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Petri net model is a frequently-used versatile tool which can represent a widely discrete
event system. However, when the scale of the system becomes large, the calculation time for
solving optimal problem (optimal firing sequence problem) is markedly increased. In this
paper, we propose an approximation method that achieves the efficiency improvement of
the solution by decomposing the Petri net for solving the optimal firing sequence problem.
A timed Petri Net is decomposed into several subnets in which the optimal firing sequence
for each subnet is solved by Dijkstra’s algorithm in polynomial computational complexity.
The effectivity of the proposed method is verified by numerical experiments for the flowshop
schedule problem.

1 Introduction

Recently, sophistication and complication of discrete
event system such as mechanical system, communi-
cation system, and production system are highly ex-
tended. Petri net model is widely used as a strong
tool to describe concisely these discrete event systems.
Thus, improving performance of Petri Nets model leads
to flexible treatment of the discrete event system. In
addition, the efficiency improvement of operations for
various kind of discrete event system should be useful
from the viewpoint of the energy saving and leads to
the global environment protection.

Petri net model is a directed graph that consists
of two kinds of nodes called place, transition and of
branch called arc which connects these nodes. The de-
scribing ability of this model is revealed high, and par-
allel, synchronous operations can easily be described
using this model. In addition, it is applicable to a
wide variety of discrete event system because of its ex-
cellence in analytical ability and the operation abil-
ity. However, the state explosion problem for complex
problems is not avoidable in the application to the large
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scale system by the Petri net. The dynamics of Petri
net is determined by the firing sequence of transitions
from an initial marking (initial state) to the target
marking (state of the target). And the problem to de-
termine a legal firing sequence from initial marking to
a reachable target marking is known to be NP-hard[1].
Thus, it can be said that the problem to determine a
reachable firing sequence to minimize the given objec-
tive function is also NP-hard. The exact algorithms to
solve legal firing sequence problem have been studied in
previous literature[1]. However, these algorithms can
be applied for the restricted class of Petri Nets with a
simple structure such as conflict-free Petri Nets.

The research on the Petri Net model which expresses
the transportation system for AGVs (Automated Guided
Vehicle) is proposed by [2][3][4]. The heuristic search[5],
hybrid heuristics with backtrack[6][7][8], Genetic algo-
rithm[9] have been reported in past works for schedul-
ing problem by using Timed Petri Nets. Conventional
optimization models for Petri Nets are concentrated
on its search in the entire system. However, these ap-
proaches cannot be applied for large scale systems due
to the increase in combinatorial complexity. Several
decomposition model for Petri Nets has been studied.
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Ootsuki et al. proposed an immune systemapproach
where a Petri Net is decomposed into several subnets
and the firing sequence of subclass of Petri Nets are
determined by immune approach[10]. The entire fir-
ing sequence is coordinated by a heuristic procedure.
Thus, it may be difficult to improve the optimality of
solution for the entire system by this approach.

As for the application of extended Petri Nets to trans-
portation routing of multiple AGVs are proposed by
the authers[11]. In this paper, we propose an approx-
imation method that achieves the efficiency improve-
ment of the solution procedure by decomposing the
Timed Petri Nets for solving the optimal firing se-
quence problem. In the proposed method, the opti-
mization problem for each subnet is solved by Dijk-
stra’s algorithm in polynomial computational complex-
ity. A novel distributed optimization method is pro-
posed to improve the optimization performance. The
performance of the proposed method is evaluated by
comparing results with another optimization methods.

2 Definition of Timed Petri Nets

and modeling example

In this study, The firing duration time model which
is one kind of Timed Petri Nets is employed so that
our decomposition scheme applies to Timed Petri Nets
easily and be written as TPN. In this section, the def-
inition of TPN is described, and modeling example of
routing problem for multiple AGVs (automated guided
vehicles) and of scheduling problem are indicated.

2.1 Definition of TPN

In the firing duration time model, the time parame-
ter θ(t) which is representing the firing duration time
of transition t is introduced for ∀t ∈ T . When the
fireable transition t is fired, tokens are removed from
each input places at the time. And tokens are atted to
each output places at the same time as completing the
firing. Because firing duration time is introduced as
above-mentioned, the modeling of system considered
the time of event occurrence becomes possible. The
description of TPN, marking, firing vector, incidence
matrix, firing condition and state transition rule are
defined as follows. Let N be set of non-negative inte-
gers and R is set of real numbers. For a set of A and a
finite set of B, AB is defined to be a set of vectors with
elements of A of whose dimension is |B|. For a set of

A and a finite set of B and C, AB×C is defined to be
a set of |B| × |C| matrices with elements of A.

[Definition 1]
The firing duration time model TPN is described by

TPN = (P , T , w, M0, θ). P = {p1, p2, · · · , p|P |} is
set of places, T = {t1, t2, · · · , t|T |} is set of transitions,
w : (P × T ) ∪ (T × P ) → N represents connection
relationship of place and transition, M0 : P → N is
an initial marking, θ : T → N − {0} is a function of
non-negative firing duration time on set of transitions.
We define w(p, t) = 0 (w(t, p) = 0) indicate that there
exists no arc from place p to transition t (t to p), and
w(p, t) > 0 (w(t, p) > 0) indicates the weight of arc
from place p to transition t (t to p). We call the place
p ∈ P as an input place (output place) for t ∈ T if
w(p, t) > 0 (w(t, p) > 0), and the transition t ∈ T as
an input transition (output transition) for p ∈ P when
w(t, p) > 0 (w(p, t) > 0).

[Definition 2]
A function rk : T → {0, 1} represents whether each

transition is fired or not (1: fired, 0: not fired) in time
k ∈ N. A marking Mk: P → N represents the number
of tokens in each place. These variables are expressed
by a column vector marking Mk ∈ NP , firing vector
rk ∈ {0, 1}T defined as following.

(Mk)i = Mk(pi) (∀pi ∈ P ) (1)

(rk)j = rk(tj) (∀tj ∈ T ) (2)

[Definition 3]
For a firing duration time model TPN = (P , T , w,

M0, θ), two integer matrices A+
TPN ∈ NT×P , A−TPN ∈

NT×P are defined by

(A+
TPN )ji = w(tj , pi) (3)

(A−TPN )ji = w(pi, tj) (4)

[Definition 4]
For time k ∈ N, for transition t ∈ T , if the following

equation

Mk(p) ≥ w(p, t) (∀p ∈ P ) (5)

is satisfied and transition t is not in firing duration,
then transition t is fireable. For subset T ′ ⊂ T，even
though ∀t ∈ T ′ is fireable, if the following constraints

Mk(p) ≥
∑

t∈T ′
w(p, t) (∀p ∈ P ) (6)
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is not satisfied, not all transition t ∈ T ′ can be firing
at the same time. This situation is called as conflict.
When a fireable transition t ∈ T is fired in time k, the
number of tokens w(p, t) is removed from each input
place p. At time k + θ(t), the number of tokens w(t, p)
is added to each output place p. The duration time
from k to k + θ(t) is considered as firing duration of
transition t.

Following the above definition, the firing condition
and state equation for TPN are derived. The function
ck representing residual firing duration for transition
t ∈ T which is in firing duration is introduced. If the
transition t is not in firing duration, then ck(t) = 0.
ck ∈ NT indicates a column vector comprising ck(t) for
∀t ∈ T . The firing condition for TPN is represented
by the following equation.

Mk − (A−TPN )Trk ≥ 0 (7)

The condition for the completion of firing transition is
written as following.

(ck)T · rk = 0 (8)

When a firing vector rk satisfying (7) and (8) is given,
the marking Mk is changed into M+

k by following state
equation.

M+
k = Mk − (A−TPN )Trk (9)

The residual firing duration ck(t) is allocated to the
transition ∀t ∈ T as following.

c+
k (t) =

{
θ(t) (rk(t) = 1)
ck(t) (otherwise)

(10)

When a transition t ∈ T is satisfied c+
k (t) = 1 from

firing vector until time k, the number of tokens w(t, p)
are added to the output place at time k +1. Thus, the
following equation (11) is satisfied where ek ∈ {0, 1}T

is column vector comprising ek(t) defined as (12).

Mk+1 = M+
k + (A+

TPN )Tek (11)

ek(t) =

{
1 (c+

k (t) = 1)
0 (otherwise)

(12)

c+
k (t) is changed by the following equation at time k+1.

ck+1(t) =

{
c+
k (t)− 1 (c+

k (t) ≥ 1)
0 (otherwise)

(13)

3
4

AGV1 2
5

1

AGV2

(a)AGV motion

p1, 1 p1, 2 p1, 3
p2, 4 p2, 2 p2, 5po, 2

AGV 1

AGV 2
(b)Petri net model

Fig. 1: AGV motion and its Petri net model

2.2 Modeling of routing problem

If AGV1 and AGV2 advance toward the direction
of the arrow respectively in the route of fig.1(a), this
system is expressed by fig.1(b). Here, place pi,j repre-
sents the state that AGVi exists in node j, and transi-
tion ti,a,b represents the event that AGVi moves from
node a to node b (a 6= b). And condition of the collision
avoidance at node j is satisfied by introducing resource
place po,j .

2.3 Modeling of scheduling problem

When the production scheduling problem is targeted,
the 2 machine 3 jobs flowshop problems are expressed
by the fig.2(a). Here, transition ti,j represents pro-
cessing in process j of job i, and the processing time
is represented as firing duration of the transition. And
the condition that two or more jobs are not treatable in
process j at the same period is satisfied by introducing
place po,j .

t1,1 t1,2

t2,1 t2,2
t3,1 t3,2

po, 2po, １

(a)Before decomposing

t1,1

t2,1

t1,2

t2,2
t3,1 t3,2

po, 2po, １ po, 2po, １
po, 2po, １’’’ ’’’

’’ ’’’ ’

(b)After decomposing

Fig. 2: Modeling of flowshop scheduling problem
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3 The optimization method by

decomposing Petri Nets

3.1 Optimal Firing Sequence Problem

Optimal Firing Sequence Problem for TPN is de-
fined as following in this paper. Given TPN = (P, T ,
w, M0, θ), a targeted marking Mref : P ′ → N (P ′ ⊂
P ), time horizon Nt ∈ N− {0}, and objective function
J : ({0, 1}T )Nt → R, the problem is to derive a set
of firing vector (ro, r1, · · · , rNt−1) ∈ ({0, 1}T )Nt to
minimize J satisfying cNt = 0 ∧ MNt(p) = Mref (p)
(∀p ∈ P ′). We call the problem as an optitmal firing
sequence problem.

3.2 Optimization algorithm

In this section, optimization algorithm for solving
optimal firing sequence problem by decomposing Petri
Net is proposed. The condition of judging whether an
optimal firing sequens problem can be decomposed is
shown as follows.

• The entire system consists of multiple entities.
The dynamics of each entity ui (1 ≤ i ≤ m)is
represented by each subnet described by TPN.

• The entire objective function J can be written by
the sum of each objective function Jui (rui

0 , rui
1 ,

· · · , rui

Nt
) for each subsystem ui (1 ≤ i ≤ m).

• Targeted marking Mref (p) is not defined for any
place p ∈ PR

A general TPN = (P, T, w, M0, θ) is decomposed
into several subnets by the following procedure. Ini-
tially，the set of transition T is described as direct
sum of subset Tui which is representing the activity of
each entity ui (1 ≤ i ≤ m).

T = Tu1 t Tu2 t · · · t Tum =
m∐

i=1

Tui (14)

The set of places P is also described as direct sum of
subset Pui , PR as following equation.

P = Pu1tPu2t· · ·tPum
tPR =

(
m∐

i=1

Pui

)
tPR (15)

Pui and PR are defined as follows. OUT (p) is set of
output transitions for place p. IN(p) is set of input

transitions for place p.

Pui = {p | IN(p) ⊂ Tui , OUT (p) ⊂ Tui}

PR = P \
(

m∐

i=1

Pui

)

rui

k ∈ {0, 1}Tui is a column vector with the element of
rk(t) for all t ∈ Tui . θui ∈ NTui is a column vector
with the element of θ(t) for all t ∈ Tui . cui

k ∈ NTui is a
column vector with the element of ck(t) for all t ∈ Tui .
eui

k ∈ {0, 1}Tui is a column vector with the element of
ek(t) for all t ∈ Tui . Mui

k ∈ NPui is a column vector
with the element of Mk(p) for all p ∈ Pui . MR

k ∈ NPR

is a column vector with the element of Mk(p) for all
p ∈ Pui .

The firing condition for the TPN is written as

Mui

k − (A−ui
)Trui

k ≥ 0 (1 ≤ i ≤ m) (16)

MR
k − (B−)Trk ≥ 0 (17)

(cui

k )Trui

k = 0 (1 ≤ i ≤ m) (18)

by an incidence matrix A−ui
∈ NTui

×Pui , an incidence
matrix A+

ui
∈ NTui

×Pui and

B− = [(B−
u1

)T, · · · , (B−
um

)T]T (B−
ui
∈ NTui

×PR)

B+ = [(B+
u1

)T, · · · , (B+
um

)T]T (B+
ui
∈ NTui

×PR)

The state equation for TPN can be expressed by

Mui+
k = Mui

k − (A−ui
)Trui

k (19)

Mui

k+1 = Mui+
k + (A+

ui
)Teui

k (20)

MR+
k = MR

k + (B−)Trk (21)

MR
k+1 = MR+

k + (B+)Tek (22)

In the example of section 2.1, if we assume individ-
ual AGV (AGV1, AGV2) to be each element (u1, u2),
Tu1 = {t1,1,2, t1,2,3}, Tu2 = {t2,4,2, t2,2,5}, Pu1 =
{p1,1, p1,2, p1,3}, Pu2 = {p2,4, p2,2, p2,5}, PR = {po,2}
and the following expressions are obtained.

T = Tu1 t Tu2

P = Pu1 t Pu2 t PR

In the example of section 2.2, if we asume individual
job (Job1, Job2, Job3) to be each element (u1, u2, u3),
Tui

= {ti,1, ti,2} (1 ≤ i ≤ 3), PR = {po,1, po,2} and
the following expressions are obtained.

T = Tu1 t Tu2 t Tu3

P = Pu1 t Pu2 t Pu3 t PR

From the decomposition scheme for the set of places
and transitions, the TPN = (P, T, w, Mo, θ) can be
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decomposet into each subnet TPN i =(Pui ∪PRui , Tui ,
wui , M i

o, θui) for entity ui．PRui is a set of places one-
to-one corresponding to PR, and wui is defined by the
following equation using a bijection relation ζ : PRui →
PR．

wui(p, t) = w(p, t) (∀p ∈ Pui ;∀t ∈ Tui) (23)

wui(t, p) = w(t, p) (∀p ∈ Pui ;∀t ∈ Tui) (24)

wui(p, t) = w(ζ(p), t) (∀p ∈ PRui ;∀t ∈ Tui) (25)

wui(t, p) = w(t, ζ(p)) (∀p ∈ PRui ;∀t ∈ Tui) (26)

For example, the model illustrated in Fig.1(b) is dcom-
posed as the model illustrated Fig.3 by duplicationg a
place po,2 into p′o,2, p′′o,2 where PRu1 = {p′o,2}, PRu2 =
{p′′o,2}. The model illustrated in Fig.2(a) is dcomposed
as the model illustrated Fig.2(b) by duplicationg places
po,1, po,2 where PRu1 = {p′o,1, p′o,2}, PRu2 = {p′′o,1, p′′o,2},
PRu3 = {p′′′o,1, p′′′o,2}.

M i
k is the marking for TPN i，MRui

k is the column
vector comprising M i

k(p) for p ∈ PRui . The firing con-
dition for TPN i is written by (16), (18), (27), and the
state equation for TPN i is written by (19), (20), (28),
(29). Where the initial value of MRui

0 (p) for ∀p ∈ PRui

is large enough so that a firing vector violating firing
condition for subnet TPN i is not feasible for the entire
TPN .

p1, 1 p1, 2 p1, 3
p2, 4 p2, 2 p2, 5

P’o, 2P’’o, 2
Fig. 3: An example of decomposition for AGV system

MRui

k − (B−
ui

)Trui

k ≥ 0 (27)

MRui+
k = MRui

k − (B−
ui

)Trui

k (28)

MRui

k+1 = MRui+
k + (B+

ui
)Teui

k (29)

When a firing sequence of transition set T is feasible for
all subnets TPN i, the necessary and sufficient condi-
tiion for the firing sequence is feasible for entire TPN

is described by (17).
Optimization algorithm is explained as follows.

Step 1　The variable N representing number of iter-
ations is set to N := 1. The subproblems formulated

as (30) for all uj (1 ≤ j ≤ m) is solved. The optimal
solution for (30) is regarded as a tentative solution r̂

uj

k .

min
{ruj

k }
Juj (30)

Step 2　 If the tentative solution r̂
uj

k satisfies (17) and
the solution has not been updated from previous solu-
tion, this algorithm is completed and the solution r̂

uj

k

is regarded as near optimal solution.

Step 3　 The entity executed re-optimization in this
iteration is decided. if the ui(i 6= m) is selected in the
previous re-optimization, ui+1 is selected. if um is se-
lected in the previous re-optimization，u1 is selected.
Following, the entity selected in this iteration is repre-
sented as uj．

Step 4 　 The re-optimization for entity uj selected
at Step 3 is executed. The objective fuction for sub-
problem is written as (31) where the tentative solution
r̂ui

k (i 6= j) for ui exept uj is constant. The penalty for
violating firing condition of (17) is added to the (30).
ω

(N)
p,uj is a weighting factor of penalty function in the N

times of iterations.

min
{ruj

k }

(
Juj +

Nt∑

k=0

∑

p∈PRuj

ω(N)
p,uj

αuj ,p,k(ruj

k )
)

(31)

The penalty function αuj ,p,k(ruj

k ) indicates the num-
ber of tokens required for the infeasible solution to be
a feasible for firing vector r

uj

k at place p ∈ PR in time k.
This function is described as (32)-(36) where the mark-
ing at previous iteration derived by tentative solution
r̂ui

k (1 ≤ i ≤ m) is denoted as M̂k.

αuj ,p,k(ruj

k ) = max{0, −α′uj ,p,k} (32)

α′uj ,p,k = Kuj ,k(p) + M
Ruj

k (p)−B−
uj

(p)ruj

k (33)

Kuj ,k = M̂R+
k − (B+

uj
−B−

uj
)TΣ̂uj

k−1

+(B−
uj

)Tr̂
uj

k + (B+
uj

)Tσ̂
uj

k −MRuj
o (34)

(σ̂uj

k )i =

{
1 ((ĉuj

k )i ≥ 1)
0 (otherwise)

(35)

Σ̂uj

k−1 = r̂
uj

0 + r̂
uj

1 + r̂
uj

2 + · · ·+ r̂
uj

k−1 (36)

(p ∈ PRuj ; k = 0, · · · , Nt)

B−
uj

(p) indicates a row vector corresponding to place p

in matrix (B−
uj

)T. Kuj , k(p) is a constant as an element
of column vector Kuj , k for each place p.

Step 5　 The tentative solution is updated by r̂
uj

k :=
r

uj

k using the solution r
uj

k derived as Step 4, and the
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value of weighting factor for uj is updated by (37),
(38). N := N + 1 and return to Step 2.

ω(N+1)
p,uj

= ω(N)
p,uj

+ ∆ω

Nt∑

k=0

αuj ,p,k(r̂uj

k ) (37)

ω(N+1)
p,ui

= ω(N)
p,ui

(i 6= j) (38)

3.3 Solving subproblem

The subproblem (30),(31) proposed in section 3.1
is the interger programing problem, and the problem
can be derived by MILP solver such as ILOG CPLEX.
However, if the subproblem satisfies principle of the
optimality, the broblem can be effectively solved by
Dijkstra’s algorithm in a polynomial order. For exam-
ple, the condition that the objective function Juj is
the sum of total transition time from initial marking
to targeted marking is considered.

Let Pj
s a set of states where S(Puj ∪PRuj ) is the set

of marking for Puj ∪ PRuj , RMC(TPN j , k) ⊂ S(Puj ∪
PRuj )×N Tuj is set of 2-tuples (M j

k , c
uj

k ) consisting of
reachable marking and column vector c

uj

k at time k for
TPN j and hk is 0-1 binary variable indicating 1 if the
marking in time k has reached the targeted marking
and otherwise zero.

Pj
s = {(M j

k , c
uj

k , k, hk)|(M j
k , c

uj

k ) ∈ RMC(TPN j , k);

0 ≤ k ≤ Nt; hk = 0 ∨M
uj

k = M
uj

ref} (39)

If the M
uj

k is the same as the targeted marking, the
state (M j

k , 0, k, 1) or (M j
k , 0, k, 0) can be selected. How-

ever, if the state becomes (M j
k , 0, k, 1), the marking

cannot be selected except the state (M j
k , 0, k + 1, 1) so

that the marking already reached the targeted marking
has never been transitioned other marking.

The cost of state transiton from a = (M j
k , ck, k, hk) ∈

Pj
s to b = (M j

k+1, ck+1, k + 1, hk+1) ∈ Pj
s can be re-

garded as constant number duj ,a,b concretely decided
by a and b, because the time cost and the penalty cost
are determined by time k, marking M j

k and firing vec-
tor r

uj

k . In addition, the objective function (30), (31)
is represented as sum of duj ,a,b. Therefore, the opti-
mization problem (30), (31) can be solved by Dijkstra’s
algorithm where state set Pj

s is assumed as nodes set
for Dijkstra’s and duj ,a,b is assumed as distance cost
from a to b.

4 Improvement of performance

for optimization algorithm

In this section, improvement of optimization per-
formance of the proposed method is discussed. Ill-
condition occurs during the optimization is explained
and a novel updating method for weighting factor in
the penalty optimization method is proposed.

4.1 Ill-condition for proposed method

Let us consider a situation where a TPN model shown
in fig.4(a) is docomposed into subnet for u1, u2, u3

such as fig.4(b) and the token placement of the model
is changed as shown in fig.4 after the period of k ∈ N .
Two pieces of tokens on place p in the TPN model
before decomposition are removed from initial value
M0(p) = 1. Thus, the number of tokens on place p is
-1 at time k, and the penalty factor is αuj ,p,k = 1 for
all of the entities ui (1 ≤ i ≤ 3) from (32)-(36).

The number of tokens on place p is maximum values
Mk(p′′′) = 1, and that cannot be increased any fur-
ther. Thus, it is though that the entity involving the
conflict on place p at time k is u2, u3, and u1 is never
involving the conflict. However the ill-condition that
the penalty to the violation of restriction is imposed
on element u1 is caused because the panalty function
for u1 is αu1,p,k = 1 from (32)-(36). Morever, a need-
less increase of the penalty term is caused to element
u1 which doesn’t involve the conflict by updating the
penalty weighting factor from (37), and the optimiza-
tion performance deteriorates.

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Fig. 4: Problem for optimization by decomposition of
Petri Net

Ryota MAENO et al. MEM.FAC.ENG.OKA.UNI. Vol.41

49



4.2 Improvement of penalty method

Let xui

k (p) denote the maximum number of tokens
which can be placed on place p ∈ PRui at time k.
xui

k (p) is represented as the following equation.

xui

k (p) = max{M i
k(p)| (M i

k, cui

k ) ∈ RMC(TPN i, k)}
(∀p ∈ PRui) (40)

In the following, the step 4 and step 5 of the algorithm
explained in section 3.2 are modified to improve opti-
mization performance. The weighting factor wp,uj for
(31) indicating an unit penalty coefficient of entity uj

for violating firing condition at a time for place p is
modified to wuj ,ui,p indicating an unit penalty coeffi-
cient of entity uj for violating firing condition (17) by
firing vector r

uj

k and r̂ui

k (i 6= j). The following equa-
tions (41)-(45) are defined so that the unit penalty co-
efficient depends on the involved degree to the conflict
at time k for place p.

ω(N)
p,uj

= ηuj ,k,p

∑

i|i 6=j

huj ,ui,k,pw
(N)
uj ,ui,p (41)

∆Xui

k (p) =

{
xui

k (p)− M̂Rui

k (p) (i 6= j)
x

uj

k (p)−M
Ruj

k (p) (i = j)
(42)

huj ,ui,k,p =





+∞ (
∑

i′|i′ 6=j ∆X
ui′
k (p) = 0)

∆X
ui
k (p)P

i′|i′ 6=j ∆X
u

i′
k (p)

(otherwise)
(43)

ηuj ,k,p =





0 (
∑

i|i 6=j ∆Xui

k (p) + ∆X
uj

k (p) = 0)
(
P

i suj,ui,k,p)∆X
uj
k (p)

P
i|i 6=j ∆X

ui
k (p)+∆X

uj
k (p)

(otherwise)
(44)

suj ,ui,k,p =

{
1 (∆Xui

k (p) > 0)
0 (otherwise)

(45)

(41) indicates that the weighting factor of entity uj

for place p is represented by the product of weight-
ing wuj ,ui,p and rations huj ,ui,k,p and ηuj ,k,p. ∆Xui

k (p)
represents the difference between maximum number of
tokens which can be placed on p ∈ PRui

at time k

in subnet TPN i and the number of tokens actually
placed on p ∈ PRui

by firing vector r̂ui
0 , r̂ui

1 , · · · , r̂ui

k

(ruj

0 , r
uj

1 , · · · , r
uj

k if i = j). huj ,ui,k,p is the ratio be-
tween ∆Xui

k (p) and the total sum of ∆X
ui′
k (p) for all

entities ui′(i′ 6= j). ηuj ,k,p is the ratio between ∆X
uj

k (p)
and the average of ∆Xui

k (p) for all entities ui written
as (

∑
i|i 6=j ∆Xui

k (p) + ∆X
uj

k (p))/
∑

i suj ,ui,k,p. By us-
ing the above equations, the unit penalty coefficient
depens on the ratio of difference between the number
of tokens and the maximum numbers of tokens on place
p ∈ PRui for each entity ui. The updating method for

weighting function ω
(N)
p,uj at step 5 is modified to curb

the needless increase of weighting factors. The weight-
ing factor is updated by following equation only when
the value of

∑Nt

k=0 huj ,ui,k,pηuj ,k,pαuj ,p,k(ruj

k ) is posi-
tive number and the value is larger than the previous
value of

∑Nt

k=0 huj ,ui,k,pηuj ,k,pαuj ,p,k(r̂uj

k ).

ω(N+1)
uj ,ui,p = ω(N)

uj ,ui,p + ∆ω (46)

5 Numerical Experiments

The optimal solution cannot be obtained for flow-
shop scheduling problem to minimize total tardiness
penalties due to the fact that the problem is NP-complete.
In order to evaluate the performance of the proposed
method (DPN), we developed a simulated annealing
method to solve especially for flowshop scheduling prob-
lems. The simulated annealing method is constructed
so that processing order of operations at each machine
is successively improved by repeating the generation
of neighborhood solution. The neighborhood solution
is created by inserting a randomly selected operation
to a randomly selected position. The detail of the al-
gorithm for simulated annealing method for flowshop
scheduling problem is described in [12]. The param-
eters used for the experiments are shown in Table 1.
The total number of search time at a temperature NS

is determined so that the total computation time for
SA is almost the same as that of average computation
time for the proposed method (DPN). Table 2 shows
the average of objective value, computation time, and
ratio DPN/SA when 20 kinds of example for 40Job and
80Job are solved respectively. A Pentium IV 3.2GHz
with 1Gbyte memory is used for computation. From
the results of Table 2, the performance ratio between
the DPN and SA method is 1.02 when the number of
jobs are 40. The performance of SA method is slightly
better than that of the proposed method. However,
when the number of jobs is 80, the performance of the
proposed method is better than that of the SA method.
This is because the proposed method can effectively
generate near optimal solutions by decomposing the
original problem into several subproblems. For the SA
method, it becomes extremely difficult to solve large-
sized problems because the search space is extremely
larger than the small-sized problems. The performance
between the proposed method and the SA method is
almost the same even though the proposed method can
be applied for wide variety problems.
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Table. 1: Parameters for SA method
Tinit: Initial temperature factor
h: Annealing ratio
NA: Annealing times
NS : Search times at the same temperature
40Job: Tinit=0.5, h=0.97, NA=2000, NS= 27000
80Job: Tinit=0.5, h=0.97, NA=2000, NS= 25000

Table. 2: Comparison between DPN and SA
Job DPN SA

Obj. Time Obj. Time Ratio
40 39 603 38 600 1.02
80 14.25 1162 51.35 1168 0.52

6 Conclusions

In this paper, we have proposed decomposition and
optimization method for the large scale system repre-
sented by Timed Petri Nets. A penalty based opti-
mization method is proposed to solve an optimal fir-
ing sequence problem. A new method for updationg
weighing factor for penalty coefficients is proposed to
improve optimization performance. Through the nu-
merical experiments, the performance of the proposed
method is equal or better than that of the SA method
specialized for the flowshop scheduling problem even
though the proposed method can be applied for wide
variety problems. Reduction of the calculation time for
subproblem and application to various discrete event
system are the future works.
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