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This paper particularly deals with elliptic curves in the form of E(x, y) = y2 −
x3−b = 0, b ∈ F ∗

q , where 3 divides q−1. In this paper, we refer to the well-known
twist technique as x-twist and propose y-twist. By combining x-twist and y-twist,
we can consider six elliptic curves and this paper proposes a method to obtain the
orders of these six curves by counting only one order among the six curves.
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1 Introduction

In the modern information-oriented society, various
devices are connected via the Internet. Information
security technology has played a key role in protect-
ing the devices or important information from evil In-
ternet users. Especially, the public-key cryptosystem
has many uses such as to sign digitally. The Rivest
Shamir Adleman (RSA) cryptosystem has been the
most widely used, but its key for ensuring security
is approximately 2000 bits in length. On the other
hand, since the elliptic curve cryptosystem(ECC) at-
tains the same security level with an approximately
7-fold smaller key length as compared to the RSA, the
ECC has received much attention and has been imple-
mented on various processors.

For ensuring sufficient security and constructing the
ECC, we have to compute the order of the elliptic curve
and then check the order. Some fast order counting al-
gorithms have been proposed[1],[2]; however, in general
these algorithms take a lot of computation time and the
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computation is quite complicated, in general. In order
to systematically generate a lot of secure curves, we
often use twist technique[1]. Using twist technique, if
we compute the order #E(Fq) of the curve;

E(x, y) = y2 − x3 − ax− b = 0, a, b ∈ Fq, (1a)

then we also know the order #Ẽ(Fq) of its twisted
curve;

Ẽ(x, y) = y2 − x3 − aA2x− bA3 = 0, A ∈ F ∗
q , (1b)

as #Ẽ(Fq) = 2q+2−#E(Fq), where q is a power of a
prime number larger than three, Fq is a finite field, and
A is a quadratic power non residue in Fq. For the order
#Ẽ(Fq), we do not need another order counting com-
putation. Our motivation comes from this technique,
this paper proposes a method to obtain six orders of
six elliptic curves by order counting only once.

This paper particularly deals with elliptic curves in
the form of

E(x, y) = y2 − x3 − b = 0, b ∈ F ∗
q . (2a)

It is well-known that that the order of Eq.(2a) is q+ 1
when 3 does not divide q − 1, therefore the curve is a
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kind of super-singular curves[1]. Supersingular curves
are not secure from Frey Rück attack[3], therefore ECC
does not use them. On the other hand, when 3 divides
q − 1, such a property has not been shown yet. This
paper deals with the case that 3 divides q − 1. In this
paper, we refer to the above introduced twist technique
Eqs.(1) as x-twist and propose y-twist as follows ;

E′(x, y) = y2 − x3 − bB2 = 0, (2b)

E′′(x, y) = y2 − x3 − bB4 = 0, (2c)

where B is an element in F ∗
q . By combining x-twist and

y-twist, we can consider six elliptic curves from E(x, y)
given by Eq.(2a) and this paper proposes a method
to obtain the six orders of these six elliptic curves by
counting the order of only one of these six curves. From
the viewpoints of x-twist and y-twist, in this paper
we show the following properties; 1) elliptic curves in
the form of Eq.(2a) are not super-singular when q is a
prime number larger than 3, 2) the above mentioned
six orders are distinct when the extension degree of the
definition field is an odd number, 3) there exist prime
order curves among the six curves, 4) the orders of el-
liptic curves in the form of Eq.(2a) are systematically
determined without counting the orders when the def-
inition field is Fq3i , where i is a non negative integer,
and so on.

Throughout this paper, q is a power of an odd prime
number larger than 3. Fq and Fqm mean a finite field
and its m-th extension field, respectively, where m is a
positive integer. F ∗

q and F ∗
qm mean their multiplicative

group, respectively.

2 Fundamentals of elliptic curve

In this section, we go over the fundamentals of elliptic
curve.

2.1 Coefficient field and definition field

When the characteristic of Fq is not equal to 2 or 3, an
elliptic curve over Fq is generally defined by

E(x, y) = y2 − x3 − ax− b = 0, a, b ∈ Fq. (3)

The solutions (x, y) to Eq.(3) are called Fq-rational
points when the coordinates of x and y lie in Fq. This
paper deals with elliptic curves whose coordinates lie in
some extension field but coefficients a, b lie in its proper
subfield. In order to distinguish these fields, we call the
field of a, b coefficient field and that of coordinates x, y
definition field. In what follows, we use Fq and Fqm

as the coefficient and definition field, when m = 1, it
means that these fields are same.

2.2 Weil’s theorem

Fq-rational points on an elliptic curve form an additive
Abelian group. In this paper, we denote this group and
its order by E(Fq) and #E(Fq), respectively. When
the coefficient and definition fields are Fq and its ex-
tension field Fqm , respectively, the order #E(Fqm ) is
given by using #E(Fq) as follows ;

Theorem 1 Let the coefficient and definition fields be
Fq and its extension field Fqm , respectively. Let t =
q + 1 − #E(Fq) be the trace of E(Fq), then we have

#E(Fqm ) = qm + 1 − t[m], t[m] = αm + βm, (4)

where α and β are complex numbers such that αβ = q

and α+ β = t, and t[m] is the trace of E(Fqm ).

In this paper, we call the above order #E(Fq) the base
order and correspondingly we call its trace t the base
trace. Theorem 1 indicates that, when the coefficient
field is a proper subfield of the definition field, we can
obtain the order #E(Fqm ) by using the base trace t or
the base order #E(Fq).

When the coefficient and definition fields are a finite
field Fq and its extension field Fqm , respectively, the
order is given by Eq.(4). By using the base trace t,
that is t = q + 1 − #E(Fq), t[m] shown in Eq.(4) is
given by

t[m] =
�m/2�∑

i=0

m

m− i

(
m− i

i

)
(−q)itm−2i, (5)

where �m/2� means the greatest integer less than or
equal to m/2. It is well-known that #E(Fqm) is divis-
ible by the base order #E(Fq) as

#E(Fq) | #E(Fqm ). (6)

2.3 Twist

For an original defining equation;

E(x, y) = y2 − x3 − ax− b = 0 a, b ∈ Fq, (7a)

the following Ẽ(x, y) is called the twist of E(x, y) ;

Ẽ(x, y) = y2 − x3 − aA2x− bA3 = 0, (7b)

where A is a non-zero element in the definition field
Fqm . Corresponding to whether A is a quadratic
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residue (QR) or a quadratic non-residue (QNR), the
order #Ẽ(Fqm) of the twisted elliptic curve Ẽ(x, y) be-
comes as follows ;

#Ẽ(Fqm ) =

{
qm + 1 − t[m] when A is a QR

qm + 1 + t[m] when A is a QNR
.

(8a)

(8b)

In what follows, we refer to this twist operation as x-
twist.

2.4 Super-singular curves

In this paper, we particularly deal with elliptic curves
in the form of

E(x, y) = y2 − x3 − b, b ∈ F ∗
q . (9)

In what follows, let the defining equation E(x, y) be in
the form of Eq.(9). When 3 does not divide q − 1, it
is known that the order #E(Fq) and its trace t of the
elliptic curve E(x, y) becomes q+1 and 0, respectively,
that is a kind of super-singular curve[1]. Since super-
singular curves are not secure from Frey Rück attack[3],
super-singular curves are not suitable for ECC. On the
other hand, when 3 divides q−1, if q is a prime number
p, E(x, y) in the form of Eq.(9) is not super-singular
as shown in Appendix.A. In this paper, we particularly
consider the case that 3 divides q − 1.

3 x-twist and y-twist

For elliptic curves in the form of Eq.(9), we consider x-
twist and then propose y-twist. By combining x-twist
and y-twist, we can prepare six elliptic curves. For
these six curves, we show some properties and then
show that these six curves have distinct orders when q
is an odd power of a prime number p.

3.1 x-twist

For an original defining equation;

E(x, y) = y2 − x3 − b = 0, b ∈ F ∗
q , (10a)

we can consider the x-twisted curve Ẽ(x, y) as

Ẽ(x, y) = y2 − x3 − bA3 = 0, (10b)

where A is a non-zero element in the definition field
Fqm . Corresponding to whether or not A is a QR, the
order is given by Eqs.(8). For the defining equation
E(x, y), in this paper, let φ0(E) and φ1(E) denote the
elliptic curves that are x-twisted by using a QR and
QNR in Fqm , respectively. Accordingly, the orders of
φ0(E) and φ1(E) are given by Eq.(8a) and Eq.(8b),
respectively.

3.2 y-twist

For an original defining equation;

E(x, y) = y2 − x3 − b = 0, b ∈ F ∗
q , (11a)

we consider the following elliptic curves E′(x, y) and
E′′(x, y) ;

E′(x, y) = y2 − x3 − bB2 = 0, (11b)

E′′(x, y) = y2 − x3 − bB4 = 0, (11c)

where B is a non-zero element in the definition field
Fqm . Corresponding to whether E(0, y) is irreducible
or reducible over Fqm , the orders #E(Fqm ), #E′(Fqm),
and #E′′(Fqm ) of E(x, y), E′(x, y), and E′′(x, y) over
Fqm becomes as follows ;

when E(0, y) is irreducible over Fqm ,

#E(Fqm ) = 3N + 1, (12a)

#E′(Fqm ) = 3N ′ + 1, (12b)

#E′′(Fqm ) = 3N ′′ + 1. (12c)

when E(0, y) is reducible over Fqm ,

#E(Fqm ) = 3N + 2 + 1, (13a)

#E′(Fqm) = 3N ′ + 2 + 1, (13b)

#E′′(Fqm) = 3N ′′ + 2 + 1. (13c)

N , N ′, N ′′ are the numbers of non-zero TRs in the
following sets, respectively;

{E(0, i), ∀i ∈ Fqm} , (14a)

{E′(0, i), ∀i ∈ Fqm} , (14b)

and {E′′(0, i), ∀i ∈ Fqm} . (14c)

Moreover, corresponding to whether B is a third power
residue (TR) or a third power non-residue (TNR) in
Fqm , the following relation holds for N , N ′, N ′′ ;

when B is a TR in Fqm ,

N = N ′ = N ′′, (15)

when B is a TNR in Fqm and E(0, y) is irreducible,

N +N ′ +N ′′ = qm, (16)

when B is a TNR in Fqm and E(0, y) is reducible,

N +N ′ +N ′′ + 2 = qm. (17)

The proof for these relations is shown in Appendix.B.
In what follows, we refer to the operation shown in
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Eqs.(11) as y-twist. For the defining equation E(x, y),
in this paper, ψ0(E) shows the elliptic curve that is
y-twisted by using a TR in Fqm . ψ1(E) and ψ2(E)
show the elliptic curves that are y-twisted by using
a TNR in Fqm as shown in Eq.(11b) and Eq.(11c),
respectively. Correspondingly, the orders of ψ0(E),
ψ1(E), and ψ2(E) are given as Eqs.(12), Eqs.(13),
Eq.(15) ∼ Eq.(17).

From the above viewpoint, we can also consider x-
twist (see Appendix.C).

3.3 Six orders of elliptic curves

E(x, y) = y2 − x3 − b, b ∈ F ∗
q

Let us prepare a non-zero element b ∈ Fq such that b
is QNR and TNR in Fq. By using such an element b,
we can consider the following six elliptic curves ;

E1(x, y) = y2 − x3 − b = 0, (18a)

E2(x, y) = y2 − x3 − b2 = 0, (18b)

E3(x, y) = y2 − x3 − b3 = 0, (18c)

E4(x, y) = y2 − x3 − b4 = 0, (18d)

E5(x, y) = y2 − x3 − b5 = 0, (18e)

E6(x, y) = y2 − x3 − b6 = 0. (18f)

Noting that E1(0, y) is irreducible over Fq[4], the fol-
lowing relations hold from the viewpoints of x-twist
φ0, φ1 and y-twist ψ0, ψ1, ψ2;

E1 = E1, (19a)

E3 = ψ1(E1), (19b)

E5 = ψ2(E1), (19c)

E4 = φ1(E1), (19d)

E6 = ψ1(E4) = φ1(E3) = ψ1(φ1(E1)), (19e)

E2 = ψ2(E4) = φ1(E5) = ψ2(φ1(E1)). (19f)

Therefore, elliptic curves E2 ∼ E6 are given from
E1 by combining x-twist and y-twist operations. Fig.1
shows an image of these relations.

Therefore, there are six base orders as follows ;

#E1(Fq) = q + 1 − t1, (20a)

#E3(Fq) = q + 1 − t3, (20b)

#E5(Fq) = q + 1 − t5, (20c)

#E4(Fq) = q + 1 − t4 = q + 1 + t1, (20d)

#E6(Fq) = q + 1 − t6 = q + 1 + t3, (20e)

#E2(Fq) = q + 1 − t2 = q + 1 + t5, (20f)

where t1 ∼ t6 are the base traces of E1 ∼ E6, respec-
tively. In addition, from the viewpoints of x-twist and
y-twist, we can easily find that every elliptic curve in
the form of Eq.(9) has one of these six base orders. In
other words, every elliptic curve in the form of Eq.(9)
is isomorphic to a certain one of these six curves. Es-
pecially, when q is an odd power of a prime number
p, these six curves have distinct orders as shown in
Appendix.D.

In what follows, we use the fact that #E3(Fq)
and #E6(Fq) are even numbers because E3(x, 0) and
E6(x, 0) are reducible over Fq[1]. Since this paper deals
with q as a power of an odd prime number p > 3, t3
and t6 are even integers. On the other hand, #E1(Fq),
#E2(Fq), #E4(Fq), and #E5(Fq) are odd numbers.

4 Determining the orders of

E(x, y) = y2 − x3 − b, b ∈ F ∗
q

From Eqs.(20), we find that the six orders #E1(Fq) ∼
#E6(Fq) can be determined from t1, t3, and t5. In this
section, we show a method to obtain t3 and t5 from only
t1. From Weil’s theorem, as shown in Eq.(6), we have

#Ei(Fq) | #Ei(Fq3 ), i = 1, 2, 3, 4, 5, 6. (21)

Since a TNR in Fq becomes a TR in Fq3(see Ap-
pendix.E), the TNR b = −E(0, 0) becomes a TR in
Fq3 , this is the reason why we consider the third ex-
tension field Fq3 . Therefore, as introduced in Sec.3.2
and as shown in Eq.(15), we have

#E1(Fq3 ) = #E3(Fq3 ) = #E5(Fq3 ), (22)

#E4(Fq3) = #E6(Fq3 ) = #E2(Fq3), (23)

accordingly we have

#Ei(Fq) | #E1(Fq3 ), i = 1, 3, 5, (24a)

#Ei(Fq) | #E4(Fq3 ), i = 4, 6, 2. (24b)

In addition, from Weil’s theorem and Eq.(5), we have

#E1(Fq3 ) = q3 + 1 − (t31 − 3qt1) (25a)

= q3 + 1 − (t33 − 3qt3) (25b)

= q3 + 1 − (t35 − 3qt5), (25c)

and also we have

#E4(Fq3 )

= q3 + 1 − (t34 − 3qt4) = q3 + 1 + (t31 − 3qt1) (26a)

= q3 + 1 − (t36 − 3qt6) = q3 + 1 + (t33 − 3qt3) (26b)

= q3 + 1 − (t32 − 3qt2) = q3 + 1 + (t35 − 3qt5). (26c)
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E1(x, y) = y2 − x3 − b

E3(x, y) = y2 − x3 − b3

E5(x, y) = y2 − x3 − b5

E4(x, y) = y2 − x3 − b4

E6(x, y) = y2 − x3 − b6

E2(x, y) = y2 − x3 − b2

x-twist
⇔

y-twist 	 y-twist	

Figure 1: x-twist and y-twist relations among the six curves

From Eqs.(25) and Eqs.(26), we find that the follow-
ing f1(t) = 0 and f4(t) = 0 have solutions t = t1, t3, t5
and t = t4, t6, t2, respectively.

f1(t) = t3 − 3qt− q3 − 1 + #E1(Fq3)

= t3 − 3qt− t
[3]
1 , (27a)

f4(t) = t3 − 3qt− q3 − 1 + #E4(Fq3)

= t3 − 3qt− t
[3]
4 . (27b)

Next, let us consider how to obtain t3 and t5 by using
f1(t) and its zero t1. By computing the order #E1(Fq),
we can obtain t1 as

t1 = q + 1 − #E1(Fq). (28)

Since f1(t1) = 0, by using Eq.(25a), we can factorize
f1(t) as

f1(t) = (t−t1)(t2+t1t+s), s = t
[3]
1 /t1 = t21−3q, (29)

therefore we obtain t3 and t5 by solving the quadratic
equation f1(t)/(t− t1) = 0 that is t2 + t1t+ s = 0, s =
t
[3]
1 /t1 = t21 −3q. From this quadratic equation, we can

easily obtain two solutions ta and tb as t3 and t5.
As previously mentioned, since t5 is an odd number

and t3 is an even number, we can easily distinguish
whether the obtained ta is t3 or t5, and so on. After
that, we can determine t4, t6, and t2 as follows ;

t4 = −t1, t6 = −t3, t2 = −t5. (30)

Consequently, by computing only #E1(Fq), we can ob-
tain #E2(Fq) ∼ #E6(Fq) without any complicated
computation. It only requires solving the quadratic
equation f1(t)/(t−t1) = 0, where t1 is given as Eq.(28).

As shown in Appendix.F, we can also show the fol-
lowing relations ;

#E1(Fq3 ) = #E1(Fq)#E3(Fq)#E5(Fq), (31a)

#E4(Fq3 ) = #E4(Fq)#E6(Fq)#E2(Fq).(31b)

t
[3]
1 = t1t3t5, (32a)

t
[3]
4 = t4t6t2. (32b)

4.1 Extension

In the same way, we can consider the following six
curves that are given as x-twisted and y-twisted curves
of E1(x, y) and E4(x, y) over Fq3 ;

E1(x, y) = y2 − x3 − b = 0, (33a)

E7(x, y) = y2 − x3 − C2b = 0, (33b)

E8(x, y) = y2 − x3 − C4b = 0, (33c)

E4(x, y) = y2 − x3 − b4 = 0, (33d)

E9(x, y) = y2 − x3 − C2b4 = 0, (33e)

E10(x, y) = y2 − x3 − C4b4 = 0, (33f)

where C is a TNR in Fq3 . For these six curves, Fig.2
shows the x-twist and y-twist relations and Fig.3 shows
the order relations. We should note that a QNR in Fq

also becomes a QNR in Fq3i [4], where i is a positive
integer, therefore b becomes a TR in Fq3 ; however, b is
still a QNR in Fq3 .

For the six curves Eqs.(33), the x-twist and y-twist
relations are written as

E1 = E1, (34a)

E7 = ψ1(E1), (34b)

E8 = ψ2(E1), (34c)

E4 = E4, (34d)

E9 = ψ1(E4) = φ1(E7) = ψ1(φ1(E1)), (34e)

E10 = ψ2(E4) = φ1(E8) = ψ2(φ1(E1)). (34f)

From Weil’s theorem and Eq.(5), the orders are given
as follows ;

#E1(Fq3 ) = q3 + 1 − t
[3]
1 = q3 + 1 − (t31 − 3qt1),(35a)
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E1(x, y) = y2 − x3 − b E4(x, y) = y2 − x3 − b4

E7(x, y) = y2 − x3 − C2b

E8(x, y) = y2 − x3 − C4b

E9(x, y) = y2 − x3 − C2b4

E10(x, y) = y2 − x3 − C4b4

y-twist

x-twist
⇔

	 y-twist	

Figure 2: x-twist and y-twist relations among the six curves over Fq3

#E1(Fq)

#E3(Fq)

#E5(Fq)

#E4(Fq)

#E6(Fq)

#E2(Fq)

#E1(Fq3 )

#E4(Fq3 )

#E7(Fq3 )

#E8(Fq3 )

#E9(Fq3 )

#E10(Fq3)

#E1(Fq9)

#E4(Fq9)

Fq Fq3 Fq9Definition field

#E3(Fq) #E1(Fq3 ) means that #E3(Fq) divides #E1(Fq3 )

as shown in Eqs.(24), Eqs.(31), and Eqs.(36), for example.

Figure 3: Order relations among six curves over Fq3

#E7(Fq3) = q3 + 1 − t7, (35b)

#E8(Fq3) = q3 + 1 − t8, (35c)

#E4(Fq3) = q3 + 1 − t
[3]
4 = q3 + 1 + t

[3]
1

= q3 + 1 + (t31 − 3qt1), (35d)

#E9(Fq3) = q3 + 1 − t9 = q3 + 1 + t7, (35e)

#E10(Fq3) = q3 + 1 − t10 = q3 + 1 + t8, (35f)

where t7 ∼ t10 are the traces of E7(Fq3) ∼ E10(Fq3 ),
respectively. As shown in Eq.(35a), we can easily de-
termine #E1(Fq3 ) and t[3]1 by using only the base trace
t1. In the same way of the previous section, we have

#Ei(Fq3 ) | #E1(Fq9 ), i = 1, 7, 8, (36a)

#Ei(Fq3 ) | #E4(Fq9 ), i = 4, 9, 10. (36b)

In addition, we have

#E1(Fq9 ) = q9 + 1 −
(
(t[3]1 )3 − 3q3t[3]1

)
(37a)

= q9 + 1 − (t37 − 3q3t7) (37b)

= q9 + 1 − (t38 − 3q3t8). (37c)

Therefore, we can obtain t7 and t8 by solving the fol-
lowing quadratic equation ;

f
[3]
1 (t) = (t−t[3]1 )(t2+t[3]1 t+u), u = t

[9]
1 /t

[3]
1 = (t[3]1 )2−3q3,

(38)
where t[9]1 is given from Eq.(37a) as follows;

t
[9]
1 = q9 + 1 − #E1(Fq9 ) = (t[3]1 )3 − 3q3t[3]1 . (39)

From this quadratic equation, we can easily obtain
two solutions tc and td as t7 and t8. In this case, both
t7 and t8 are odd integers, therefore we can not dis-
tinguish them in the same way of the previous section;
however, we can distinguish them by generating a ran-
dom rational point P on the elliptic curve E7(x, y) and
then checking the order as follows ;

(q3 + 1 − tc)P = O or (q3 + 1 − td)P = O, (40)

Yasuyuki NOGAMI and Yoshitaka MORIKAWA MEM.FAC.ENG.OKA.UNI. Vol.40
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where O is the point at infinity. Consequently, the or-
ders #E1(Fq3) ∼ #E10(Fq3 ) can be determined from
only the base trace t1, furthermore the orders of elliptic
curves in the form of E(x, y) = y2 − x3 − b = 0 whose
coefficient and definition fields are Fq3i are systemati-
cally determined from only the base trace t1.

5 Experimental result

In this section, let us consider that q is a prime number
p > 3, therefore the base field Fq is a prime field Fp. We
use five prime numbers 7, 13, 19 as the characteristic p
that satisfies 3 | (p− 1). Table 1 shows examples.

For example, let us consider p = 7 on Table 1. In this
case, we prepare the following six defining equations
E1(x, y) ∼ E6(x, y);

E1(x, y) = y2 − x3 − 3 = 0, (41a)

E2(x, y) = y2 − x3 − 32 = y2 − x3 − 2 = 0,(41b)

E3(x, y) = y2 − x3 − 33 = y2 − x3 − 6 = 0,(41c)

E4(x, y) = y2 − x3 − 34 = y2 − x3 − 4 = 0,(41d)

E5(x, y) = y2 − x3 − 35 = y2 − x3 − 5 = 0,(41e)

E6(x, y) = y2 − x3 − 36 = y2 − x3 − 1 = 0,(41f)

we compute only the base order #E1(F7) = 13 and
we have t1 = −5. Therefore, according to Eq.(29), we
have the following quadratic equation ;

f1(t)/(t− t1) = t2 − 5t+ 4 = 0. (42)

Solving this quadratic equation, we obtain two solu-
tions (ta, tb) = (4, 1) as two base traces (t3, t5). As pre-
viously mentioned, t3 must be an even number, there-
fore we can determine t3 = 4 and t5 = 1. Consequently,
from Eqs.(20), we have

#E1(F7) = 13, #E3(F7) = 4, #E5(F7) = 7, (43a)

#E4(F7) = 3, #E6(F7) = 12, #E2(F7) = 9. (43b)

Table 2 shows the six orders #E1(Fq3), #E4(Fq3 ), and
#E7(Fq3) ∼ #E10(Fq3 ). Let us consider the case that
p = 7. We have already known #E1(F73 ) and t

[3]
1 .

Therefore, according to Eq.(38), we have

f
[3]
1 (t)/(t− t

[3]
1 ) = t2 − 20t− 629 = 0. (44)

By solving this quadratic equation, we obtain two so-
lutions (tc, td) = (37,−17) as two traces (t7, t8). Then,
we have two orders 307 and 361 as #E7(F73 ) and
#E8(F73). We can distinguish these orders by an

elliptic curve scalar multiplication. After that, from
Eqs.(35) we can obtain #E9(F73) and #E10(F73).

As shown in the tables, some prime order elliptic
curves exist. Therefore, we can apply the proposed
method for effectively generating prime order curves.
In addition, on the tables we can observe that the six
curves have six distinct orders since the extension de-
grees of Fp and Fp3 are odd numbers 1 and 3.

6 Conclusion

This paper has particularly dealt with elliptic curves
in the form of

E(x, y) = y2 − x3 − b = 0, b ∈ F ∗
q , (45a)

where 3 divides q− 1. In this paper, we referred to the
well-known twist technique as x-twist and proposed y-
twist as follows ;

E′(x, y) = y2 − x3 − bB2 = 0, (45b)

E′′(x, y) = y2 − x3 − bB4 = 0, (45c)

where B is an element in F ∗
q . By combining x-twist and

y-twist, we considered six elliptic curves from E(x, y)
and this paper proposed a method to obtain the six
orders of these six elliptic curves by counting the order
of only one of these six curves. In addition, from the
viewpoints of x-twist and y-twist, this paper showed
some properties such as; the above mentioned six or-
ders are distinct when the extension degree of the def-
inition field is an odd number.
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Table 1: Six base orders, traces, two solutions of f1(t)/(t− t1)
p Const.† Order∗∗ Trace #E1(Fp3 ) f1(t)/(t− t1) Solutions ta, tb

E1 3 13∗ −5
E2 2 9 −1

7
E3 6 4 4

364 t2 − 5t+ 4 4, 1
E4 4 3∗ 5
E5 5 7∗ 1
E6 1 12 −4
E1 2 19∗ −5
E2 4 21 −7

13
E3 8 16 −2

2128 t2 − 5t− 14 7,−2
E4 3 9 5
E5 6 7∗ 7
E6 12 12 2
E1 2 13∗ 7
E2 4 21 −1

19
E3 8 28 −8

6916 t2 + 7t− 8 1,−8
E4 16 27 −7
E5 13 19∗ 1
E6 7 12 8

† Const. means the constant term E(0, 0).
∗∗ #E1(Fp) ∼ #E6(Fp) are tabulated. ∗ prime order.

Table 2: #E1(Fp3 ), #E1(Fp9), two solutions of f [3]
1 (t)/(t− t

[3]
1 ), six orders over Fp3

p #E1(Fp3) #E1(Fp9 ) f
[3]
1 (t)/(t− t

[3]
1 ) Solutions tc, td Orders∗∗

364
327

7 364 40341028 t2 − 20t− 629 37,−17
307∗

324
361
381
2128
2109

13 2128 10604617744 t2 + 70t− 1691 19,−89
2179∗

2268
2287∗

2217
6916
6753

19 6916 322686721084 t2 − 56t− 17441 163,−107
6697
6804
6967∗

7023
∗∗ #E1(Fp3 ), #E4(Fp3 ), and #E7(Fp3) ∼ #E10(Fp3 ) are tabulated. ∗ prime order.
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Appendix

A. E(x, y) = y2−x3−b, b ∈ F ∗
p is not super-

singular

As shown in Appendix.B, the order #E(Fq) of the
curve Eq.(9) is written as

#E(Fq) = 3N + 1 or 3N + 2 + 1, (46)

where N is a certain number. In other words,
#E(Fq) 
≡ 2 (mod 3). Therefore, noting that 3 di-
vides q−1, it is shown that the trace t = q+1−#E(Fq)
is not equal to 0. When q is an odd prime number p, the
elliptic curve E(Fp) is not super-singular if and only if
its trace t is not equal to 0. Consequently, it is shown
that E(Fp) defined by E(x, y) = y2 − x3 − b, b ∈ F ∗

p is
not super-singular.

B. The orders of y-twisted curves

If E(0, y) is irreducible over Fqm , E′(0, y) and E′′(0, y)
are also irreducible. On the other hand, if E(0, y) is
reducible over Fqm , E′(0, y) and E′′(0, y) are also re-
ducible, in addition each E(0, y), E′(0, y), and E′′(0, y)
has two distinct zeros in Fqm because b 
= 0 and the
characteristic p is larger than 3 in this paper.[4].

When E(0, y) is irreducible over Fqm , we have the
following rational points ;

• For i ∈ Fqm such that E(0, i) is a TR in Fqm ,

x3 = E(0, i) generates three rational points on the
curve.

• For i ∈ Fqm such that E(0, i) is a TNR in Fqm ,

x3 = E(0, i) generates no rational points on the
curve.

Therefore, when E(0, y) is irreducible, the orders are
written as Eqs.(12). On the other hand, when E(0, y)
is reducible, we have the following rational points;

• For i ∈ Fqm such that E(0, i) is not equal to 0 and
a TR in Fqm ,

x3 = E(0, i) generates three rational points on the
curve.

• For i ∈ Fqm such that E(0, i) is not equal to 0 and
a TNR in Fqm ,

x3 = E(0, i) generates no rational points.

• For i ∈ Fqm such that E(0, i) is equal to 0,

x3 = E(0, i) generates one rational point (x, y) =
(0, i).

Therefore, when E(0, y) is reducible, noting that
E(0, y) has two distinct zeros in Fqm , the orders are
written as Eqs.(13).

Let N be the number of i’s such that E(0, i), i ∈ Fqm

is a non-zero TR in Fqm , let N ′ and N ′′ be the numbers
of i’s such that E(0, i), i ∈ Fqm is a TypeI and a TypeII
TNR in Fqm , respectively. The notations TypeI and
TypeII TNR are defined in Appendix.E. First, we
consider E(x, y), E′(x, y), and E′′(x, y) as

E(x, y) : x3 = E(0, y), (47a)

E′(x, y) : x3 = B2E(0, B−1y), (47b)

E′′(x, y) : x3 = B4E(0, B−2y). (47c)

We can easily understand that the following three
curves has the same order;

x3 = E(0, y), (48a)

x3 = E(0, B−1y), (48b)

x3 = E(0, B−2y), (48c)

because y = B−1y and y = B−2y are isomorphic vari-
able transformations. In other words, the following
relation holds ;

{E(0, i), ∀i ∈ Fqm} = {E(0, B−1i), ∀i ∈ Fqm}
= {E(0, B−2i), ∀i ∈ Fqm}. (49)

Therefore, if B is a TR in Fqm , by multiplying B2 and
B4 as shown in Eqs.(47), TRs in {E(0, i), ∀i ∈ Fqm}
become TRs in Fqm and TNRs in {E(0, i), ∀i ∈ Fqm}
become TNRs in Fqm again. Consequently, we have
the relation Eq.(15).

When B2 is a TypeII TNR in Fqm and E(0, y) is
irreducible over Fqm , for example, by multiplying B2

as shown in Eq.(47b) and Fig.4-(b), we find

• N non-zero TRs in {E(0, i), ∀i ∈ Fqm} become N
TypeII TNRs in Fqm ,

• N ′ TypeI TNRs in {E(0, i), ∀i ∈ Fqm} become N ′

non-zero TRs in Fqm ,

• N ′′ TypeII TNRs in {E(0, i), ∀i ∈ Fqm} become
N ′′ TypeI TNRs in Fqm .

In the same, by multiplying B4 as shown in Eq.(47c)
and Fig.4 (c), we find

• N non-zero TRs in {E(0, i), ∀i ∈ Fqm} become N
TypeI TNRs in Fqm ,

• N ′ TypeI TNRs in {E(0, i), ∀i ∈ Fqm} become N ′

TypeII TNRs in Fqm ,
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{E(0, i), ∀i ∈ Fqm}

non-zero TRs

TypeI TNRs

TypeII TNRs

(b) {B2E(0, B−1i), ∀i ∈ Fqm}

N ′ {
TypeII TNRs

TypeI TNRs

(c) {B4E(0, B−2i), ∀i ∈ Fqm}

×B2

×B4

Each non-zero TR corresponds to

N
{

N ′ {
N ′′ {

TypeI TNRs

TypeII TNRs

N ′′ {

(a) {E(0, i), ∀i ∈ Fqm}

×1

TypeI TNRs

TypeII TNRs

N
{

non-zero TRs

non-zero TRs

non-zero TRsthree rational points.

Figure 4: The relation among N,N ′, and N ′′ when B2 is a TypeII TNR in Fqm

• N ′′ TypeII TNRs in {E(0, i), ∀i ∈ Fqm} become
N ′′ non-zero TRs in Fqm ,

where in this case we should note that B4 becomes a
TypeI TNR in Fqm . Consequently, we have the relation
Eq.(16). Fig.4 shows an image of these relations. On
the other hand, when B2 is a TNR in Fqm and E(0, y)
is reducible over Fqm , B2E(0, i) and B4E(0, i) also be-
come 0 for i ∈ Fm

q such that E(0, i) = 0. Therefore,
noting that E(0, y) has two distinct zeros in Fqm , we
have Eq.(17).

C. Eqs.(12), Eqs.(13), Eqs.(14), and

Eq.(15)∼Eq.(17) for x-twist

Let us consider the defining equations Eqs.(10). Corre-
sponding to whether E(x, 0) is irreducible or reducible
over Fqm , the orders #E(Fqm ) and #Ẽ(Fqm ) of E(x, y)
and Ẽ(x, y) over Fqm becomes as follows ;

when E(x, 0) is irreducible over Fqm ,

#E(Fqm ) = 2M + 1, (50a)

#Ẽ(Fqm ) = 2M̃ + 1. (50b)

when E(x, 0) is reducible over Fqm ,

#E(Fqm ) =

{
2M + 1 + 1

2M + 3 + 1

when

{
E(x, 0) has one zero in Fqm

E(x, 0) has three zeros in Fqm

, (51a)

#Ẽ(Fqm ) =

{
2M̃ + 1 + 1

2M̃ + 3 + 1

when

{
E(x, 0) has one zero in Fqm

E(x, 0) has three zeros in Fqm

. (51b)
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M and M̃ are the numbers of non-zero QRs in the
following sets, respectively;

{E(i, 0), ∀i ∈ Fqm} (52a)

and
{
Ẽ(i, 0), ∀i ∈ Fqm

}
. (52b)

Moreover, corresponding to whether A is a QR or a
QNR in Fqm , the following relation holds for M and
M̃ ;

when A is a QR in Fqm ,

M = M̃, (53)

when A is a QNR in Fqm and E(x, 0) is irreducible,

M + M̃ = qm, (54)

when A is a QNR in Fqm and E(x, 0) is reducible,{
M + M̃ + 1 = qm

M + M̃ + 3 = qm

when
{

E(x, 0) has one zero in Fqm

E(x, 0) has three zeros in Fqm

. (55)

In this case, we should note that E(x, 0) does not have
any duplicated zeros because of ECC implementation.
Most of these properties are well-known[1].

D. Six distinct orders

From Eqs.(12), Eqs.(13), Eqs.(14), and Fig.1, we can
easily find that the six orders #E1(Fq) ∼ #E6(Fq)
are distinct when #E1(Fq), #E3(Fq), and #E5(Fq)
are distinct. In this section, we show that #E1(Fq),
#E3(Fq), and #E5(Fq) are distinct when q is an odd
power of a prime number p.

If two of three orders #E1(Fq), #E3(Fq), and
#E5(Fq) are same, two of three traces t1, t3, and t5
are same. It means that f1(t) defined by Eq.(27a) has
duplicate solutions. We can easily check it by whether
or not the discriminant D(f1) of f1(t) is equal to 0,
where D(f1) is given by

D(f1) = −108q3 + 27
(
−t[3]1

)2

. (56)

Therefore, noting that t[3]1 = q3 + 1 − #E1(Fq3 ), we
have

−4q3 + (t[3]1 )2 = 0. (57)

For the above equation, there are no solutions with
respect to t[3]1 if q is an odd power of a prime number

p, where p is the characteristic. Consequently, in this
case, the six curves E1(x, y) ∼ E6(x, y) have distinct
orders.

If Eq.(57) is satisfied, it is possible for the six or-
ders not to be distinct. Moreover, in this case, since
the trace t[3]1 of the curve E1(Fq3 ) is divisible by the
characteristic, some of the six curves E1(Fq3 ), E4(Fq3),
E7(Fq3 ) ∼ E10(Fq3 ) are super-singular.

E. A TNR in Fq becomes a TR in Fq3

When 3 divides q − 1, non-zero TRs and TNRs in Fq

are given as follows ;

non−zero TRs :
{
g3j , j = 0, 1, 2, · · · , (q − 4)/3

}
, (58a)

TypeI TNRs :
{
g3k+1, k = 0, 1, 2, · · · , (q − 4)/3

}
,(58b)

TypeII TNRs :
{
g3l+2, l = 0, 1, 2, · · · , (q − 4)/3

}
,(58c)

where g is a generator of F ∗
q . These notations are also

used in Appendix.A.
Let us consider a TNR x in Fq . We can check

whether x is a TR or a TNR in Fq3 by calculating
x(q3−1)/3, the calculation result becomes as follows ;

x(q3−1)/3 =
(
xq−1

)(q2+q+1)/3
= 1, (59)

where we note that x(q−1) = 1 and (q3 − 1)/(q − 1) =
q2 + q+1 is divisible by 3[4]. Consequently, it is shown
that a TNR in Fq becomes a TR in Fq3 .

F. Proof of Eqs.(31) and Eqs.(32)

First, since Eq.(27a) has t1, t3, and t5 as its solutions,
we have

t1 + t3 + t5 = 0, (60a)

t1t3 + t1t5 + t3t5 = −3q, (60b)

t1t3t5 = q3 + 1 − #E1(Fq3). (60c)

From Weil’s theorem, we have

t
[3]
1 = −q3 − 1 + #E1(Fq3 ), (61)

therefore, we obtain Eqs.(32b) from Eq.(60c). In the
same way, we can show Eq.(32a).

Next, let us consider the following product;

#E1(Fq)#E3(Fq)#E5(Fq)

= (q + 1 − t1)(q + 1 − t3)(q + 1 − t5). (62)

By using Eqs.(60), we can develop the right-hand side
of the above equation as

= (q + 1)3 − (t1 + t3 + t5)(q + 1)2 +
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(t1t3 + t1t5 + t3t5)(q + 1) − t1t3t5

= (q + 1)3 − 3q(q + 1) − q3 − 1 + #E1(Fq3 )

= #E1(Fq3 ). (63)

Consequently, we have Eq.(31a). In the same way, we
can show Eq.(31b).
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