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Geometric fitting is one of the most fundamental problems of computer vision. In [8], the author
derived a theoretical accuracy bound (KCR lower bound) for geometric fitting in general and
proved that maximum likelihood (ML) estimation is statistically optimal. Recently, Chernov
and Lesort [3] proved a similar result, using a weaker assumption. In this paper, we compare
their formulation with the author’s and describe the background of the problem. We also review
recent topics including semiparametric models and discuss remaining issues.

1. What Is the Problem?

By geometric fitting, we mean fitting a geometric
constraint to observed data and discerning the under-
lying geometric structure from the coefficients of the
fitted equation [8]. A large class of computer vision
problems fall into this framework. The simplest ex-
ample is to fit a parametric curve (e.g., a line, a circle,
an ellipse, or a polynomial curve) in the form

F(x;u) =0 (1)
to N points {(Za,¥Ys)} in the image, where x =
(z,y) " is the position vector, and w = (uy, ..., up) " is
the parameter vector.

For noisy data {(x4,¥a)}, no parameter u satis-
fies F(xo;u) = 0 for all @« = 1, ..., N, so one often
computes a u such that

N
Jus = Y F(a;u)® — min. (2)
a=1

This is called the least-squares (LS) method or alge-
braic distance minimization. However, it is widely
known that the solution has strong statistical bias.

A better method known to yield higher accuracy
is to regard the data {x,} as perturbed from their
true positions {&,} which are exactly on the curve
F(x;u) = 0 and to simultaneously estimate the true
positions {Z,} and the parameter v that maximize
the statistical likelihood. If the noise is subject to
isotropic, independent, and identical Gaussian distri-
bution, this reduces to the minimization

N
JuL = Z za — ia”2 — min,

a=1

(3)
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subject to the constraint

F(Zo;u)=0, a=1,...,N. (4)
This is called mazimum likelihood (ML) estimation
or geometric distance minimization.

Egs. (3) and (4) can be converted to unconstrained
minimization by introducing Lagrange multipliers.
Introducing linear approximation by assuming that
the noise is small, we can rewrite eq. (3) as follows

(see Appendix A for the derivation):

INAAE — min. (5)

JuML = i 7F(wa;u)2
a=1

Here, V< F,, is the gradient of the function F'(x;u) in
eq. (1) with respect to @, and the subscript o means
that the derivative is evaluated at * = x,. This min-
imization is known to be effective in many problems
and is one of the most widely used methods in com-
puter vision applications [8].

This approach is not limited to curve fitting but
can be extended to many other problems. For ex-
ample, given correspondences of feature points over
multiple images, the trajectory of a particular point
can be identified with a single point in the product
space of the images, known as the joint image. Fit-
ting a geometric constraint derived from the imaging
geometry, such as the epipolar constraint, the trifocal
constraint, the quadrifocal constraint, or the affine
constraint, we can compute the camera motion and
the 3-D shape of the scene from the coefficients of the
fitted equation [6].

We need not assume isotropic and identical Gaus-
sian noise. If the noise distribution is different from
datum to datum, all we need is to introduce covari-
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ance matrices! V[x,] in eq. (5). The author showed
that the solution of eq. (5) can be systematically com-
puted by a method called renormalization [7] when
the function F'(x;w) can be transformed into a linear
form in u by change of variables?. This method mo-
tivated many similar approaches®: Leedan and Meer
[14] proposed a method called HEIV, and Chojnacki
et al. [4] generalized it into what they call FNS.
However, a still unanswered question is if eq. (5)
is really optimal and if better methods exist at all.

2. How Do We Compare Methods?

The reason this question is so difficult to answer
is that it is not clear how to measure the “goodness”
of a method. For example, we may measure the ac-
curacy of an estimate @ by the norm ||& — u|| of the
difference from its true value u. However, there are
many objections. Some may say that we should take
expectation with respect to our belief or experience
as to what value the parameter w is likely to take
(known as the Bayesian approach). Others may ar-
gue that we should rather focus on the error in the
application domain, e.g., if we use the value @ for 3-D
reconstruction, we should evaluate the reconstruction
error that @ incurs.

Even if we adopt the simplest measure ||& — u||,
the problem is not solved, because the noise is ran-
dom and hence an estimate & can happen to coincide
with the true value u, whatever method we use. So,
we need to compute the mean square E[||& — ul/?],
where E[-] is the expectation with respect to the
noise distribution. We prefer the mean square simply
because this generally makes the subsequent analy-
sis easy, but there are many objections: some say
max || & — u|| should be used; others say E[||t — ul|]
is better. However, the analysis is still complicated
even if the simplest mean square is used.

For comparing the performance of statistical es-
timation methods, statisticians usually simplify the
analysis by introducing asymptotic approximations
as the number n of observations increases. So, many
computer vision researchers analyze asymptotic ap-
proximations as the number N of data increases for
evaluating the performance of geometric fitting. How-
ever, is the number N of data really the number of
“observations”?

3. How Can We Increase Data?

The tenet of statistics is to observe random phe-
nomenon and discern the underlying mechanism, as-
suming that the observed data are deterministically

IThe datum @ and the parameter u can be subject to some
constraints, such as being unit vectors. Multiple constraints,
each in the form of eq. (1), can exist, and some of them can
be overlapping or redundant. The analysis goes similarly if we
introduce pseudoinverse and projection operators [8].

2This is the case for many problems in computer vision,
including line and conic fitting, homography computation, and
estimation of the fundamental matrix [8].

3A comprehensive review is in [12].
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generated but corrupted by random noise. We can-
not infer the mechanism from only one observation,
but because the noise is random, we can expect that
the effect of noise is canceled if observations are re-
peated; the hidden mechanism will reveals itself as the
number of observations increases. Hence, statisticians
measure the performance of statistical estimation by
the rate of the increase of accuracy as the number n
of observation increases. However, if we identify the
number N of data with the “number of observations”,
many inconsistencies arise [11, 12].

Firstly, it is assumed in statistics that observations
can be repeated as many times as desired in princi-
ple, i.e., except for the fact that observations entail
costs and are subject to many constraints in the real
world. In contrast, the input for computer vision
is images. We may observe many different images,
but except in simulations we cannot repeatedly ob-
serve the same image corrupted with different noise.
Hence, the number of observation is always n = 1.

Secondly, the unknowns for the standard statisti-
cal estimation are the parameters of the underlying
mechanism, while for geometric fitting the true values
of the data are also unknowns. Hence, if we increase
the number of data, the number of unknowns also
increases accordingly?, and their estimation accuracy
cannot be improved however many data we observe.
For curve fitting, for example, we may correctly es-
timate the true curve by increasing the number of
points, but we cannot estimate their true positions
on that curve.

Thirdly, we cannot simply increase the data but
also need to consider how we increase them. For line
fitting, for example, the fitting accuracy does not im-
prove if we repeatedly add new points in the neighbor-
hood of a particular point. In contrast, the accuracy
will dramatically improve if we distribute new points
uniformly along the line to be fitted. So, various theo-
ries have recently been proposed for assuming or esti-
mating the distribution of the true positions along the
curve and marginalizing them over the distribution.
Such formulations are called semiparametric models
(2, 13, 16].

4. Is ML Not Optimal?

If we have a lot of data, ML is known to be not op-
timal. In fact, Endoh et al. [5] pointed out that 3-D
interpretation from a dense optical flow field by ML
is not optimal, and Ohta [13] showed that the semi-
parametric model yields a better result. Okatani and
Deguchi [16] demonstrated that for estimating 3-D
shape and motion from multiple images, the semi-
parametric model can result in higher accuracy. In
all cases, however, the procedure is very complicated,
and the performance can surpass ML only when the
number of data is very large and the problem has a

4Such increasing parameters are often called nuisance pa-
rameters to distinguish them from the remaining structural
parameters.
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special form.

On the other hand, ML in the form of eq. (5)
is always effective in all practical applications. At
present, no method that surpasses ML in usual situa-
tions is known. This implies that ML may be optimal
in some sense in “usual” situations. If so, in what
sense? What are the “usual situations?

The author gave an answer to these questions [8, 9].
The fact that these issues have not been widely dis-
cussed within the statistical community seems largely
because of the paradigm that statistics is to overcome
randomness by repeated observations. Also, statis-
ticians are mostly unfamiliar with geometric fitting
problems in the form as appears in computer vision
applications.

In the following, we describe the author’s formula-
tion and compared it with the recent results of Cher-
nov and Lesort [3].

5. KCR Lower Bound

The fundamental difference of the author’s ap-
proach from the standard statistical estimation is that
the analysis is focused on small noise rather than
asymptotic analysis for large number n of observa-
tions. This is motivated by the fact that computer
vision deals with pixel-level small errors, while the
traditional statistical estimation is mainly concerned
with large errors, e.g., in fieldwork in real environ-
ments.

Estimating the parameter uw from the data {z,}
means finding an estimate @ expressed as a function
of the data {x,}:

u=u(xy,... (6)
The function % is called an estimator of u. Consider
the covariance matriz® of estimator @:

7wN)~

We assume that each datum x,, is displaced from its
true value &, by component-wise independent Gaus-
sian noise of mean 0 and standard deviation e:
Az, ~ N(0,e%I).  (8)
We call € the noise level. The following argument
holds for a more general noise distribution® [8], but
here we concentrate only on the isotropic Gaussian
distribution for simplicity.
Let Awu be the error in the estimator u:

Ty = T + Axg,

o =u+ Au. 9)
Substituting egs. (8) and (9) into eq. (5), using Taylor
expansion in Az, and Awu by assuming that the noise
is small, and computing the value Awu that minimizes

5Tts trace trV[4] = E[||% — wl|?] is the mean-square error.
6The same argument applies to a wide class of probability
distributions called the ezponential family [8].
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eq. (5), we find that the covariance matrix V[t ]
of the ML estimator iy, can be expanded in € as
follows [8] (see Appendix B for the derivation):

N

g(z

a=1

(VuFo)(VuFa) "
IVxEal?

-1
) +0(*). (10)

Here, VuF, denotes the gradient of the function
F(x;u) in eq. (1) with respect to u, and F,, means
that the derivation is evaluated at * = Z,,.

We can also show that the first term on the right-
hand side of eq. (10) is a lower bound on an arbitrary
unbiased estimator @ in the following sense [8] (see
Appendix C for the derivation):

N

V{a] =e? (Z

a=1

(VaFo)(VuFa) T) (11)

Vs Fe| |2

Here, > denotes that the difference between the
left-hand side and the right-hand side is a positive
semidefinite symmetric matrix.

Thus, the covariance matrix of the ML estimator
uy, attains the lower bound in the first order in e
(i.e., if terms O(e?) are ignored). In this sense, ML
is optimal. Chernov and Lesort [3] called the right-
hand side of eq. (11) the KCR (Kanatani-Cramer-
Rao) lower bound .

6. CR Lower Bound

The KCR lower bound is different from the well
known CR (Cramer-Rao) lower bound: the difference
is less in the bound than in the problem. As men-
tioned earlier, statistical estimation is to discern the
hidden mechanism by repeating observations. This
is formalized as estimation of the parameter 6 by
observing n independent instances xi, ..., @, of a
random variable X occurring according to an as-
sumed probability density p(x;0). Mazimum like-
lihood (ML) estimation is to compute the value O
of 0 that maximizes the likelihood

n
L= H p(xi; 0).

i=1

(12)

Considering the asymptotic limit n — oo and in-
voking the law of large numbers, which states that
the sample mean of independent instances of a ran-
dom variable converges to its expectation as n —
0o, together with the central limit theorem, which
states that the distribution of the sample mean can
be asymptotically approximated by a Gaussian distri-
bution, we can show under a fairly general condition
that the covariance matrix V[@yr] of the ML estima-
tor Oy, is expanded in 1/n in the form

V{fy] = %J’l + 0(%), (13)

where J is the Fisher information matriz defined by

7 = B(Vologp(a:0)) (Vologp(@:0)) | (14)
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Figure 1: (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n — oo for
the number n of observations, because admissible accuracy can be reached with a smaller number of observations. (b)
For geometric fitting, it is desired that the accuracy increases rapidly as € — 0 for the noise level e, because larger data

uncertainty can be tolerated for admissible accuracy.

The expectation E[-] is taken with respect to the
probability density p(x;6). The first term on the
right-hand side of eq. (13) is called the CR (Cramer-
Rao) lower bound, and the following Cramer-Rao in-
equality can be proved for an arbitrary unbiased esti-
mator 0:

V6] >~ %J’l. (15)
It follows that the covariance matrix of the ML esti-
mator Oy, attains the CR lower bound in the first or-
der (i.e., if terms O(1/n?) are ignored) in the asymp-
totic limit n — oo of the number n of observations.
This fact is known as the asymptotic efficiency of ML,
and in this sense ML is optimal for the standard sta-
tistical estimation.

7. Duality of Interpretation

Thus, the KCR lower bound and the CR lower
bound are different concepts. Yet, there is something
common in their formalisms.

The reason why the performance of the standard
statistical estimation is evaluated in the asymptotic
limit n — oo of the number n of observations is that
a method whose accuracy increases rapidly as n — oo
can attain admissible accuracy with a fewer number of
observations (Fig. 1(a)). Such a method is desirable if
we consider the cost of observations in real situations.

In contrast, the performance of geometric fitting
should be evaluated in the limit ¢ — 0 of the noise
level €, because a method whose accuracy increases
rapidly as ¢ — 0 can tolerate larger uncertainty for
admissible accuracy (Fig. 1(b)). Such a method is
preferable if we consider the uncertainty inherent of
image processing operations.

Now, consider the following thought experiment.
For geometric fitting, the image data may not be ex-
act due to the uncertainty of image processing oper-
ations, but they always have the same value however
many times we observe them. Suppose, hypotheti-
cally, they change their values each time we observe
them. Then, we would obtain n different values for
n observations. Under independent Gaussian noise,
an optimal estimate of the true value is their sample
mean. As is well known, the standard deviation of a
sample mean of n observations is 1/y/n times that of
the individual observations.

Thus, repeating such hypothetical observations is
equivalent to reducing the noise level € to ¢/y/n. It
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follows that the perturbation analysis for ¢ — 0 is
mathematically equivalent to the asymptotic analy-
sis for n — oo of the number n of hypothetical ob-
servations. This is the reason why the asymptotic
approximation - - - + O(1/v/nk) for the standard sta-
tistical estimation corresponds to - - - + O(e*) for the
geometric fitting counterpart [10].

This type of duality of interpretation also arises for
model selection: we obtain the geometric AIC and
the geometric MDL for geometric fitting as the coun-
terparts of Akaike’s AIC (Akaike information crite-
rion) [1] and Rissanen’s MDL (minimum description
length) [17], respectively [10].

8. Condition for Optimality

Since its first introduction in [8], the KCR lower
bound in eq. (11) has scarcely been recognized by
the computer vision community. Even today, there
are some who doubt its validity”. Recently, however,
Chernov and Lesort [3] proved that the KCR lower
bound holds under a weaker assumption.

Eq. (11) is derived by assuming unbiasedness [8]
(see Appendix C):

Eld] = u. (16)

Chernov and Lesort [3] replaced this by the following
consistency:
(17)

lim & = wu.

e—0
This states that the estimate u gives the true value
u in the absence of noise. This is trivially confirmed
for all practical estimation methods®, since methods
that do not satisfy this are not worth considering.

Suppose the data x, are m-dimensional vectors

and the parameter u is a p-dimensional vector. Sub-
stituting egs. (8) into the right-hand side of eq. (6)
and using Taylor expansion, we see that the consis-
tency condition (17) implies

a=urt i(vxaa) Az, + 0@,  (18)

7Some dismissed the result, saying that it appeared only in
the author’s monograph, not in peer-reviewed journals. The
truth is that the result was submitted to journals but rejected
as not being useful in practice.

8This is not so for standard statistical estimation problems,
i.e., it is not easy to prove the consistency in the sense that
the estimate converges to the true value in some probabilistic
sense as the number n of observations goes to infinity.



January 2005

where Vi o denotes the p x m matrix whose (ij)
element is 0t;/0xjq; derivatives are evaluated at z,
= Z,, a =1, .., N. From eq. (18), we have

(i) eaed (7o)
> (Vxo@t) Azo Az ( Vi,
a,f=1
+(terms of order 3 or higher in {Az,}).

(a—u)(ta—u)" =

(19)

Taking expectation on both sides, we obtain the co-
variance matrix V][] in eq. (7) in the form

N T
Vial =522(an@) (vxaa) +O(Y,  (20)

where we use the fact that noise is independent for
each o and hence from eq. (8) we have®

E[AwaA:vg] = dupe’l. (21)

The remainder term on the right-hand side of eq. (20)
is O(e?*) because of the symmetry of the noise distri-
bution: the third order terms in Az, are 0 in expec-
tation

9. Derivation of the KCR Lower Bound

Chernov and Lesort [3] derived the KCR lower
bound in much the same way as in the original deriva-
tion in [8], using the wvariational principle with re-
spect to the true values {Z,} and the parameter
uw. If we perturb &, and = into &, + 0Z, and
u + du in such a way that eq. (4) is not violated,
ie., F(Zy+ 0Zo;u + 0u) = 0, we have for arbitrary
perturbations'® {§z,} and du

(Vchw 65304) + (quom 6“) = Oa (22)

where in the following we write (a, b) for the the inner
product of vectors a and b. The notations V4 F,, and
VuF,, have the same meaning as in eq. (10).

From the definition (6) of the estimator @& and the
consistency condition (17), we have the identity u =
w(Z1,...,&y). Hence,

N
3 (an u) 5Ty = 6u,

a=1

(23)

for arbitrary variations {dZ,} and du that satisfy
eq. (22). From this, we conclude

N N _ o\l
3 (7n8) (7) - <Z e > |

= a=1 x
(24)

by invoking the following lemma:

9The symbol 0 is the Kronecker delta, taking 1 for a =
(B and 0 otherwise.

10This is not the usual Taylor expansion but an identity for
infinitesimal variations & and du, so no higher order terms
appear. This corresponds to what is known as principle of
virtual work in mechanics. Note that d&. is a hypothetical
variation of the true value &, not the observation noise Az .
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Lemma 1 Let aq, ..., ay be nonzero m-dimensional
vectors, and by, ..., by p-dimensional vectors by, ...,
by spanning RP. If there exist p X m matrices Aq,
..., AN such that equality

N
Z A,z = (25)
a=1
holds for any m-dimensional vectors x1, ..., TN and
an arbitrary p-dimensional vector w that satisfy
(an, o) + (bo,y) =0, a=1,...,N, (26)
then the following inequality holds:
N N T\ ¢
b.b
> ALA] - (Z Ta ﬁ2> : (27)
a=1 a=1 o

Chernov and Lesort [3] proved this lemma by argu-
ments similar to the author’s [8]. The right-hand side
of eq. (24) is nothing but the KCR lower bound ex-
cept for the multiplier 2. From (10), we see that the
covariance matrix V[ay,] of the ML estimator @,
satisfies the lower bound except for terms O(g?).

10. Observations

The theory of Chernov and Lesort [3] is an expan-
sion of the author’s theory [8] in that they do not use
the unbiasedness assumption (16). Also, their argu-
ment is clearer'! and easier to understand than the
author’s [8] (see Appendix C). On the other hand, the
author’s derivation imposes the lower bound on the
covariance matrix V@] itself (irrespective of the noise
level €), while Chernov and Lesort [3] only derived
the lower bound on the leading term in the expan-
sion (20) in e. Their reasoning sounds natural if we
note that the consistency (17) implies the unbiased-
ness (16) in the limit ¢ — 0. Reflecting the weaker
assumption, their conclusion is somewhat weaker but
still sufficient for characterizing properties for e — 0.
In particular, the optimality of ML follows.

Chernov and Lesort [3] also pointed out a rather
surprising fact. Analyzing the KCR lower bound,
they showed that seemingly suboptimal methods can
be optimal. One example is the problem of fitting a
circle

(¢ —a)? + (y— b)* = B? (28)
to given points {(z4,¥a)}, @« = 1, ..., N. The LS of
eq. (2) becomes

N
Jis = Y _((ta —a)* + (Yo —b)* = R*)* — min, (29)

a=1

while the ML of eq. (3) has the form

((ra —a)? + (Yo — b)* — R?)*
(Ta — a)? + (ya — )

N

JML:iZ

a=1

— min.

(30)

HHowever, the proof of Lemma 1 is not easy, requiring as
sophisticated mathematical techniques as in the proof of the
author’s.
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It can be shown that both attain the KCR lower
bound in the first order, and in this sense both are
optimal [3]. In general, modification of eq. (3) in the

form
N
53
a=1

does not affect the covariance matrix V[u] of the re-
sulting estimator @ in the first order, where c(u) is
an arbitrary positive function of u (see Appendix
D). Eq. (28) is obtained from eq. (30) by inserting
¢(a,b, R) = R to the numerator; replacing the denom-
inator in eq. (30) by R does not affect the solution as
far as the leading term in ¢ is concerned.

Chernov and Lesort [3] conducted simulations and
confirmed that the solution of the LS of eq. (29)
and the solution of the ML of eq. (30) behave quite
similarly when the noise is extremely small. As the
noise increases, however, ML generally performs bet-
ter than LS, but surprisingly LS is better than ML
above a certain noise level in some situations. Cher-
nov and Lesort [3] pointed out that the cause of this
anomaly can be traced back to a hidden singularity'?
in eq. (28).

c(u)F(xq;u)? s min

(31)
IV Fall?

11. Conclusions

As we have seen, the KCR lower bound is the most
important characterization of geometric fitting. As
Chernov and Lesort [3] showed, however, methods
that are optimal in the sense of the KCR, lower bound
may perform differently in the presence of large noise.
In this sense, finding additional characterization that
complements the KCR lower bound remains a crucial
problem.

Recently, Miihlich and Mester [15] proposed a new
fitting technique for problems for which the constraint
(1) can be linearized in u (including line and conic
fitting, homography computation, and estimation of
the fundamental matrix). For such problems, the au-
thor’s renormalization, the HEIV of Leedan and Meer
[14], and the FNS of Chojnacki et al. [4] all yield a
solution that attains the KCR lower bound in the
first order. Miihlich and Mester [15] extended a tech-
nique called whitening or equilibration and showed
that their method, though not optimal in the sense
of the KCR lower bound, can produce a solution with
comparable or higher accuracy with less computa-
tional failures when the noise is large.

One of the major reasons why such attempts have
not been made until recently seem to lie in the
fact that computer vision researchers are likely to
take textbooks of statistics and discourses of distin-
guished statisticians for granted and blindly follow
the asymptotic analysis as N — oo for the num-
ber N of data. Rather, computer vision researchers
should bring forth theories and analyses specific to

12Hence, this observation does not apply to most problems
of computer vision including conic fitting. In general, ML is
far superior to LS.
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computer vision applications. The studies of Cher-
nov and Lesort [3] and Miihlich and Mester [15] are
good examples.
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Appendix
A: Linear Approximation of ML

Substituting &, = @, — Az, into eq. (4) and as-
suming that the noise term Az, is small, we obtain
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the linear approximation
F, — (VxF,,Az,) = 0. (32)

Introduce Lagrange multipliers A, for this constraint,
and let

(VxFo, Ax,)).

Z | Az, + Z Ao
(33)

The solution Az, that minimizes L subject to the
constraint (32) satisfies Vax, L =0, a =1, ..., N, or

Ay — AoV F, = 0. (34)

Hence, Ax, = A\.VyF,.
eq. (32) yields

Substitution of this into

Fa - (VxFom )\avxF(x> = 07 (35)
from which we obtain A, in the form
F,
Ay = ——> . (36)
[VxFall?

Thus, eq. (3) is rewritten in the form

2 _ F2 2

(37)

N
:C
g IV F ||2’
resulting in eq. (5). a

B: Covariance Matrix of ML

After substitution of egs. (8) and (9) into eq. (5)
and Taylor expansion, the function Jyy, is written in
the following form:

o Au))? +0(?).

N _

(VxFa, Azy) + (Vo F,

P = 2 [VFul?

(38)

Replacing || VxF,||? by ||VxF,||? in the denominator

on the right hand side does not affect the leading

term because the numerator is O(g?); the difference
is absorbed into the remainder term O(g?).

If we find Au that minimizes eq. (38), the ML
estimator g, is given by u 4+ Awu. The solution Awu
is obtained by solving VauJmr, = 0. Since the first
term on the right-hand side of eq. (38) is a quadratic
form in Awu,, we obtain

) i (ViFa, Aa) + (VuFu, Aw) Vi Fy
= [VxFall?

= 0(?), (39)
which is rewritten in the form

Z VF)Au
IVFII2

_ (VuFo)(VxFa) ' 2
- _Z AT Az, +O(?).  (40)

a=1
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From this, we obtain

(VaF3)(VaF3)T
A Au TE #
IV Fj5|12

Mz

IIV F H2

N —
- |12
Zl ||v F || IVsFal

+O(£%). (41)

Taking expectation on both sides and recalling the
definition V[iyr] = E[AuAuT], we obtain

al )(VuFo)T Y (VuFp)(VuFs)"
> O v o Vel 2 G
a=1 B=1 B

N e
B Fa) (Vo) (VuFa)T
*Z o S

N
ZHVFVHQF) +0(e*), (42)

a=1

where we have used eq. (21) and the fact that
E[O(e?)] = O(e*). From eq. (42) follows eq. (10). O

C: Derivation of the KCR Lower Bound

The original derivation of the KCR lower bound
is as follows [8]. The unbiasedness condition (16) is
rewritten as

Eld —u] =0, (43)

which should be an identity in {Z,} and u that sat-
isfies eq. (4).

From the definition of the expectation E[-], the
infinitesimal variation of E[& — u] is'?

5/(ﬁ—u)p1 - pndx = _/(5“)171 - pndx
N
+Z/(ﬂ,u)p1...5pa...p1vdm
a=1
N
R (C3) ST S T )
where [dx is a shorthand of [--- [dx;---xy. By

assumption, the probability density of x, is

1 (12 /0.2
— 7“5807.’13@” /25
p(za) = (\/ﬂ)ngne ) (45)

which we abbreviate to p,. The infinitesimal varia-
tion of eq. (45) with respect to &, is

5]9(1 = (laa 5io¢)pa7 (46)

13Recall that we consider variations in {Za} (not {zq}) and
u. Since the estimator 4@ is a function of the data {xq}, it
does not change for these variations. The variation dw is inde-
pendent of {&q }, so it can be moved outside the integral f da.

Also note that fpl < 0pa -

pnde = 1.
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where we define the score I, by

lo = Vi, log pg = 22— Ta (47)

)
Since eq. (43) is an identity in {Z,} and u that sat-
isfies eq. (4), the variation (44) should vanish for ar-
bitrary variations {dZ, } and du that satisfy eq. (22).
Substituting eq. (46) into eq. (44), we conclude that

N
u) Z 1)6z,] = bu,
a=1

for arbitrary variations {§Z,} and du that satisfy
eq. (22).
Consider the following particular variations {0& }:

(48)

(VxFo)(VaFa) "
IVxFall?

0o = — ou. (49)

It is easy to confirm that eq. (22) is identically satis-
fied. Substituting eq. (49) into eq. (48), we obtain

N
A—u)Zm 0w = —du, (50)
a=1
where we define the vectors {m,} by
(VuFa)(VxFa)"
= = l,. 51
Mo R O

Since eq. (48) should hold for arbitrary variations
{6Z,} and du that satisfy eq. (22), eq. (50) should
hold for arbitrary unconstrained variations du, which

means
N
i—u) Yy mg]=—
a=1

Using this and recalling the definition (7) of the co-
variance matrix V[4], we obtain

(52)

.
u—u u—u
E[< Zgﬂma ) ( Ziv=1ma ) ]
-(5 ). (53)
where we define the matrix M by
N N T
e
o N(VFn)T (Vo) (VaFo)T
Z o Bl
_ i(V Fo)(VuFa)"
RN N (54

In the above equation, we use the identity E [lalg]
= 0451 /e*, which is easily confirmed from egs. (21)
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and (47). The matrix J, = E[l,l]] is the Fisher
information matriz of the distribution p, and that
E[lalg] = 0opd o if the distributions {p,} are mutu-
ally independent.

Since the inside of the expectation E[-] on the left-
hand side of eq. (53) is evidently a positive semidef-
inite symmetric matrix, so is the right-hand side. It
follows the following is also a positive semidefinite

symmetric matrix:
Vig] —I ) ( I )
Mt M!

() ("
(9 )

From this, we conclude that V[a] — M ' should be
a positive semidefinite symmetric matrix, implying
eq. (11). a

The above proof is for the simplest case, but the
same result holds for more general cases'*. If we have
multiple constraints, which may not be independent
of each other, or if the domains of the data and the
parameters are constrained, we can introduce gener-
alized inverses and projection operators to go along
the same argument [8]. If the error distribution is
not Gaussian or different from datum to datum, the
score I, and the Fisher information matrix J, take
very complicated forms, yet the basic logic remains
the same [8].

D: Weighted Least Squares

Comparing eqgs. (3) and (31), we can write
jML (’LL) = C(’M)JML (u) (56)

If c¢(u) is perturbed into c(u + Au) c(u) +
(Vue, Aw)+- - -, we have Jy, (u+Au) = c(w) Jyr (u+
Au) + O(g3), because Jy, is O(g2). Hence, differen-
tiation eq. (56) has the form

(55)

Ve = c¢(uw) VL + 0(e2). (57)

It follows that the solution of VjML = 0 and the so-
lution of V.Jyr, = 0 coincide except for O(g?). Thus,
their covariance matrices coincide except for O(g?).
Chernov and Lesort [3] further proved that the so-
lution of the weighted least squares method in the form

N
J= Z We (Ta; u) F(
a=1
is optimal in the sense of the KCR lower bound if and

only if
c(w)

IV Pl

In other words, no forms other than eq. (31) can at-
tain the KCR lower bound in the first order.

(58)

Zo;u)? — min

W (To;u) = (59)

M4 However, the description becomes extremely clumsy and
cumbersome with a lot of symbols. One of the reasons why the
author’s theory [8] was doubted or rejected by journals may be
that the proof was done in the most general setting.
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