailey et al. have proposed optimal extension field
(OEF) [9]. It needs to satisfy the condition that each
prime factor of m divides p−1, for example. OEF carries

out arithmetic operations efficiently. However, accord-
ing to Eq.(4a), OEF technique can not be applied for
constructing Fp5 of Eq.(4a) because 5 does not divides
p(χ) − 1.

The authors have proposed type I-X all one polyno-
mial field (AOPF) [11]. Type I-X AOPF technique can
be applied for constructing Fp5 of Eq.(4a) because it has
been proven that type I-X AOPF is prepared for every
pair of characteristic p and extension degree m when
p>m [11].

First, we review type I-X AOPF and then consider
how to construct type I-X AOPF for Freeman curve.

3.1 Type-〈k,m〉 Gauss Period Normal Basis

Type I-X AOPF F(pn)m is constructed by m-th tow-
ering over Fpn with type-〈k,m〉 Gauss period normal
basis (GNB) [12] when gcd (m,n) = 1. Type-〈k,m〉
GNB is defined with a certain integer k as follows.

Define 1 : Let km+1 be a prime number not equal
to p and suppose that gcd (km/e,m) = 1, where e is the
order of p modulo km +1. Then, for any primitive k-th
root θ of unity in Fkm+1 ,

γ =
k−1∑
i=0

βθi

(6)

generates a normal basis {γ, γp, · · · , γpm−1} in Fpm ,
where β is a (km + 1)-st root of unity that belongs to
Fpe . This normal basis is called type-〈k,m〉 GNB. ¥

Type-〈k,m〉 GNB is available when 4p does not di-
vide m(p − 1) [13]. Therefore, type I-X AOPF F(pn)m

can be constructed for every pair of characteristic p and
extension degree m when p>m, for instance.

3.2 Cyclic Vector Multiplication Algorithm

As an efficient multiplication algorithm in type I-X
AOPF, the authors have proposed cyclic vector multi-
plication algorithm (CVMA) [13]. Fig.1 shows CVMA
in F(pn)m .

In the algorithm of Fig.1, q[0] becomes 0 when k is
even [13]. Then, the calculation cost of CVMA is ex-
plictly given as follows. Note that An and Mn denote
the computational costs of an addition and a multipli-
cation in Fpn , respectively.

Mmn =
m(m + 1)

2
Mn

+



((
m(m−1)(k+2)

2
− 1

)
+k−1+m

)
An

when k is odd,(
m(m−1)(k+2)

2

)
An when k is even.

(7)

Kenta NEKADO et al. MEM.FAC.ENG.OKA.UNI. Vol. 43

109



As shown in Eq.(7), CVMA needs more additions in Fpn

as k becomes larger. Usually, An is much smaller than
Mn. However, if the number of additions in Fpn is much
more than that of multiplications in Fpn , it will not be
negligible.

Input: X =

m−1
X

i=0

xiγ
pi

, Y =

m−1
X

i=0

yiγ
pi

(xi, yi ∈ Fpn).

Output: Z = XY =

m−1
X

i=0

ziγ
pi

(zi ∈ Fpn).

Preparation:

1. Determine k that satisfies the conditions in Def.1.

2. For 0 ≤ i ≤ m, q[i] ← 0.

3. For 0 ≤ t < m and 0 ≤ h < k, g[
˙

pt+hm
¸

] ← t + 1.

4. g[0] ← 0.

Procedure:

1. For 0 ≤ i < m, q[i + 1] ← xtyt.

2. For 0 ≤ i < j ≤ m − 1, {

3. Rij ← (xi − xj)(yi − yj),

4. For 0 ≤ h ≤ k − 1, {

5. q
ˆ

g[
˙

pi + pj+hm
¸

]
˜

← q
ˆ

g[
˙

pi + pj+hm
¸

]
˜

+ Rij .

6. }

7. }

8. For 0 ≤ i < m, zi ← kq[0] − q[i + 1].

(End of algorithm)
† 〈x〉 means x mod km + 1.

Figure 1: CVMA in F(pn)m

3.3 Itoh-Tsujii Algorithm

As an inversion algorithm in type I-X AOPF F(pn)m ,
Itoh-Tsujii algorithm (ITA) [14] that uses Frobenius
map is available. Consider a non-zero element X that
belongs to F(pn)m , its inverse element is given as

X−1 =
Xpn · · ·X(pn)m−1

XXpn · · ·X(pn)m−1 . (8)

Then, XXpn · · ·X(pn)m−1
becomes a non-zero element

that belongs to Fpn because it is the norm of X with re-
spect to Fpn . In the case of type I-X AOPF, Frobenius
map X → Xpn

dose not need any algebraic calculations
such as additions and multiplications because the coef-
ficients of Xpn

is just a cyclic shift of the coefficients of
X [12].

4 TYPE I-X AOPF FOR FREEMAN

CURVE

Freeman has shown four kinds of pairing-friendly
curves [7, 8]. Their characteristic p’s are given as follows.

p = 503189899097385532598615948567975432740967203

(149−bit) (9a)

p = 610999632710831287460737695679448703542706164

6150914794603 (196−bit) (9b)

p = 182116508039694720644932643473759500459342546

96657090420726230043203803 (234−bit) (9c)

p = 646231099734881696220312491050525208267333884

6966431201635262694402825461643 (252−bit) (9d)

In these cases, each minimal k such that type I-X AOPF
Fp5 can be constructed is given as Table 1, and type
I-X AOPF F(p5)2 can be prepared by 2nd towering over
Fp5 with type-〈2, 2〉 GNB.

Table 1: The minimal k

p Eq.(9a) Eq.(9b) Eq.(9c) Eq.(9d)

k 2 6 8 6

In order to make pairing-based cryptography practical,
the characteristic p needs to be larger than or equal to
160-bit. The k of Eqs.(9b), (9c), or (9d) that satisfies
p≥160 are larger than or equal to 6 as shown Table 1.

For example, with type-〈6, 5〉 GNB as Fig.2, the
computation amount of a multiplication in Fp5 is given
as

M5 = 15M1 + 80A1. (10)

If we can apply type-〈2, 5〉 GNB, the computation
amount of a multiplication in Fp5 is given as

M5 = 15M1 + 40A1. (11)

Thus, a multiplication in Fp5 with type-〈6, 5〉 GNB
needs twice as many additions in Fp as that with type-
〈2, 5〉 GNB. In what follows, we consider how to decrease
the number of additions in Fp of a multiplication in Fp5

with type-〈6, 5〉 GNB.

F(p5)2

Fp5

Fp

6

6

2nd towering
with type-〈2, 2〉 GNB

5th extending
with type-〈6, 5〉 GNB

Figure 2: Type I-X AOPF F(p5)2
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4.1 Improvement Of CVMA For Freeman Curve

For example, in type I-X AOPF Fp5 of Eq.(9b),
CVMA needs to calculate the following equations.

q[0] = 0, (12a)

q[1] = x0y0 + 2R01 + R03 + R12 + 2R13

+ R14 + 2R23 + 2R24 + R34, (12b)

q[2] = x1y1 + R02 + 2R03 + R04 + 2R12

+ R14 + R23 + 2R24 + 2R34, (12c)

q[3] = x2y2 + R01 + R02 + 2R03 + 2R04

+ R13 + 2R14 + 2R23 + R34, (12d)

q[4] = x3y3 + 2R01 + 2R02 + R04 + R12

+ R13 + 2R14 + R24 + 2R34, (12e)

q[5] = x4y4 + R01 + 2R02 + R03 + 2R04

+ 2R12 + 2R13 + R23 + R24. (12f)

Eqs.(12) except for xiyi can be expressed with the ma-
trix shown as Eq.(13). In this matrix, the lows corre-
spond to q[1], q[2], q[3], q[4] and q[5], and the columns
correspond to the coefficients of R01, R02, R03, R04,
R12, . . . , R24 and R34.

2 0 1 0 1 2 1 2 2 1
0 1 2 1 2 0 1 1 2 2
1 1 2 2 0 1 2 2 0 1
2 2 0 1 1 1 2 0 1 2
1 2 1 2 2 2 0 1 1 0

 (13)

Then, it can be decomposed as
0 0 1 0 1 0 1 0 0 1
0 1 0 1 0 0 1 1 0 0
1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 0
1 0 1 0 0 0 0 1 1 0



+


2 0 0 0 0 2 0 2 2 0
0 0 2 0 2 0 0 0 2 2
0 0 2 2 0 0 2 2 0 0
2 2 0 0 0 0 2 0 0 2
0 2 0 2 2 2 0 0 0 0

 . (14)

Then, consider the following components Cj whose suf-
fixes j means the column vector of the former matrix of
Eq.(14).

C00101 = R01 + 2R04, C01100 = R02 + 2R03, (15a)

C10001 = R03 + 2R13, C01010 = R04 + 2R34, (15b)

C10010 = R12 + 2R01, C00110 = R13 + 2R14, (15c)

C11000 = R14 + 2R24, C01001 = R23 + 2R12, (15d)

C00011 = R24 + 2R02, C10100 = R34 + 2R23. (15e)

Then, Eq.(12) can be recomposed as

q[0] = 0, (16a)

q[1] = x0y0 + C11000 + C10100 + C10010 + C10001,

(16b)

q[2] = x1y1 + C11000 + C01100 + C01010 + C01001,

(16c)

q[3] = x2y2 + C10100 + C01100 + C00110 + C00101,

(16d)

q[4] = x3y3 + C10010 + C01010 + C00110 + C00011,

(16e)

q[5] = x4y4 + C10001 + C01001 + C00101 + C00011.

(16f)

In this case, the computation amount of a multiplica-
tion in Fp5 is given as follows. Note that Dn denotes
the computational cost of a doubling in Fpn .

M5 = 15M1 + 50A1 + 10D1. (17)

Table 2 shows the computation amounts of a mul-
tiplication in each Fp5 and Fp10 .

Table 2: The computation amounts of a multiplication

with original CVMA with improved CVMA

Fp5 (15, 80, 0) † (15, 50, 10) †

F(p5)2 (45, 260, 0) † (45, 185, 30) †

† For example, (15, 50, 10) denotes 15M1 + 50A1 + 10D1.

4.2 Reduction Of Modulo p Operations

A multiplication in extension field needs a lot of mul-
tiplications in prime field Fp, thus we need a lot of mod-
ulo p operations. However, the calculation time of mod-
ulo p operation is much larger than that of other oper-
ations such as addition and multiplication. If we have
enough memory, we do not need to carry out modulo p

operation for every multiplication in Fp. Therefore, the
authors carried out modulo p operation only at step 8.

4.3 Improvement Of The Inversion Algorithm

As previously introduced, we use ITA as the inver-
sion algorithm in type I-X AOPF. In ITA, we calculate
an inversion in F(p5)2 with a norm in Fp. In general, we
directly calculate this norm. However, by calculating
this norm after the calculation of the norm with respect
to the subfield Fp5 , we can carry out an inversion more
efficiently. Table 3 shows the computation amounts of a
inversion in each Fp5 and F(p5)2 with the subfield. Note
that In means the computational cost of an inversion in
Fpn .
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Table 3: The computation amounts of an inversion

with original CVMA with improved CVMA

Fp5 (44, 188, 0, 1) † (44, 124, 24, 1) †

F(p5)2 (104, 523, 0, 1) † (104, 339, 64, 1) †

† For example, (44, 124, 24, 1) denotes 44M1+114A1+24D1

+I1.

5 SIMULATION

This section shows the implementation result of the
proposed method. In this implementation, we use char-
acteristic p of Eq.(9b). Table 4 shows the calculation
timings of a multiplication and an inversion in each Fp5

and F(p5)2 with the computational environment Table
5. Table 6 shows the implementation result of Xt-Xate
pairing with the extension field proposed in this paper.

Table 4: Timing of each operation

with original with improved

CVMA CVMA

Fp5
mul 8.03 µs 7.31 µs
inv 30.0 µs 28.4 µs

F(p5)2
mul 21.6 µs 19.2 µs
inv 59.4 µs 55.5 µs

Table 5: Computational environment

CPU Pentium4 3.00GHz
Cache Size 512 KB

OS Linux 2.6.27
Language C
Compiler gcc 4.3.2
Library GNU MP 4.2.4 [15]

Table 6: Timing of Xt-Xate pairing

with original with improved

CVMA CVMA

Miller’s algorithm 7.74 ms 6.94 ms
Final exponentiation 4.28 ms 3.79 ms

Total 12.0 ms 10.7 ms

Table 6 shows that the extension field Fp5 and F(p5)2

proposed in this paper are more efficient for Xt-Xate
pairing with Freeman.

6 CONCLUSION

In this paper, we have considered how to constructed
type I-X AOPF and optimized CVMA for Ate pairing
with Freeman curve. Additionally, we showed the imple-
mentation result of Xt-Xate pairing with Freeman curve
defined over type I-X AOPF. Then, it was shown that
the proposed method works approximately 10 percent
faster than the conventional method.
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