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This paper proposes an algorithm for generating irreducible cubic trinomials in
the form x3 + ax + b, b ∈ Fp, where a is a certain fixed non-zero element in the
prime field Fp. The proposed algorithm needs a certain irreducible cubic trinomial
over Fp to be previously given as a generator; however, the proposed algorithm
can generate irreducible cubic polynomials one after another by changing a certain
parameter in Fp. In this paper, we compare the calculation cost and the average
computation time for generating an irreducible cubic polynomial, especially trino-
mial, among Hiramoto et al. irreducibility testing algorithm, Berlekamp-Massey
minimal polynomial determining algorithm, and the proposed algorithm. From
the experimental results, it is shown that the proposed algorithm is the fastest
among the three algorithms for generating irreducible cubic trinomials.
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1 Introduction

The elliptic curve cryptosystem(ECC) is one of the
public key cryptosystems[1]. It is said that a prime
order elliptic curve is suitable for constructing an el-
liptic curve cryptosystem from the viewpoints of se-
curity and implementation. Therefore, several algo-
rithms for generating prime order elliptic curves have
been proposed[2]-[4]. In general, the defining equation
is written as

E(x, y) = x3 + ax + b − y2, a, b ∈ Fp, (1)

where this paper deals with the characteristic p > 3.
For the above defining equation, it is well known that
E(x, 0) is an irreducible cubic trinomial over Fp if the
order of elliptic curve is a prime number[1]. To be more
detailed, E(x, 0) is an irreducible cubic trinomial over
Fp if and only if the order of elliptic curve is an odd
number. Therefore, for the purpose of generating a lot

of secure prime order elliptic curves, it is helpful that
we can fast generate irreducible cubic trinomials one
after another[5]. Our motivation comes from this fact.
As a related work, the authors have proposed an al-
gorithm for generating prime order elliptic curves[4] in
which the authors used an irreducibility testing algo-
rithm in order to prepare irreducible cubic trinomial
over Fp.

An irreducibility testing algorithm for an arbitrary
degree polynomial over prime field has been already
known[6] and recently Hiramoto et al. proposed a fast
irreducibility testing algorithm for a cubic polynomial
over the prime field Fp[7]. The related work[4] used
Hiramoto el al. irreducibility testing algorithm. These
irreducibility testing algorithms need polynomial mul-
tiplications and polynomial modulo operations over Fp.
On the other hand, Berlekamp-Massey algorithm[8] is
well known as an algorithm for determining the min-
imal polynomial of a given pseudo-random sequence.
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Berlekamp-Massey algorithm does not need polynomial
modulo operations; however, it needs multiplications
and inversions of non-zero elements in Fp. Berlekamp-
Massey algorithm can be applied for iteratively gener-
ating irreducible polynomials from the given pseudo-
random sequence.

This paper proposes an algorithm for generating ir-
reducible cubic trinomials in the form

x3 + ax + b, b ∈ Fp, (2)

where a is a certain fixed non-zero element in Fp.
The proposed algorithm can generate irreducible cu-
bic polynomials one after another by changing a cer-
tain parameter in Fp. Since this algorithm is based on
the minimal polynomial determination[8], it needs a
certain irreducible cubic polynomial over Fp to be pre-
viously given as a generator. In this paper, we compare
the calculation cost and the average computation time
for generating an irreducible cubic polynomial, espe-
cially trinomnial, among Hiramoto et al. irreducibility
testing algorithm, Berlekamp-Massey algorithm, and
the proposed algorithm. From experimental results,
it is shown that the proposed algorithm is the fastest
among these three algorithms. To be more detailed,
when the characteristic p is 2257 − 93, the proposed
algorithm is about 500 times and 22 times faster than
Hiramoto et al. algorithm and Berlekamp-Massey algo-
rithm, respectively, where the authors used PentiumIII
(800MHz) and NTL[9] for programming.

Throughout this paper, X | Y and X |� Y mean that
Y is divisible and not divisible by X , respectively. Fp

and Fp3 mean the prime field of the characteristic p
and its third-degree extension field, respectively. F∗

p

and F∗
p3 mean the multiplicative groups of Fp and Fp3 ,

respectively. p denotes a prime number larger than 3
and polynomials are monic.

2 Fundamentals

This section briefly introduces quadratic power residue,
non residue, and trace in finite field.

2.1 Quadratic power residue and non
residue

Let us consider a finite field Fpm whose characteristic
p is an odd prime number. For an arbitrary element
A ∈ Fpm , we can test whether or not A is a quadratic
power residue in Fpm as follows;

A(pm−1)/2 =

{
0 or 1 quadratic power residue

−1 quadratic power non residue
.

(3)

If A is a quadratic power residue, then A has its square
roots in Fpm , otherwise, A does not have any square
roots in Fpm . In this paper, we use QR and QNR as
the abbreviations of quadratic power residue and non
residue, respectively.

2.2 Trace of element in finite field

For an extension field Fpm over a prime field Fp, the
trace TA of an arbitrary element A ∈ Fpm with respect
to Fp is given as the sum of all conjugates as

TA = A + Ap + · · · + Apm−1
, (4)

where TA becomes a certain element in Fp. Since this
paper especially deals with irreducible cubic polynomi-
als over Fp, we use the following trace function Tr(x);

Tr(x) = x + xp + xp2
, (5)

accordingly the trace of A ∈ Fp3 with respect to Fp is
given by Tr(A). The elements whose trace is i ∈ Fp

are zeros of Tr(x) − i. In addition, since Eq.(6) holds
for a, b ∈ Fp, we find that the trace function Tr(x) is a
linear function over Fp.

Tr(ax + b) = aTr(x) + bTr(1). (6)

Supposing that α is a zero of a monic irreducible cubic
polynomial h(x) over Fp, the second-degree coefficient
of h(x) is given by −Tr(α). Throughout this paper, the
terminology trace means the trace given by the trace
function Eq.(5).

3 Generation of irreducible cu-
bic trinomials over prime field

This paper supposes that a monic irreducible cubic tri-
nomial f(x) over prime field Fp is previously given as

f(x) = x3 + ax + b, a, b ∈ Fp, a �= 0. (7)

Since this irreducible cubic trinomial f(x) plays a role
of the generator of other irreducible cubic trinomials
over Fp, we prepare f(x) by using some irreducibility
testing algorithm, such as Hiramoto et al. algorithm[7].
In this section, we propose a new algorithm for gener-
ating irreducible cubic trinomials in the following form;

g(x) = x3 + ax + d, d ∈ Fp, (8)

where the constant term of g(x) is only different from
the given irreducible cubic trinomial f(x). This al-
gorithm is closely related to the minimal polynomial
determination problem.

Let ω be a zero of f(x), we have its conjugates as

{ω, ωp, ωp2}. (9)
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From the relations between zeros and coefficients of
f(x), we have

Tr(ω) = ω + ωp + ωp2
= 0, (10a)

ωωp + ωωp2
+ ωpωp2

= a, (10b)

ωωpωp2
= −b. (10c)

Since arbitrary two conjugates among the three are
independent[5], by using ω and ωp, we can represent
p2 trace-zero elements in Fp3 as follows;

τ = c1ω + cpω
p, c1, cp ∈ Fp. (11)

From Eq.(6) and Tr(ω) = 0, the trace of the above τ
with respect to Fp becomes 0 as follows;

Tr(τ) = Tr(c1ω + cpω
p)

= c1Tr(ω) + cpTr(ωp) = 0. (12)

Since the degree of Tr(x) is p2, in the form of Eq.(11) we
can represent an arbitrary element in Fp3 whose trace
is 0. Such an element τ becomes a zero of an irreducible
cubic polynomial whose second-degree coefficient is 0.

Now, we consider the condition for the above τ to
be a zero of g(x) written as Eq.(8), where we note
that Tr(x)/x does not have any zeros in Fp. By using
Eq.(10a), the conjugates of τ are represented as

τ = c1ω + cpω
p, (13a)

τp = −cpω + (c1 − cp)ωp, (13b)

τp2
= (cp − c1)ω − c1ω

p. (13c)

So as to be a zero of g(x), τ must satisfy

Tr(τ) = τ + τp + τp2
= 0, (14a)

ττp + ττp2
+ τpτp2

= a, (14b)

ττpτp2
= −d. (14c)

By using Eqs.(10), Eqs.(13), and Eqs.(14), we have

(c1 + cp)b − c1cp(c1X + cpY ) = d, (15a)
c2
1 + c2

p − c1cp = 1, (15b)

X = 3ω2ωp + ω3 − ω3p, (16a)
Y = 3ωω2p − ω3 + ω3p, (16b)

where the details are shown in A. Then, as shown in
B and from Eq.(16), we have

X =
3b +

√
D(f)

2
, Y =

3b − √
D(f)

2
, (17a)

D(f) = −(4a3 + 27b2), (17b)

where D(f) is the discriminant of f(x) and it becomes
a QR in Fp when f(x) is irreducible[7]. In addition,

as shown in C, we can represent c1 and cp satisfying
Eq.(15b) with a parameter t ∈ Fp as follows;

c1 =
4t

t2 + 3
, cp =

3 + 2t − t2

t2 + 3
. (18)

Consequently, by using Eq.(15a), Eqs.(17), and
Eq.(18), we can determine the constant term d of g(x).
Moreover, by changing the parameter t, we can gener-
ate irreducible cubic trinomials in the form Eq.(8) one
after another. The denominator t2 +3 in Eq.(18) must
not be 0 and it is known that there exist t’s ∈ Fp such
that t2+3 = 0 if and only if 3 | (p−1)[7]. We can deter-
mine d also by using Eq.(13a), Eq.(14c), and Eq.(18);
however, it needs arithmetic operations in Fp3 .

We know that irreducible binomials over Fp exist
if and only if 3 | (p − 1)[5]. Supposing that g(x) is a
binomial, its zero τ represented by Eq.(11) must satisfy

Tr(τ) = τ + τp + τp2
= 0, (19a)

ττp + ττp2
+ τpτp2

= 0, (19b)

ττpτp2
= −d. (19c)

According to A, in this case we have

c2
1 + c2

p − c1cp = 0. (20a)

As shown in C, this situation occurs only when D = 0,
that is when t = ±√−3 ∈ Fp. In addition, as previ-
ously described, there exist t’s in Fp such that t2+3 = 0
when 3 | (p − 1). Therefore, when 3 | (p − 1), we must
restrict the parameter t such that t2 + 3 �= 0, in other
words, we except t = ±√−3.

Concludingly, we propose the following irreducible
cubic trinomial generation algorithm;

Irreducible cubic trinomial generation

Input: An irreducible cubic trinomial f(x) in the
form of Eq.(7), where the coefficient a is not 0.

Output: Irreducible cubic trinomials g(x) whose
constant term d is only different from f(x)

Preparation: Calculate X and Y by Eq.(17).

Step1: Initialize the parameter t ∈ Fp.

Step2: Calculate c1 and cp by Eq.(18).

Step3: Calculate d by Eq.(15a).

Step4: Increment t and then return to Step2.

(End of algorithm)
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This algorithm requires an irreducible cubic trinomial
f(x) as the input; however, we can easily prepare f(x)
by using some irreducibility testing algorithm. We
should note that this algorithm generates one irre-
ducible cubic trinomial with two duplicates throughout
the iterations, see D. The generator f(x) itself is also
contained of the generated irreducible cubic trinomi-
als. In our previous work[4], we tested the irreducibil-
ity of a randomly generated cubic trinomial; however,
we can use the proposed algorithm instead of the irre-
ducibility test. In the above proposed algorithm, the
parameter t is incremented by 1 in order to generate ir-
reducible cubic trinomials iteratively; however, we can
also iteratively generate irreducible cubic trinomials by
randomly choosing the parameter t. In Sec.4.4, the dif-
ference of effectiveness between incrementing and ran-
domly choosing is discussed.

4 Experimental results and
comparison

For the experiment, the authors used NTL[9], Pentiu-
mIII (800MHz), and 39 prime numbers from 30 bits
through 1024 bits as the characteristic p. Table 1 shows
the experimental results, where the unit of the compu-
tation times in the table is ms.

In the column (A), the average computation time
for generating an irreducible cubic trinomial over Fp

by each algorithm is shown, in the column (B), the
average computation times of a multiplication and an
inversion in Fp are shown. For every prime number and
algorithm, the authors generated 10000 irreducible cu-
bic trinomials in order to measure the average compu-
tation time. As for the data in the column (B), the au-
thors experimented with 1000000 multiplications and
inversions with randomly chosen elements in Fp.

Berlekamp-Massey algorithm generated irreducible
cubic polynomials in which irreducible cubic trinomials
will be included. Proposed(1) and (2) are based on the
proposed algorithm; Proposed(1) generated irreducible
cubic trinomials by incrementing the parameter t from
1 to 10000 and Proposed(2) generated irreducible cubic
trinomials by randomly choosing the parameter t.

4.1 Arithmetic operations by NTL

Fig.1 shows the average computation times of a multi-
plication and an inversion in Fp. As mentioned above,
the authors used PentiumIII (800MHz) and NTL. From
these graphs, we find that an inversion is more time-
consuming as compared to a multiplication. In addi-
tion, as far as we can see from these graphs, it seems
that the computation times of a multiplication and an
inversion in Fp increase almost linearly with the size of

the characteristic p. Such a behavior of NTL is quite
important for the following considerations because Hi-
ramoto et al. algorithm, Berlekamp-Massey algorithm,
and the proposed algorithm require multiplications and
inversions in Fp.

In what follows, for the evaluation of the calculation
cost, we do not consider additions and subtractions in
Fp because these arithmetic operations are carried out
much faster than a multiplication and an inversion in
Fp. Here, we note that the inversion of NTL is based
on the extended Euclidean algorithm[10].

Figure 1: Average computation times of a multiplica-
tion and an inversion in Fp

4.2 Hiramoto et al. algorithm

For Hiramoto et al. irreducibility testing algorithm[7],
the authors inputted cubic trinomials in the form
Eq.(8) with randomly choosing the constant term d ∈
Fp. The first-degree coefficient a is fixed to a certain
non-zero element in Fp. Fig.2 shows the average com-
putation time for generating an irreducible cubic tri-
nomial. It is well known that (p3 − p)/3 polynomi-
als among p3 distinct cubic polynomials over Fp are
irreducible[5]. In other words, the ratio of irreducible
cubic polynomials among cubic polynomials is about
1/3. Accordingly, the ratio of irreducible cubic trinomi-
als among cubic trinomials is about 1/3[5]. Therefore,
in order to generate an irreducible cubic trinomial, we
need to try three cubic trinomials as the input of the
irreducibility testing algorithm on average.

Hiramoto et al. algorithm requires O(log2 p) poly-
nomial multiplications and modulo operations. In this
experiment, the degree of the modular polynomial is
3, therefore the degrees of the multiplicand and multi-
plier polynomials of the polynomial multiplications are
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less than or equal to 2. Correspondingly, the degree
of the objective of the polynomial modulo operation is
less than or equal to 4. In addition, since the modular
polynomial is monic as shown in Eq.(8), these polyno-
mial operations can be implemented with several mul-
tiplications in Fp and this algorithm does not need any
inversions.

Figure 2: Average computation time for generating an
irreducible cubic trinomial by Hiramoto et al. algo-
rithm(HIT)

4.3 Berlekamp-Massey algorithm

Referring to [8], in order to generate irreducible cubic
polynomials, Berlekamp-Massey algorithm, that is an
algorithm to determine the minimal polynomial of a
pseudo-random sequence, is applied as follows;

Berlekamp-Massey algorithm

Input: An irreducible cubic polynomial f(x).

Output: Irreducible cubic polynomials.

Preparation: Let f(x) be the generator, generate a
pseudo-random sequence of elements of Fp as

s0, s1, s2, · · · , sn−2, sn−1, (21)

where n is the length of the sequence.

Step1: g0(x) = 1, h0(x) = x,m0 = 0 and k = 2.

Step2: Consider a polynomial G(x) of degree 5;

G(x) =
5∑

i=0

sikxi, (22)

where each sik in Eq.(22) corresponds to the coef-
ficient of the sequence Eq.(21). From j = 0 to 5,
let bj be the coefficient of xj in gj(x)G(x), recur-
sively compute the followings;

gj+1(x) = gj(x) − bjhj(x), (23)

hj+1(x) =

{
b−1
j xgj(x) if bj �= 0 and mj ≥ 0,

xhj(x) otherwise,
(24)

mj+1 =

{ −mj if bj �= 0 and mj ≥ 0,

mj + 1 otherwise.
(25)

Step3: Output the x3g6(1/x).

Step4: k = k + 1, return to Step2.

(End of algorithm)

In the above algorithm, when k = 1, the generator
f(x) itself is generated. By incrementing the param-
etor k, the minimal polynomial of ωk can be itera-
tively generated, where ω is a zero of f(x). When we
would like to generate 10000 irreducible cubic polyno-
mials by the above algorithm, the length of the pseudo-
random sequence, that is n as shown in Eq.(21), must
be 50000. In this experiment, since the characteristic p
is enough large, we can easily prepare such a long ran-
dom sequence even if the generator f(x) is not a primi-
tive polynomial over Fp, moreover, it is almost certain
that the output x3g6(1/x) becomes an irreducible cu-
bic polynomial for every k from 1 to 10000. In this
experiment, there were no cases that the output was
not an irreducible cubic polynomial.

The calculation cost of this algorithm becomes as
follows; noting that the degree of hj(x) is less than or
equal to 6, Step2 requires a few dozens of multiplica-
tions and several inversions in Fp. To be more detailed,
since the output x3g6(1/x) becomes an irreducible cu-
bic polynomial for every k as mentioned above, Step2
constantly requires 5 inversions for b−1

0 , b−1
1 , · · · , b−1

4 .
The detailed number of multiplications depends on how
to implement Step2. Fig.3 shows the graph of the av-
erage computation time for generating an irreducible
cubic polynomial by this algorithm.

4.4 Proposed algorithm

From Eq.(18) and Eq.(15a), the proposed algorithm re-
quires 10 multiplications and 1 inversion in Fp for gen-
erating an irreducible cubic trinomial over Fp, where
the authors considered that each 4t and 2t in Eq.(18)
requires 1 multiplication such as 4 × t and 2 × t.
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Figure 3: Average computation times for generating an
irreducible cubic polynomial(trinomial) by Berlekamp-
Massey(BM) algorithm and Proposed(2)

Fig.4 shows the average computation times for gen-
erating an irreducible cubic trinomial by Proposed(1)
and Proposed(2). As previously mentioned, the pro-
posed algorithm can generate 10000 irreducible cubic
trinomials by incrementing the parameter t from 1 to
10000 or randomly choosing the parameter t 10000
times. In the table and the graphs, the former and
the latter cases are denoted by Proposed(1) and Pro-
posed(2), respectively. We find that Proposed(1) is
faster than Proposed(2). It is mainly due to that the
inversion of NTL is based on the extended Euclidean
algorithm. The calculation Eq.(18) needs the inverse
of t2 + 3. From t = 1 to 10000, t2 + 3 increases from
4 to 100000003; however, these values are quite small
as compared to the characteristic p used in this exper-
iment. Therefore, the extended Euclidean algorithm
can fast calculate these inverses.

4.5 Comparison

From the data, we can find that Berlekamp-Massey
algorithm and the proposed algorithm can generate
irreducible cubic polynomials quite faster than irre-
ducibility testing algorithm. Though, they need a cer-
tain generator irreducible cubic polynomial. For exam-
ple, when the characteristic p is 2257 − 93, Berlekamp-
Massey algorithm, Proposed(1), and Proposed(2) are
about 22 times, 500 times, and 230 times faster than
Hiramoto et al. irreducibility testing algorithm, respec-
tively. Therefore, for the purpose of generating a lot of
irreducible cubic polynomials, Berlekamp-Massey algo-
rithm and the proposed algorithm are superior to such
an irreducibility testing algorithm.

Figure 4: Average computation times for generating
an irreducible cubic trinomial by Proposed(1) and Pro-
posed(2)

As previously mentioned, Berlekamp-Massey algo-
rithm constantly needs 5 inversions and a few dozen of
multiplications; however, the proposed algorithm needs
only 1 inversion and 10 multiplications. Therefore, we
can easily understand that the proposed algorithm is
faster than Berlekamp-Massey algorithm. For exam-
ple, when the characteristic p is 2257−93, Proposed(1)
and Proposed(2) are about 22 times and 10 times faster
than Berlekamp-Massey algorithm, respectively. From
the experimental results, we find that the proposed al-
gorithm is the fastest among the three algorithms for
generating irreducible cubic trinomials. In addition,
since the proposed algorithm generates irreducible cu-
bic trinomials in the form Eq.(8) whose constant term
is only different from the generator Eq.(7), the pro-
posed algorithm will be convenient for some prime or-
der elliptic curve generation algorithms[5].

5 Conclusion

This paper has proposed an algorithm for generating
irreducible cubic trinomials in the form

x3 + ax + b, b ∈ Fp, (26)

where a is a certain fixed non-zero element in Fp. This
algorithm needs a certain irreducible cubic polynomial
over Fp to be previously given as a generator; how-
ever, the proposed algorithm can generate irreducible
cubic polynomials one after another by changing a cer-
tain parameter in Fp. In this paper, we compared
the calculation cost and the average computation time
for generating an irreducible cubic polynomial, espe-
cially trinomial, among Hiramoto et al. irreducibility
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testing algorithm, Berlekamp-Massey minimal polyno-
mial determining algorithm, and the proposed algo-
rithm. When the characteristic p is 2257 − 93, the
proposed algorithm is about 500 times and 22 times
faster than Hiramoto et al. and Berlekamp-Massey
algorithm, respectively, where the authors used Pen-
tiumIII (800MHz) and NTL. From the experimental
results, it was shown that the proposed algorithm was
the fastest among these three algorithms for generating
irreducible cubic trinomials.
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A Proof of Eq.(15)

Substituting Eq.(10a) into Eq.(10b), Eq.(10c), we have

ω2 + ωωp + ω2p = −a, (A.1a)
ω2ωp + ωω2p = b. (A.1b)

Then, substituting Eq.(13) and Eq.(A.1a) into the left
hand side of Eq.(14b), we have

ττp + ττp2
+ τpτp2

=
(
ω2 + ωωp + ω2p

) (
c1cp − c2

1 − c2
p

)
= −a

(
c1cp − c2

1 − c2
p

)
. (A.2)

Therefore, we obtain Eq.(15b) by substituting Eq.(A.2)
into Eq.(14b). On the other hand, substituting
Eq.(13), Eq.(15b), Eq.(16), and Eq.(A.1b) into the left
hand side of Eq.(14c), we have

ττpτp2
= c2

1cp

(
3ω2ωp + ω3 − ω3p

)
+c1c

2
p

(
3ωω2p − ω3 + ω3p

)
− (

c3
1 + c3

p

) (
ω2ωp + ωω2p

)
= c2

1cpX + c1c
2
pY − (

c3
1 + c3

p

)
b. (A.3)

In addition, using Eq.(15b),

c3
1 + c3

p = (c1 + cp)(c2
1 + c2

p − c1cp)
= c1 + cp (A.4)

Therefore, we obtain Eq.(15a) by substituting Eq.(A.3)
into Eq.(14c).

B Proof of Eq.(17)

Using Eq.(16), Eq.(A.1a), and Eq.(A.1b), we consider
the sum and product of X and Y as

X + Y = 3
(
ω2ωp + ωω2p

)
= 3b, (A.5a)

XY = 9
(
ω2ωp + ωω2p

)2 − (
ω2 + ωωp + ω2p

)3

= 9b2 + a3. (A.5b)

We find that X and Y are solutions of the following
equation with regard to Z;

Z2 − 3bZ + (a3 + 9b2) = 0. (A.6)

Therefore, we obtain X and Y as Eq.(17a) with the
discriminant Eq.(17b).

Z =
3b ± √−(4a3 + 27b2)

2
. (A.7)
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C Proof of Eq.(18)

We note that both c1 and cp are not 0 from τ �∈ Fp. Let
us suppose c1 �= 0, for example, the following relation
is given from Eq.(15b) by multiplying c−2

1 ;

1 +
(

cp

c1

)2

−
(

cp

c1

)
=

(
1
c1

)2

. (A.8)

Substituting C = cp/c1 and D = 1/c1 into Eq.(A.8)
we have

D2 = C2 − C + 1. (A.9)

We can develop this relation as follows;

3 = 4D2 − (4C2 − 4C + 1)
= (2D)2 − (2C − 1)2

= {(2D) − (2C − 1)} {(2D) + (2C − 1)} .(A.10)

By using the following parameter t;

t = 2D − (2C − 1), (A.11)

from Eq.(A.10), we have

2D + (2C − 1) = 3t−1, (A.12)

where we should note that t ∈ F∗
p from Eq.(A.10) and

Eq.(A.11). Then, we can solve C and D from simulta-
neous equations Eq.(A.11) and Eq.(A.12) as follows;

C =
3 + 2t − t2

4t
, D =

t2 + 3
4t

. (A.13)

Finally, we get the representations for c1 and cp as

c1 =
4t

t2 + 3
, cp =

3 + 2t − t2

t2 + 3
. (A.14)

D Two duplicates

As shown in Eqs.(13), an irreducible cubic polynomial
has three conjugate zeros. This is the reason why the
proposed algorithm generates two duplicates. Suppose
that an irreducible cubic trinomial g(x) is generated
when the parameter t = t1, its zero τ is given as

τ = c1ω + cpω
p =

4t1
t21 + 3

ω +
3 + 2t1 − t21

t21 + 3
ωp,

(A.15a)

and let us suppose that the other conjugates τp and
τp2

are given with t2 and t3 as follows;

τp =
4t2

t22 + 3
ω +

3 + 2t2 − t22
t22 + 3

ωp, (A.15b)

τp2
=

4t3
t23 + 3

ω +
3 + 2t3 − t23

t23 + 3
ωp. (A.15c)

If Eqs.(A.15) satisfy the conjugate relation Eqs.(19),
then g(x) is also generated in the both cases of the
parameter t = t2 and t3. Therefore, we can consider

4t2
t22 + 3

= −3 + 2t1 − t21
t21 + 3

, (A.16a)

3 + 2t2 − t22
t22 + 3

=
4t1

t21 + 3
− 3 + 2t1 − t21

t21 + 3
,(A.16b)

4t3
t23 + 3

=
3 + 2t1 − t21

t21 + 3
− 4t1

t21 + 3
,(A.17a)

3 + 2t3 − t23
t23 + 3

= − 4t1
t21 + 3

. (A.17b)

From Eqs.(A.16) and Eqs.(A.17), we have

t2 =
t1 − 3
t1 + 1

, t3 =
t1 + 3
1 − t1

, (A.18)

where t1 must not be ±1. When t1 = ±1, we have

τ = ω + ωp, τ = −ω, (A.19)

these are zeros of f(−x).
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Table 1: Computation times for generating an irreducible cubic trinomial over Fp and computation times for

arithmetic operations in Fp by NTL (PentiumIII 800MHz)

unit : ms

(A) Irreducible cubic trinomial (polynomial) generation (B) Arithmetic operation

p HIT BM Proposed(1) Proposed(2) MUL INV

231 − 1 1.04 2.96 × 10−1 2.97 × 10−2 3.59 × 10−2 1.40 × 10−3 1.25 × 10−2

244 + 7 1.34 3.44 × 10−1 3.12 × 10−2 4.06 × 10−2 1.87 × 10−3 1.56 × 10−2

255 + 3 1.84 3.75 × 10−1 3.12 × 10−2 4.53 × 10−2 1.88 × 10−3 1.97 × 10−2

266 − 5 2.80 4.69 × 10−1 3.44 × 10−2 5.16 × 10−2 2.50 × 10−3 2.25 × 10−2

289 − 1 4.09 5.15 × 10−1 3.44 × 10−2 5.93 × 10−2 2.50 × 10−3 2.94 × 10−2

2100 − 15 6.02 6.87 × 10−1 4.06 × 10−2 7.03 × 10−2 3.43 × 10−3 3.35 × 10−2

2122 − 3 9.01 8.43 × 10−1 4.53 × 10−2 8.44 × 10−2 4.38 × 10−3 4.10 × 10−2

2127 − 1 9.95 8.75 × 10−1 4.69 × 10−2 8.60 × 10−2 4.37 × 10−3 4.31 × 10−2

2137 − 13 1.14 × 10 9.38 × 10−1 4.69 × 10−2 9.22 × 10−2 4.70 × 10−3 4.63 × 10−2

2150 − 3 1.18 × 10 9.53 × 10−1 4.84 × 10−2 9.69 × 10−2 4.53 × 10−3 5.03 × 10−2

2152 − 17 1.27 × 10 1.16 5.00 × 10−2 1.03 × 10−1 5.64 × 10−3 5.19 × 10−2

2166 − 5 1.57 × 10 1.19 5.32 × 10−2 1.12 × 10−1 5.62 × 10−3 5.62 × 10−2

2178 + 87 1.54 × 10 1.22 5.30 × 10−2 1.16 × 10−1 5.62 × 10−3 6.07 × 10−2

2187 − 85 2.53 × 10 1.44 6.24 × 10−2 1.31 × 10−1 7.50 × 10−3 6.37 × 10−2

2194 + 27 1.90 × 10 1.44 5.94 × 10−2 1.31 × 10−1 7.80 × 10−3 6.74 × 10−2

2204 + 7 1.97 × 10 1.50 6.28 × 10−2 1.38 × 10−1 7.52 × 10−3 7.25 × 10−2

2212 + 57 2.27 × 10 1.62 6.24 × 10−2 1.44 × 10−1 8.76 × 10−3 7.38 × 10−2

2221 − 3 3.35 × 10 1.75 6.88 × 10−2 1.56 × 10−1 1.00 × 10−2 7.75 × 10−2

2228 + 3 2.58 × 10 1.69 6.88 × 10−2 1.62 × 10−1 9.36 × 10−3 8.13 × 10−2

2236 + 25 2.44 × 10 1.75 7.48 × 10−2 1.62 × 10−1 8.76 × 10−3 8.50 × 10−2

2244 + 133 3.58 × 10 2.00 7.52 × 10−2 1.74 × 10−1 9.92 × 10−3 8.99 × 10−2

2248 + 81 4.03 × 10 2.00 7.52 × 10−2 1.75 × 10−1 1.12 × 10−2 8.75 × 10−2

2257 − 93 4.40 × 10 2.00 8.80 × 10−2 1.88 × 10−1 1.13 × 10−2 9.23 × 10−2

2287 + 35 4.45 × 10 2.25 8.72 × 10−2 2.12 × 10−1 1.26 × 10−2 1.05 × 10−1

2319 + 9 5.69 × 10 2.62 1.00 × 10−1 2.38 × 10−1 1.50 × 10−2 1.25 × 10−1

2351 + 143 8.17 × 10 3.00 1.26 × 10−1 2.75 × 10−1 1.62 × 10−2 1.38 × 10−1

2383 + 369 8.66 × 10 3.50 1.26 × 10−1 3.12 × 10−1 2.00 × 10−2 1.55 × 10−1

2415 + 323 1.00 × 102 3.88 1.50 × 10−1 3.38 × 10−1 2.24 × 10−2 1.72 × 10−1

2447 + 99 1.33 × 102 5.26 1.87 × 10−1 4.25 × 10−1 2.87 × 10−2 2.27 × 10−1

2479 + 221 2.02 × 102 4.53 1.74 × 10−1 4.00 × 10−1 2.75 × 10−2 2.00 × 10−1

2511 + 111 2.06 × 102 5.29 2.24 × 10−1 5.25 × 10−1 3.25 × 10−2 2.40 × 10−1

2575 + 131 3.07 × 102 6.31 2.24 × 10−1 5.50 × 10−1 3.76 × 10−2 2.70 × 10−1

2639 + 413 3.84 × 102 7.31 2.51 × 10−1 6.50 × 10−1 4.50 × 10−2 3.15 × 10−1

2703 + 203 4.54 × 102 8.31 2.99 × 10−1 7.50 × 10−1 5.49 × 10−2 3.55 × 10−1

2767 + 699 6.19 × 102 9.56 3.50 × 10−1 8.51 × 10−1 6.24 × 10−2 4.05 × 10−1

2831 + 129 7.56 × 102 1.08 × 10 3.74 × 10−1 9.74 × 10−1 7.26 × 10−2 4.60 × 10−1

2895 + 359 9.80 × 102 1.24 × 10 4.50 × 10−1 1.10 8.00 × 10−2 5.15 × 10−1

2959 + 233 1.02 × 103 1.36 × 10 4.75 × 10−1 1.20 8.99 × 10−2 5.70 × 10−1

21023 + 1155 1.18 × 103 1.46 × 10 5.26 × 10−1 1.32 9.52 × 10−2 6.05 × 10−1

Remarks: HIT and BM mean Hiramoto et al. irreducibility testing algorithm and Berlekamp-Massey algorithm, respectively.

Proposed(1) denotes the case that the parameter t is incremented by 1 from 1 to 10000.

Proposed(2) denotes the case that the parameter t is randomly chosen.

Berlekamp-Massey algorithm(BM) generated irreducible cubic polynomials.

MUL and INV mean the multiplication and inversion in Fp, respectively.
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