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In this paper, we focus on developing a high-speed square root (SQRT) algorithm required
for an elliptic curve cryptosystem. Examining Smart algorithm, the previously well-known
SQRT algorithm, we can see that there is a lot of computation overlap in Smart algorithm
and the quadratic residue (QR) test, which must be implemented prior to a SQRT com-
putation. It makes Smart algorithm inefficient. The essence of our proposition is thus to
present a new QR test and an efficient SQRT algorithm to avoid all the overlapping com-
putations. The authors devised a SQRT algorithm for which most of the data required
have been computed in the proposed QR test. Not only there is no computation overlap
in the proposed algorithm and the proposed QR test, but also in the proposed algorithm
over GF (p2) (4 | p − 1) some computations can be executed in GF (p); whereas in Smart
algorithm over GF (p2) all the computations must be executed in GF (p2). These yield many
reductions in the computational time and complexity. We implemented the two QR tests
and the two SQRT algorithms over GF (pm) (m=1, 2) in C++ language with NTL (Num-
ber Theory Library) on Pentium4 (2.6GHz), where the size of p is around 160 bits. The
computer simulations showed that the proposed QR test and the proposed algorithm over
GF (pm) were about 2 times faster than the conventional QR test and Smart algorithm over
GF (pm).

1 Introduction

The importance of keeping communication secure is
increasing due to the prevalence of the Internet and
other forms of electronic communication. A public-key
cryptosystem is well known as a technology to pro-
vide a secure environment where communication can
be conducted without fear. As public-key cryptosys-
tems, both Rivest-Shamir-Adleman (RSA) cryptosys-
tem and elliptic curve cryptosystem (ECC) can provide
secure communication. However, ECC offers equiva-
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lent security with smaller key sizes. For example, a
160-bit ECC guarantees as secure as a 1024-bit RSA
cryptosystem, and it follows that ECC is more suitable
for small devices such as smart cards and cellular tele-
phones. Therefore ECC has tremendous potential to
keep communication secure and much attention [1]-[3]
has been attracted to the realization of ECC.

In realizing ECC, not only the fundamental opera-
tions such as multiplications and inversions, but also
the square root (SQRT) computations must be imple-
mented. For an around 160-bits ECC, implemented
with aid of NTL (Number Theory library), a multi-
plication in prime fields GF (p) needs to take 0.2 mil-
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lisecond; whereas a square root computation in GF (p)
needs to take 50 millisecond by using Smart algorithm
which is the previously well-known SQRT algorithm.
This is a big motivation to develop a high-speed SQRT
algorithm over finite fields GF (pm).

ECC provides the user a great deal of flexibility in
the choice of system parameters. The authors have
considered the case of m = rn [4], where r = 1 or 2
and n is an odd prime number. In this paper, we let
p be a prime number greater than 3 and let m have
the form of m = 2c, where c is a nonnegative integer.
However, ECC over GF (p2c

) can provide secure com-
munications if and only if c=0, 1 and 2 [5]. In fact, its
security is weak when c=2 [5]. So, we mainly consider
the two cases of c = 0 and 1. Without any additional
explanations, m=1 and 2 in what follows.

It is well known that if an arbitrary element x in
GF (pm) is not a quadratic residue, i.e. the element
does not have its SQRT in the same field, then it is
nonsensical to compute its SQRT. Prior to the SQRT
computation, we should thus identify whether or not
x is a quadratic residue, which is called the quadratic
residue test. Therefore, if most of data required for a
SQRT algorithm have been computed in the quadratic
residue test, then it will provide a means for a high-
speed SQRT computation.

Smart algorithm [6], the previously well-known
SQRT algorithm over GF (pm), has the idea how to
compute the SQRT from the quadratic residue test.
However there is a lot of computation overlap in the
quadratic residue test and Smart algorithm, which
makes the SQRT computation inefficient. The essence
of our proposition is thus to present a new quadratic
residue test and an efficient SQRT algorithm to avoid
all the overlapping computations. Based on the main
idea of Smart algorithm, the authors devised an al-
gorithm, called the moving window-sign testing (MW-
ST) algorithm, for which most of the data required
have been computed in the proposed quadratic residue
test. Not only there is no computation overlap in the
proposed algorithm and the proposed quadratic residue
test, but also in the proposed algorithm over GF (p2)
(4 |p−1) some computations can be executed in GF (p).
However, in Smart algorithm over GF (p2) all the com-
putations must be executed in GF (p2). These yield
many reductions in the computational time and com-
plexity. In this paper, the MW-ST algorithm for SQRT
computation over GF (pm) has been proved to be much
faster than Smart algorithm.

The remainder of the paper is organized as fol-

lows. In Sec.2, we first present how to implement the
quadratic residue test over GF (pm), and then estimate
its computational complexity. In Sec.3, we first review
Smart algorithm over GF (pm), and then estimate its
computational complexity. In Sec.4, the MW-ST al-
gorithm is first presented in GF (pm), and then we
estimate its computational complexity in GF (p) and
GF (p2) respectively. In Sec.5, we implement the two
QR tests and the two SQRT algorithms over GF (pm)
in C++ language with NTL on Pentium4 (2.6GHz),
where the size of p is around 160 bits. The computer
simulations show that the proposed QR test and the
proposed algorithm over GF (pm) are about 2 times
faster than the conventional QR test and Smart algo-
rithm over GF (pm).

Throughout the paper, Am and Mm denote addi-
tions and multiplications in finite fields GF (pm), and
S denotes shift computations. #Am, #Mm and #S

respectively denote the numbers of these operations.
Especially, #Mm denotes the average number of the
multiplications required for an arbitrary input element.

2 Quadratic residue test

In this section, we first present how to implement
quadratic residue test, and then estimate its compu-
tational complexity.

2.1 How to implement the quadratic

residue test

We usually use the Euler’s criterion to identify whether
or not a nonzero element x is a quadratic residue:

C(x) = x(pm−1)/2 =

{
1 QR

−1 QNR
, (1)

where QR and QNR are the abbreviations of quadratic
residue and quadratic non-residue, respectively. Con-
ventionally, we directly compute (pm − 1)/2-th power
of x to implement the QR test as shown in Fig.1.

x

2/)1( −

m
p

x 1
?

Figure 1: Conventional QR test for x ∈ GF (pm)

The exponent in Eq.(1) i.e. (pm − 1)/2 can be fac-
torized as

(pm − 1)/2 = 2T s, (2)
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where T is a nonnegative integer and s is an odd num-
ber. It follows that

C(x) = x(pm−1)/2 = (xs)2
T

= x2T

0 for x0 = xs. (3)

In fact, it is not necessary for some input elements
to compute such a large power of x(pm−1)/2. If x0 =1,
then we can assert that x is a QR. If not, we repeatedly
compute the squares of x0 until the product becomes
−1. This is just our proposed QR test.

Let t be the amount of the expected square computa-
tions as shown in Fig.2(a). When t < T , x is a QR such
as the x of Fig.2(a); when t=T , x is a QNR such as the
c of Fig.2(b). Note that when x0 =−1, we do not need
to compute the square of x0, which implies that t=0.
For the convenience of the succeeding SQRT compu-
tation, we first compute x(s−1)/2, and then multiply
x(s−1)/2 by x to get x(s+1)/2, finally multiply x(s+1)/2

and x(s−1)/2 together to get x0.

x x0 x1
xt-2

( )2( )2( )s

xt-1

( )2

xt =−1
( )2

c c0c1

( )2

ct

( )s

cT =−1cT-2

( )2

cT-1

( )2 ( )2

(a)  A power series of  a QR

(b)  A power series of a QNR
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(a)  A power series of  a QR

(b)  A power series of a QNR

Figure 2: Proposed QR test for x ∈ GF (pm)

2.2 Complexity of the QR test

In the conventional QR test, we directly compute the
(pm − 1)/2−th power of x, which requires the following
multiplications by using binary method [7]:

#Mm =
⌊
log2(

pm − 1
2

)
⌋

+ w

(
pm − 1

2

)
− 1

= �log2(s)� + w(s) + T − 1, (4)

where T and s are given by Eq.(2), and �·� and w(·) de-
note the maximal integer less than · and the Hamming
weight of ·. In what follows, we abbreviate the ex-
pression �log2(·)�+w (·) to LW (·) for the convenience.
Since s is an odd number, the following relations hold:
w(s)=w( s−1

2 )+1 and �log2(s)�=
⌊
log2(

s−1
2 )

⌋
+1. We,

therefore, obtain

#Mm = LW

(
s − 1

2

)
+ 1 + T. (5)

In the proposed QR test, when using binary method
to compute x(s−1)/2, we require LW ( s−1

2 ) − 1 multi-
plications in GF (pm), and then multiply x(s−1)/2 by x

to get x(s+1)/2, finally multiply x(s+1)/2 and x(s−1)/2

together to get x0. It follows that the following multi-
plications are required for x0:

#Mm = [LW (
s − 1

2
) − 1] + 2. (6)

Note that when s=1, we do not require any computa-
tions to get x0. In other words, if s=1 then #Mm =0.

If x0 =1, then we can assert that the input element x

is a QR. If not, we need t multiplications to get xt =−1
as shown in Fig.2. Note that the value of t depends on
the input element x that can not be known in advance.
Since 0 � t � T , considering all the possibilities we
can know that the QR test on average requires the
following multiplications for s > 1:

#Mm =LW (
s − 1

2
) + 1 +

1 · 21 + 2 · 22 + · · · + T · 2T

2T+1

=LW (
s − 1

2
) + 1 + (T − 1) + 2−T . (7)

On the other hand, #Mm = (T − 1) + 2−T for s = 1.
Comparing Eq.(5) and Eq.(7), we see that the proposed
QR test is little faster than the conventional QR test.

3 Smart algorithm over GF (pm)

Smart algorithm is well known as a conventional
method to compute the square root. In this section, we
first review Smart algorithm over GF (pm) and then es-
timate its complexity. Note that Smart algorithm over
GF (pm) is considered under the condition of Eq.(2).
Of course, we should execute the conventional QR test
prior to Smart algorithm.

3.1 Smart algorithm

Smart algorithm

Input: A nonzero QR x ∈ GF (pm).

Output: A square root
√

x ∈ GF (pm).

Preparation:

1. Factorize (pm − 1)/2 as shown in Eq.(2).

2. Find an appropriate QNR θ ∈ GF (pm) and com-
pute a=θs.

Procedure:

Step1 : Compute b=x(s−1)/2 and set t0 =0, k=0.
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Step2 : Iteratively compute the following expres-
sions as k increases by 0 to T − 1:

tk+1 = tk + 2kck, (8a)

where

ck =

{
0 if

(
(atkb)2 · x)2T−1−k

=1

1 if
(
(atkb)2 · x)2T−1−k

=−1
. (8b)

Step3 : Output the square root
√

x=(atT b)x.

Since the finite fields GF (pm) are given before the
SQRT computation, a, s and T can be prepared in
advance. Note that when T =0, Step2 is skipped and
Smart algorithm still remains valid.

3.2 Complexity of Smart algorithm

The SQRT computation is performed in the given fi-
nite fields GF (pm), so the computational complexity of
the preparation for Smart algorithm becomes unimpor-
tant. In what follows, we only evaluate computational
complexity of the main procedure.

In Step1, we can use the binary method to compute
the (s−1)/2-th power of x, which requires the following
multiplications:

#Mm = LW (
s − 1

2
) − 1, s > 1, (9a)

#Mm = 0, s=1. (9b)

In Step2, atkb shown in Eq.(8b) have the form

b, ac0b, ac0a2c1b, · · · ,
( T−1∏

i=0

a2ici

)
b (10)

for each k = 0, 1, 2, · · · , T . Note that we only need
to increase k up to T − 1 in Step2; however, k is in-
creased by 0 to T in Eq.(10). The reason is that the last
expression of Eq.(10) i.e. atT b is required for Step3.

Since the first expression of Eq.(10) i.e. b does not
need any computation, in what follows we only consider
the remaining terms, whose computational complexity
depends on the values of ck for k=0, 1, 2, · · · , T − 1.
When every ck is equal to 0, its computational com-
plexity reaches the minimum; when every ck is equal
to 1, its computational complexity reaches the max-
imum. Since the values of ck depend on the input
element x that can not be predicted in advance, we
consider all the possibilities of ck and get the following
average computational complexity of Eq.(10) (see A):

#Mm =
(3T − 4)2T−1 + 2

2T
=

3T − 4
2

+ 21−T . (11)

Next, for each k = 0, 1, · · · , T − 1 we compute the
square of atkb, and then multiply by x as shown in
Eq.(8b). This process requires

#Mm =2T. (12)

In addition to the above, we require the exponen-
tiations to 2T−1−k-th power for each k as shown in
Eq.(8b) and finally multiply atT b by x in Step3; then
this process requires

#Mm =
T−1∑
i=1

i + 1=
T (T − 1)

2
+ 1. (13)

Based on Eqs.(9), (11), (12) and (13), Smart algo-
rithm on average requires the following multiplications:

#Mm = LW (
s−1

2
) +

T 2+6T−4
2

+ 21−T , s>1, (14a)

#Mm =
T 2+6T−4

2
+ 21−T + 1, s=1. (14b)

4 MW-ST algorithm overGF (pm)

In this section, we first present the proposed algorithm
called the MW-ST algorithm over GF (pm) (m = 1 or
2), and then evaluate its computational complexity in
GF (p) and GF (p2) respectively. Note that the MW-ST
algorithm is considered under the condition of Eq.(2).

4.1 MW-ST algorithm

When x0 =1 in Fig.2(a) i.e. xs =1, multiplying its both
sides by x and taking SQRT, we have

√
x = x(s+1)/2.

In what follows, we mainly consider the case of x0 �= 1.
In this case, QR test is implemented as shown in Fig.2,
where if t < T , as shown in Fig.2 (a), then x is a QR ;
if not, as shown in Fig.2 (b), then x, denoted by c, is
a QNR.

From Fig.2, it is clear that cT xt = 1. Moving to
the windows of cT−1 and xt−1 shown in Fig.2, we de-
fine σ(1) = cT−1xt−1. Since cT−1 and xt−1 are the
SQRTs of cT and xt respectively, and since the SQRT
of cT xt i.e. the SQRT of 1 must be 1 or −1 in any fi-
nite fields, we can assert that σ(1)=±1. Then, we test
the sign of σ(1); if σ(1) = 1, moving to the windows
of cT−2 and xt−2, we define σ(2) = cT−2xt−2; if not,
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multiplying σ(1) by cT to get cT cT−1xt−1 =1 and then
moving to the windows of cT−1, cT−2 and xt−2, we de-
fine σ(2) = cT−1cT−2xt−2. This is the reason why the
proposed algorithm is called the moving window-sign
testing (MW-ST) algorithm.

In this way, we have

σ(k)=c
ik−1
T−1c

ik−2
T−2 · · · ci1

T−k−1cT−kxt−k, (15)

and same as σ(1), we can also assert σ(k) = ±1. For
1 � k � t, if σ(k)=1 then ik =0 and if σ(k)=−1 then
ik =1. When k= t, we have

σ(t)=c
it−1
T−1c

it−2
T−2 · · · ci1

T−t−1cT−tx0 =±1. (16)

Since x0 = xs and cT =−1, Eq.(16) can be developed
as

cit

T c
it−1
T−1 · · · ci1

T−t−1cT−tx
s =1, (17)

where for 1 � k � t, ik have the same definition as
in Eq.(15). Multiplying the both sides of Eq.(17) by x

and taking SQRT, we can easily get

√
x=cit

T−1c
it−1
T−2 · · · ci1

T−t−2cT−t−1x
(s+1)/2. (18)

We summarize the above method in what follows:

Moving window-sign testing algorithm

over GF (pm) (m=1 or 2)

Input: A nonzero QR x ∈ GF (pm).

Output: A square root
√

x ∈ GF (pm).

Preparation:

1. Factorize (pm − 1)/2 as shown in Eq.(2).

2. Execute the proposed QR test as shown in Fig.2
(a) and store the intermediate values x0, x1, · · · , xt

and x(s+1)/2.

3. Find an appropriate QNR c ∈ GF (pm), compute
c0, c1, · · · , cT as shown in Fig.2 (b) and store them
in the memory.

Main Procedure:

1. Check whether x0 is equal to 1 or not. If x0 = 1,
then output

√
x=x(s+1)/2 and input another ele-

ment. If not, execute Procedure 2 and Proce-
dure 3 in order.

2. Let τ0 =T−1, µ=1 and k=1, and then repeatedly
execute Step1 − 3 until k becomes t.

Step 1 : Compute σ = xt−k

∏µ−1
i=0 cτi . If σ =−1,

then τµ = T − 1 and µ = µ + 1. If not, the
values of τµ and µ are not modified.

Step 2 : For 0 � i < µ, let τi =τi − 1.

Step 3 : Let k=k + 1.

3. Output the value of
√

x=x(s+1)/2
∏µ−1

i=0 cτi .

Remark:

• The register τi is for the index memory of the re-
quried multiplicand cq shown in Eq.(18) for 0 �
q � T − 1.

• µ shows the number of multiplicand cq appearing
in Eq.(18) for each k.

When t=0, Procedure2 is skipped and the MW-ST
algorithm remains valid. Note that x0, x1, · · · , xt and
x(s+1)/2 have been computed in the proposed QR test
and saved in the memory. Also note that c0, c1, · · · , cT

have been prepared in advance. So we only need to
call those data in the MW-ST algorithm, which makes
the SQRT computation more efficient. We should also
note that it is not necessary for the MW-ST algorithm
to implement exponentiations to ik-th power shown in
Eq.(18), because ik are equal to 1 or 0 for 1 � k � t.
For example, if i1 =1 in Eq.(18), then we save the value
of cT−t−2 into the memory; if i1 = 0, then we ignore
the value of cT−t−2.

As described above, when m = 1, of course all the
computations required for the MW-ST algorithm are
implemented in GF (p). When m = 2, the factors of
(p − 1)/2, (p − 1)/2 and p + 1, can be factorized as

(p − 1)/2=2T1s1, p + 1=2T2s2, (19)

and from Eq.(2) it follows that T =T1+T2 and s=s1s2.
Since xp+1 ∈ GF (p) [8] for any x ∈ GF (p2), it

follows that (xp+1)s1 is always an element of GF (p).
From Eq.(19), we know

(xp+1)
s1 =(x0)

2T2
for x0 =xs. (20)

We thus have (x0)
2T2 ∈ GF (p) for any x ∈ GF (p2).

As described in Sec.1, p is a prime number, which
implies 2 |p − 1. It follows that there remain only two
possibilities: 4 � p− 1 or 4 |p− 1. Since only one of the
four continuous integers p − 1, p, p + 1 and p + 2 can
be divided by 4, it implies that

(i). T1 ≡ 0 when 4 � p − 1;
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Table 1: Computational Complexity and Running Time

I. p=2164 − 26 + 1 II. p=2161 + 224 + 1 III. p=2160 + 23 − 1

q=281 − 26 + 1 q=281 − 224 + 1 q=284 + 22 − 1

Field Method
A.Complexity B.time A.Complexity B.time A.Complexity B.time

#M1 #A1 S [ms] #M1 #A1 S [ms] #M1 #A1 S [ms]

GF (p)

C.QR 319 0 0 50.1 161 0 0 25.6 161 0 0 25.7

P.QR 318 0 0 50.1 160 0 0 25.3 161 0 0 26.5

Smart 339 0 0 52.8 469 0 0 74.1 160 0 0 26.0

MW-ST 8 0 0 1.2 138 0 0 22.1 0 0 0 0.1

GF (q2)

C.QR 717 1434 239 120.4 717 1434 239 120.9 510 1020 170 93.2

P.QR 714 1428 238 120.5 714 1428 238 120.3 507 1014 169 92.8

Smart 798 1596 266 125.4 1716 3432 502 289.4 519 1038 173 94.6

MW-ST 14 6 1 2.1 155 6 1 22.1 6 12 2 1.1

Remark 1: Using C++ with NTL on Pentium4 (2.6GHz) to get the running time.
Remark 2: C.QR and P.QR are the abbreviations of conventional QR test and proposed QR test, respectively.

(ii). T2 ≡ 1 when 4 |p − 1.

When 4 � p − 1, based on (i) and (x0)
2T2 ∈ GF (p),

we have (x0)
2T ∈ GF (p) for any x ∈ GF (p2), which

implies

x, x0, · · · , xt−1, c, c0, · · · , cT−1 ∈ GF (p2). (21)

When 4 |p−1, based on (ii) and (x0)
2T2 ∈ GF (p), we

have (x0)2 ∈ GF (p) for any x ∈ GF (p2), which implies

x1, · · ·xt−1, c1, · · · , cT−1 ∈ GF (p). (22)

This shows that in the MW-ST algorithm over GF (p2)
(4 |p−1) some computations can be executed in GF (p).

4.2 Complexity of the MW-ST algo-

rithm over prime fields GF (p)

From what described in Sec.4.1, it is easy to know that
the computational complexity required for the MW-
ST algorithm depends on the values of t and ik for
k=1, 2, · · · , t shown in Eq.(18): when t=0 and ik ≡ 0,
its computational complexity reaches the minimum;
when t = T − 1 and ik ≡ 1, its computational com-
plexity reaches the maximum. Since the values of t

and ik depend on the input element x that can not be
predicted in advance, we consider all the possibilities

of ik and t to get the following average computational
complexity (see B):

#M1 =
2T−2(T 2 + T )

2T
=

T 2 + T

4
. (23)

4.3 Complexity of MW-ST algorithm

over extension fields GF (p2)

As described in Sec.4.1, for 4 � p − 1 and 4 | p − 1, we
should evaluate the computational complexity of the
MW-ST algorithm over GF (p2) respectively.

When 4 � p − 1, we have Eq.(21), which implies the
computational complexity of the MW-ST algorithm
over GF (p2) is the same as that over GF (p) described
in Sec.4.2 except that all the computations are imple-
mented in GF (p2). Therefore, the MW-ST algorithm
over GF (p2) on average needs the following multipli-
cations:

#M2 =
T 2 + T

4
. (24)

From Eq.(22) and all the computations requried for
the MW-ST algorithm described in Sec.4.1, we found
that the MW-ST algorithm over GF (p2) (4 |p − 1) on
average requires the following operations (see B):

#M1 =
2T−2(T 2 + T + 6) − 4

2T
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=
T 2 + T + 6

4
− 22−T , (25a)

#M2 =
2T−1

2T
=

1
2
. (25b)

5 Simulation results and conclu-

sion

In this section, Smart and the MW-ST algorithms over
GF (pm) are implemented on a Pentium4 (2.6GHz)
with C++ programing language by using NTL, where
the characteristic p and the extension degree m of finite
fields GF (pm) are assumed as follows:

p =2160 + 23 − 1 and m=1, where 4 � p − 1, (26a)

p =2164 − 26 + 1 and m=1, where 4 |p − 1, (26b)

p =2161 + 224 + 1 and m=1, where 4 |p − 1, (26c)

p =284 + 22 − 1 and m=2, where 4 � p − 1, (26d)

p =281 − 26 + 1 and m=2, where 4 |p − 1, (26e)

p =281 − 224 + 1 and m=2, where 4 |p − 1. (26f)

Note that GF (p2) are constructed as Optimal Exten-
sion Field (OEF) [9] by adopting the following binomi-
als as the modular polynomials:

x2−5 for p=281 − 26 + 1, (27a)

x2−3 for p=284 + 22 − 1 and 281 − 224 + 1.(27b)

Based on Eqs.(2) and (26), we can get the values
of T and s. Inputting T and s to Eqs.(5), (7), (14),
(23), (24) and (25), we can evaluate the computa-
tional complexity of Smart and the MW-ST algorithms
over GF (p) and GF (p2) such as #M1, #M2. Since
1 multiplication in GF (p2) requires 3 multiplications
in GF (p), 6 additions in GF (p) and 1 shift computa-
tion [9], we can thus get #A1 and #M1 shown in the
columns A of Table 1.

Inputting 600, 000 QRs randomly generated, the
running time for the two algorithms was measured
on average in the columns B of Table 1. Table 1
clearly shows that the computational complexities of
the MW-ST algorithm over GF (p2) are 10 times, 60
times and 90 times less than those of Smart algorithm
over GF (p2) for p = 281 − 224 + 1, p = 284 + 22 − 1
and p = 281 − 26 + 1, which makes that the proposed
algorithm over GF (p2) is on average 10 times, 60 times
and 90 times faster than Smart algorithm over GF (p2)
for p=281−224+1, p=284+22−1 and p=281−26+1,
respectively. In GF (p), the proposed algorithm is on
average 3 times, 40 times and 200 times faster than

Smart algorithm for p=2161 +224 +1, p=2164 − 26 +1
and p=2160 + 23 − 1, respectively.

Since a QR test must be implemented prior to a
SQRT computation, when counting the running time
of a SQRT computation, we should thus consider the
total running time of the QR test and the SQRT algo-
rithm. From the columns B of Table 1, we can see that
the sum of running time of the conventional QR test
and Smart algorithm is 2 times more than that of the
proposed QR test and the MW-ST algorithm.

From Eqs.(14), (23), (24) and (25), we can see that
for the about same bits length p, if T (given by Eq.(2))
becomes larger, then the computational amounts of
Smart and the MW-ST algorithms also become larger,
which implies that both Smart algorithm and the MW-
ST algorithm become slower. This can also be proved
by the experiment results (comparing the column I and
the column II of Table 1). In additi on, some computa-
tions required for the MW-ST algorithm over GF (p2)
(4 |p − 1) can be executed in GF (p). So, the MW-ST
algorithm over GF (p2) for 4 | p − 1 is faster than that
for 4 � p − 1, where p has the around same size in the
both cases (comparing the column I and the column III
of Table 1). However the ratio of the running time for
the conventional QR test and Smart algorithm to that
for the proposed QR test and the MW-ST algorithm is
invariable. As is well known, OEFs are used to achieve
fast finite field arithmetics. Therefore, to fast realize
ECC, we had better choose those prime numbers p as
the characteristic of OEFs such that 4 |p−1 and T is a
small integer. Consequently we can conclude that the
proposed QR test and the MW-ST algorithm will play
a significant role in the implementation of ECC.
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A Proof of Eq.(11)

For T =5, Eq.(10) without the first term has the form:

ac0b, ac0a2c1b, ac0a2c1a22c2b, · · · ,
( 4∏

i=0

a2ici

)
b (A.1)

To get Eq.(11), we first use this example to show the
average computational complexity of Eq.(A.1).

Same as described in Sec.3, the complexity of
Eq.(A.1) depends on the values of ck; however the val-
ues of ck lie on the input element x that can not be
predicted in advance. Since ck for k =0, 1, 2, 3, 4 must
be 0 or 1, we can enumerate all the possibilities of
c0c1c2c3c4 as shown in Table 2, where “11001”, for ex-
ample, denotes c0 = c1 = c4 = 1 and c2 = c3 = 0. In the
case of “11001”, Eq.(A.1) has the form

ab, aa2b, aa2a24
b, (A.2)

where 1 multiplication is required for ab and 2 mul-
tiplications are required for aa2b and 4 multiplications
are required for aa2a24

b. Note that computing aa2a24
b,

we need the following multiplications:

a2 × a2, a22 × a22
, a23 × a23

, a24 × (ab), (A.3)

where ab has been computed in the first term of
Eq.(A.2) and a2 has been computed in the second

Table 2: All the possibilities of Eq.(A.1)

pattern k=0 k=1 k=2 k=3 k=4 #M

00000 0 0 0 0 0 0

10000 1 0 0 0 0 1

01000 0 2 0 0 0 2

00100 0 0 3 0 0 3

00010 0 0 0 4 0 4

00001 0 0 0 0 5 5

10001 1 0 0 0 5 6

01001 0 2 0 0 4 6

00101 0 0 3 0 3 6

00011 0 0 0 4 2 6

10010 1 0 0 4 0 5

01010 0 2 0 3 0 5

00110 0 0 3 2 0 5

10100 1 0 3 0 0 4

01100 0 2 2 0 0 4

11000 1 2 0 0 0 3

11001 1 2 0 0 4 7

10101 1 0 3 0 3 7

10011 1 0 0 4 2 7

01101 0 2 2 0 3 7

01011 0 2 0 3 2 7

00111 0 0 3 2 2 7

11010 1 2 0 3 0 6

10110 1 0 3 2 0 6

01110 0 2 2 2 0 6

11100 1 2 2 0 0 5

11101 1 2 2 0 3 8

11011 1 2 0 3 2 8

10111 1 0 3 2 2 8

01111 0 2 2 2 2 8

11110 1 2 2 2 0 7

11111 1 2 2 2 2 9

Total complexity for all the possibilities 178
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Table 3: Total Computations and Complexities Required for all the Events of MW-ST Algorithm over GF (pm)

(m = 1 and 2)

T t Operations Required for Each Event

1 0
x0 = 1 ⇒√

x = x(s+1)/2

c1x0 = 1 ⇒√
x = c0 · x(s+1)/2

0
x0 = 1 ⇒√

x = x(s+1)/2

2

c2x0 = 1 ⇒√
x = c1 · x(s+1)/2

1 c2x1 = 1 ⇒ c1 • x0 =

⎧⎨⎩ 1

−1

⇒√
x = c0 · x(s+1)/2

⇒√
x = c1 · c0 · x(s+1)/2

0
x0 = 1 ⇒√

x = x(s+1)/2

3

c3x0 = 1 ⇒√
x = c2 · x(s+1)/2

1 c3x1 = 1 ⇒ c2 • x0 =

⎧⎨⎩ 1

−1

⇒√
x = c1 · x(s+1)/2

⇒√
x = c2 · c1 · x(s+1)/2

2 c3x2 = 1 ⇒ c2 � x1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 ⇒ c1 • c0 =

⎧⎨⎩ 1

−1

−1 ⇒ c2 • c1 • x0 =

⎧⎨⎩ 1

−1

⇒√
x = c0 · x(s+1)/2

⇒√
x = c2 · c0 · x(s+1)/2

⇒√
x = c1 · c0 · x(s+1)/2

⇒√
x = c2 · c1 · c0 · x(s+1)/2

Remarks: �, • and · mean 4, 2 and 1 multiplications, respectively.

term of Eq.(A.2). It follows that 7 multiplications in
GF (pm) are required for the event of “11001” printed
in bold style in Table 2. In the same way, we can pro-
cess all the events to get the data shown in Table 2.
From Table 2, we know that Eq.(A.1) has 32 events and
the total computational complexity is equal to 178; it
follows that the average computational complexity is
equal to 178/32.

In what follows, ST−1 denotes the total computa-
tional complexity for all the possibilities of Eq.(10),
where T is given by Eq.(2). From Table 2, it follows, in
particular, that S4=178. In the same way, we can con-
sider the cases of T =1, T =2 and so on. Same as S4, we
can thus know that S0 =1, S1 =6, S2 =22 and S3 =66,
where we fortunately find that S1 =2S0 +21(1+2)−2,
S2 =2S1 + 22(1 + 2) − 2 and S3 =2S2 + 23(1 + 2) − 2.
Using mathematical induction, we can prove

Sn =2Sn−1 + 2n(1 + 2) − 2, (A.4)

from which we can get

ST−1 =(3T − 4)2T−1 + 2, (A.5)

where T is given by Eq.(2).
From what described above, we know that Eq.(10)

has 2T possibilities in total. In addition, choosing an
input element at random from GF (pm), the probability
that the input element belongs to each event is all the
same. More detailedly, it is equal to s/(2T s) i.e. 1/2T .
So, the average computational complexity of Eq.(10)
can be expressed by Eq.(11).

B Proof of Eq.(23) and Eq.(25)

Based on the MW-ST algorithm over GF (pm) de-
scribed in Sec.4.1, we can know which computations
are required for the SQRT. In Table 3, we enumerate
the required computations for T = 1, 2, 3, where T is
defined by Eq.(2). From Table 3, we can easily get the
column A of Table 4. As shown in Table 3, four events
all require the multiplication �, two events both re-
quire the multiplication •, and one event requires the
multiplication ·. Therefore, when counting the num-
bers of the multiplications required for all the events,
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Table 4: Total Complexity of the MW-ST Algorithm

over GF (pm)

A. The Number
B. Total Complexity

T of Events
m = 1 m = 2

#M1 #M1 #M2

1 21 1 0 1

2 22 6 8 2

3 23 24 32 4

� means 4 multiplications, • means 2 multiplications
and · means 1 multiplication.

In the MW-ST algorithm over GF (p), let WT−1 de-
note the total complexity for all the events. From Table
3, it follows that W0 = 1, W1 = 6 and W2 = 24, shown
in the column B of Table 4, from which we fortunately
find that W1 =2W0+21(0+2) and W2 =2W1+22(1+2).
In the same way, we can consider the other cases of
T = 4, T = 5 and so on. Using mathematical induc-
tion, we can prove

Wn =2Wn−1 + 2n(n + 1), (A.6)

from which we can get the following computational
complexity required for all the events of the MW-ST
algorithm over GF (p):

WT−1 =2T−2(T 2 + T ). (A.7)

From the column A of Table 4, we can assert that
the computations required for the MW-ST algorithm
have 2T events in total. In addition, choosing an input
element at random from GF (p), the probability that
the input element belongs to each event is all the same.
More detailedly, it is equal to s/(2T s) i.e. 1/2T . There-
fore, the average computational complexity of the MW-
ST algorithm over GF (p) can be expressed by Eq.(23).

In the MW-ST algorithm over GF (p2) (4 | p − 1),
we require not only multiplications in GF (p), but also
multiplications in GF (p2). So, let UT−1 and VT−1 de-
note the total numbers of the required multiplications
in GF (p) and those in GF (p2), respectively.

We know if a, b ∈ GF (p), then 1 multiplication in
GF (p) is required for ab, if a ∈ GF (p) and b ∈ GF (p2),
then 2 multiplications in GF (p) are required for ab, and
if a, b ∈ GF (p2), then 1 multiplication in GF (p2) is
required for ab. From what described above and Table

3, we thus have U0 = 0, U1 = 8, U2 = 32 and V0 = 1,
V1 =2, V2 =4, shown in the column B of Table 4, from
which we fortunately find that U1 =2U0 +21(0+2)+4,
U2 = 2U1 + 22(1 + 2) + 4 and V1 = 2V0, V2 = 2V1. In
the same way, we can consider the other cases of T =4,
T = 5 and so on. Using mathematical induction, we
can prove

Un =2Un−1 + 2n(n + 1) + 4, (A.8a)

Vn =2Vn−1, (A.8b)

from which we can get the following computational
complexities required for all the events of the MW-ST
algorithm over GF (p2):

UT−1 =2T−2(T 2 + T + 6) − 4, (A.9a)

VT−1 =2T−1. (A.9b)

Since the computations required for the MW-ST al-
gorithm have 2T events in total and since the prob-
ability that an arbitrary input element belongs to
each event is always equal to 1/2T , the average com-
putational complexity of the MW-ST algorithm over
GF (p2) (4 |p − 1) can be expressed by Eqs.(25).

C Fundamental operations in

GF (p2)

This appendix briefly shows how to implement the fun-
damental operations such as additions and multiplica-
tions in GF (p2) which is constructed as an OEF by
adopting the modular polynomial x2 − 3.

Let ω ∈ GF (p2) be a root of the irreducible polyno-
mial, it follows [2] that {1, ω} is the basis of GF (p2)
over GF (p). Using the basis, the arbitrary elements
A,B ∈ GF (p2) can be uniquely represented as follows:

A = a0 + a1ω, a0, a1 ∈ GF (p). (A.10a)

B = b0 + b1ω, b0, b1 ∈ GF (p). (A.10b)

The sum and difference of A and B are given by

A ± B = (a0 ± b0) + (a1 ± b1)ω. (A.11)

Using Karatsuba method [10], the product AB is given
by

AB = (C0 + 3C1) + (C2 − C1 − C0)ω, (A.12)

where C0 = a0b0, C1 = a1b1 and C2 = (a0+a1)(b0+b1).
Note that 3C1 = 2C1 + C1, where 2C1 can be imple-
mented by a shift computation. Therefore, 3 multi-
plications in GF (p) and 6 additions in GF (p) and a
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shift computation are required for 1 multiplication in
GF (p2).
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