
Hidehiro KATO
Graduate School of Natural Science and
Technology, Okayama University 3-1-1,

Tsushima-naka Okayama Japan

Kenta NEKADO
Faculty of Engineering, Okayama University

3-1-1, Tsushima-naka Okayama Japan

Yasuyuki NOGAMI
Graduate School of Natural Science and
Technology, Okayama University 3-1-1,

Tsushima-naka Okayama Japan

Yoshitaka MORIKAWA
Graduate School of Natural Science and
Technology, Okayama University 3-1-1,

Tsushima-naka Okayama Japan

Abstract

This paper proposes an exponentiation method with Frobenius mappings. Our method is closely
related to so-called interleaving exponentiation. Different from the interleaving exponentiation meth-
ods, our method can carry out several exponentiations using same base at the same time. The
efficiency to use Frobenius mappings for an exponentiation in extension field is well introduced by
Avanzi and Mihailescu. This exponentiation method is based on so-called simultaneous exponentiation
and uses many Frobenius mappings. Their method more decreased the number of multiplications;
however, the number of Frobenius mappings inversely increased. Compared to their method , the
number of multiplications needed for the proposed method becomes about 20% larger; however, that
of Frobenius mappings becomes small enough.
Keywords: exponentiation, Frobenius mapping, extension field.

1 Introduction

Recently, pairing–based cryptographic applications
such as ID–based cryptography [1], group signa-
ture authentication [2], and broadcast encryption
[3] have been proposed. Pairings such as Weil, Tate,
Eta, and Ate pairings are bilinear mappings from
two rational points on a certain elliptic curve to a
non-zero element in a certain extension field [4]–[6].
In general, a pairing calculation needs an exponen-
tiation in extension field and the computation time
of the exponentiation is about half of the total com-
putation time of a pairing calculation. Such an ex-
ponentiation in extension field is one of targets of
this paper. This paper proposes a new exponentia-
tion method with Frobenius mappings.

The most widely used binary method calculates
exponentiation an by efficiently using the binary
representation the exponent n. It iterates squar-

ing and multiplying. The binary method needs
blog2 nc squares and blog2 nc/2 multiplications on
average. The sliding window method calculates
exponentiations more efficiently; however, it still
needs blog2 nc − w squares, where w is the window
size. In addition, it is not so efficient when the
base a often changes. Our exponentiation method
is closely related to so-called interleaving exponen-
tiation method [7]. Different from the interleav-
ing exponentiation methods, our method can carry
out several exponentiations using same base at the
same time. For example, when A ∈ Fpm and x, y
and z are large positive integers, our exponenti-
ation can carry out Ax, Ay and Az at the same
time. The efficiency to use Frobenius mappings
for an exponentiation in extension field is well in-
troduced by Avanzi and Mihailescu [8]. This ex-
ponentiation method is based on so-called simul-

36

Fast Exponentiation in Extension Field
with Frobenius Mappings

(Received November 22, 2007)

This work is subjected to copyright.
All rights are reserved by this author/authors.

Memoirs of the Faculty of Engineering, Okayama University, Vol. 42, pp. 36-43, January 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Okayama University Scientific Achievement Repository

https://core.ac.uk/display/12529568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

taneous exponentiation method [7] and uses Frobe-
nius mappings. When the exponent n is enough
larger than characteristic p and a Frobenius map-
ping is carried out efficiently in the concerned ex-
tension field, using Frobenius mappings is efficient
because the number of squares required for an ex-
ponentiation decreases into blog2(p − 1)c. On the
other hand, blog2 nc/2 multiplications on average
are still needed. In order to decrease the number
of multiplications, it is efficient to apply the sliding
window method in addition to Frobenius mappings.
Based on this idea, Avanzi and Mihailescu [8] have
proposed an efficient exponentiation method. This
method more decreased the number of multiplica-
tions; however, the number of Frobenius mappings
inversely increased. Thus, it still has two problems:
1) it is not so efficient when the base a often changes
and 2) it is not so efficient when a Frobenius map-
ping cannot be fast carried out in the concerned
extension field.

In order to overcome the above problems, this
paper proposes an exponentiation method in exten-
sion field that efficiently uses Frobenius mappings
but is not based on the sliding window method.
Compared to Avanzi’s method [8], the number of
multiplications needed for the proposed method be-
comes about 20% larger; however, that of Frobenius
mappings is small enough. Evaluating the calcula-
tion costs, it is shown that the proposed exponenti-
ation method is enough practical for the case that
the base of exponentiation is often changed and a
Frobenius mapping cannot be fast carried out in the
concerned extension field. In this paper, we deal
with an extension field Fpm over a prime field Fp ,
for instance; however, the proposed method can be
easily applied for an extension field Fqm over some
extension field Fq , q = pi. In addition, the proposed
method is also efficiently applied for a scalar mul-
tiplication of rational point of elliptic curve defined
over extension field, for example.

Throughout this paper, #SADD and #SMUL de-
note the number of additions and that of multipli-
cations, respectively. In this paper, a subtraction
in Fp is counted up as an addition in Fp . p and
m denote the characteristic and the extension de-
gree, respectively, where p is a prime number. Fpm

denotes an m-th extension field over Fp and F∗pm

denotes the multiplicative group in Fpm . Without
any additional explanation, lower and upper case
letters show elements in prime field and extension
field, respectively, and a Greek character shows a
zero of modular polynomial.

2 Preparation

In this section, let us briefly go over basis of exten-
sion field, Frobenius mapping, Tate pairing, binary
method, and sliding window method.

2.1 Basis of extension field

In order to construct the arithmetic operations in
Fpm , we generally need an irreducible polynomial
f(x) of degree m over Fp. Let ω be a zero of f(x),
that is a proper element1 in Fpm , then the following
set forms a basis of Fpmover Fp;

{
1, ω, ω2, · · · , ωm−1

}
, (1)

which is called polynomial basis. An arbitrary ele-
ment A in Fpm is written as

A = a0 + a1ω + · · ·+ am−1ω
m−1. (2)

The vector representation of A is vA =
(a0, a2 · · · , am−1). A multiplication and inversion
in Fpm are carried out by using the relation f(ω) =
0, and therefore f(x) is called the modular polyno-
mial of Fpm . When the following conjugates of ω
with respect to Fp are linearly independent;

{
ω, ωp, ωp2

, · · · , ωpm−1
}

, (3)

this set Eq.(3) is called normal basis, which is effi-
cient for Frobenius mapping.

Consider a normal basis Eq.(3) in Fpm and an
arbitrary element A as follows;

A = a0ω + a1ω
p + · · ·+ am−1ω

pm−1

= (a0, a1, · · · , am−1) . (4)

Then, Frobenius mapping is given as

A → Ap :
Ap = a0ω

p + a1ω
p2

+ · · ·+ am−2ω
pm−1

+ am−1ω

= (am−1, a0, · · · , am−2) . (5)
1In this paper, we call an element that belongs to Fpm but not to its proper subfield a proper element in Fpm .

37

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 42

Thus, using a normal basis, we can carry out
a Frobenius mapping without any arithmetic op-
erations. In what follows, we use the notation
ϕi(A) = Api

. By the way, even if the basis is not a
normal basis, as optimal extension field (OEF) [9],
there exist some bases that fast carries out Frobe-
nius mappings; however, if not, a Frobenius map-
ping in Fpm needs about m2 Fp–multiplications. It
is almost equivalent to one multiplication in Fpm .
For instance, a Frobenius mapping can be carried
out by multiplying a certain (m×m) matrix.

2.2 Tate pairing

An elliptic curve over Fp is generally defined by

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp . (6)

On the elliptic curve, Fp-rational points form an ad-
ditive Abelian group. In this paper, we denote this
group and its order by E(Fp) and #E(Fp), respec-
tively.

2.2.1 Embedding degree of pairing:

Let r and G[r] be a prime number such that r |
#E(Fp) and a subgroup of the order r in E(Fp),
respectively. It is said that the subgroup G[r] has
the embedding degree k if r divides pk− 1 but does
not divide pi − 1, 1 ≤ i < k. Then, the subgroup
E[r] ∼= G[r]×G[r] of r-torsion points lies in the el-
liptic curve E(Fpk) defined over Fpk and r2 divides
#E(Fpk) [10].

2.2.2 Tate pairing :

Let G1 be the subgroup of the order r in E(Fp) and
G2 be a subgroup of order r in E(Fpk) such that
G2 6= G1. For rational points P ∈ G1 and Q ∈ G2,
Tate pairing is given as the following bilinear map
t:

t : G1 ×G2 −→ GT ,

(P,Q) −→ t(P, Q) =
(
fP (DQ)

)(pk−1)/r = e.(7)

e is an r-th primitive root of unity in Fpk and
GT = {e ∈ Fpk : er = 1}. Tate pairing needs an ex-
ponentiation over a certain extension field Fpk . As

shown in Eq.(7), Tate pairing t satisfies bilinearity
and non-degeneracy. Such an exponentiation is one
of targets of this paper.

2.3 Binary method

The well-known binary method fast calculates an
exponentiation with a large integer exponent. Let
n be a positive integer, it calculates an as follows;

Algorithm 1 (binary method)

1. X ← 1, A← a.

2. If n = 0, output X.

3. Otherwise,

4. if (n & 1) = 1, X ← X ·A.

5. A← A ·A
6. n← nÀ 1, then go to Step.2.

(End of algorithm)

In what follows, & and À in algorithms denote
bit-and and bit–shift operators, respectively. As
shown above, the binary method needs only blog2 nc
squares and blog2 nc/2 multiplications on average.

2.4 Sliding window method

For instance, let us calculate an by the sliding win-
dow method whose window size is 3. First, let us
prepare the following component;

a2, a3, a4, · · · , a7, (8)

these exponents correspond to the following binary
representations, respectively;

2 = (010)2, 3 = (011)2, 4 = (100)2, · · · , 7 = (111)2.
(9)

Then, we calculate an by combining and squaring
these previously calculated components. For exam-
ple, when the exponent n is 318, an is calculated
as

a318 = a(100111110)2

=
{(

a(100)2
)23 (

a(111)2
)}23

a(110)2 . (10)

Thus, the window size w of the sliding window
method means the bit length of each separation.

38

January 2008 Fast Exponentiation in Extension Field with Frobenius Mappings

The sliding window method is efficient for repeat-
edly calculating exponentiations with the same base
a. In addition, it is noted that the sliding window
method still needs blog2 nc−w squares as shown in
Eq.(10). When the base a is often changed, the
preparation Eq.(8) does not efficiently work. In
other words, the preparation is needed every time.

2.5 Previous works

Let us briefly go over Avanzi’s exponentiation
method [8]. Note that as introduced in [8] it re-
quires very fast Frobenius mappings.

Write the exponent n as

n =
s∑

i=0

nip
i, 0 ≤ ni ≤ p− 1, s = blogp nc, (11)

and for some w ¿ u = blog2 pc, K = bu/wc,

ni =
K−1∑

j=0

nij2jw. (12)

Then, calculate An in Fpm as follows;

An =
s∏

i=0

ϕi(Ani) =
s∏

i=0

K−1∏

j=0

ϕi(Anij2
jw

)

=
K−1∏

j=0

(
s∏

i=0

ϕi(Anij)

)2jw

. (13)

For calculating Anij , it efficiently uses the slid-
ing window method. Compared to just applying
the sliding method in addition to Frobenius map-
pings, Eq.(13) decreases the number of multiplica-
tions but increases Frobenius mappings. This al-
gorithm needs u + 1 squaring, (s + 1)K + 2w − 2
multiplications and sK Frobenius mappings.

3 Exponentiation in extension
field

This paper proposes a new exponentiation method
in extension field using Frobenius mapping with re-
spect to Fp . In what follows, let us consider an
exponentiation An, A ∈ Fpm and let m be larger
than or equal to 2.

3.1 Main idea

Consider the p–adic representation of the exponent
n as Eq.(11). Then, using Frobenius mapping ϕ,
the exponentiation An is calculated by

An =
s∏

i=0

ϕi (Ani) . (14)

Let these components Ani be respectively denoted
by A[i] in Alg.2. Then, an exponentiation An is
calculated by the binary method with Frobenius
mappings as follows;

Algorithm 2

1. B←A, s← blogp nc,
t← blog2(p− 1)c.

2. For 0 ≤ i ≤ s, A[i] = 1.

3. If n = 0, output 1.

4. Otherwise,

5. calculate the p–adic representa-
tion of n as Eq.(11),

6. for 0 ≤ j < t,

7. for 0 ≤ i ≤ s,

8. if (ni & 1) = 1,
A[i]← A[i] ·B,

9. B ← B ·B, n1 ← n1 À 1.

10. C = A[s].

11. for s− 1 ≥ j ≥ 0,

12. C ← ϕ1(C), C ← C ·A[j].

13. output C.

(End of algorithm)

This algorithm needs t squares and on aver-
age st/2 multiplications in Fpm , after that, Eq.(14)
needs (s− 1) Frobenius mappings and (s− 1) mul-
tiplications. In order to decrease the number of
multiplications with respect to [8], it is efficient
to additionally apply the sliding window method
for the calculation of Ani . Since the proposed
method described below does not use the sliding
window method, it has some advantages different
from Avanzi’s method.

39

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 42

Let us improve Alg.2. For instance, let s =
blogp nc and t = blog2(p − 1)c be 5 and 4, respec-
tively. Suppose the binary representations of n0,
n1, · · · , n5 as

n1 = (1001)2, n0 = (1110)2, (15a)
n3 = (1101)2, n2 = (1110)2, (15b)
n5 = (1111)2, n4 = (0101)2. (15c)

Let us separate the exponent n into three parts as
follows (see Fig.1);

n = (n5p+n4)p4 +(n3p+n2)p2 +(n1p+n0). (16)

Then, consider two sets G1 = {An5 , An3 , An1} and
G2 = {An4 , An2 , An0}.

An1 = A8A1, An0 = A8A4A2, (17a)
An3 = A8A4A1, An2 = A8A4A2, (17b)
An5 = A8A4A2A1, An4 = A4A1. (17c)

As shown in Eqs.(15) and Eqs.(17), for example, the
component A2 is needed for An5 in G1 and An0 , An2

in G2. The component A4 is needed for An3 , An5

in G1 and An0 , An2 , An4 in G2. Let us calculate
C001, C010, · · · , C111 as follows;

C100 = ϕ1(A2)A1, C010 = 1, C001 = 1, (18a)
C011 = A8A2, C101 = 1, C110 = ϕ1(A4), (18b)
C111 = ϕ1(A8A1)A4. (18c)

Then, we can calculate An as follows;

R0 = C100C101C110C111, (19a)
R1 = C010C011C110C111, (19b)
R2 = C001C011C101C111, (19c)

An = ϕ4 (R2)ϕ2 (R1) R0. (19d)

Eq.(14) with Eqs.(17) needs 3 squares and 16
multiplications without using the sliding window
method; however, the improved Eqs.(18) and
Eqs.(19) need 3 squares and only 14 multiplica-
tions. Thus, the p–adic representation and Frobe-
nius mappings shown in Eq.(14) help for decreas-
ing the number of squares and the calculation tech-
nique introduced with Eqs.(18) helps for decreasing
that of multiplications. Fig.1 shows an image of
the calculations of Eqs.(15), Eq.(16), Eqs.(17), and
Eqs.(18).

3.2 Proposed algorithm

As shown in Fig.1, let the numbers of rows and
columns be r and c, respectively. In this case, con-
sider the exponent n as

n =
r−1∑

i=0

c−1∑

j=0

nijp
ci+j . (20)

According to the bit size n and the number r of
rows, the number c of columns is automatically de-
termined. Then, the proposed method calculates
the exponentiation An as follows;

Sjl =

{
x |

r−1∑

i=0

2i(nij & 2x) = l, 0 ≤ x < t

}
,

0 ≤ j < c, 1 ≤ l < 2r. (21a)
Ti =

{
y | (2i & y) = 2i, 1 ≤ y < 2r − 1

}
,

0 ≤ i < r. (21b)

Cl =
c−1∏

j=0

ϕj

 ∏

k∈Sjl

A2k

 . (21c)

Ri =
c−1∏

j=0

ϕj (Anij) =
∏

k∈Ti

Ck, 0 ≤ i < r. (21d)

An =
r−1∏

i=0

ϕci (Ri) . (21e)

It is found that |Sjl | ≤ t and |Ti | < 2r − 1. In
the proposed method, the number of the tempo-
rary variables Cl and Ri is (2r − 1) + r as shown
in Eqs.(21). The preparation of Cl, 1 ≤ l < 2r

needs multiplications less than or equal to c·t times,
where t = blog2(p−1)c. Using this temporary data,
An is calculated with several multiplications less
than r(2r − 1) + (r− 1) times as shown in Eq.(21d)
and Eq.(21e). In addition, the proposed algorithm
needs (c− 1)(2r − 1) + (r− 1) Frobenius mappings.
In the Algorithm3, if we finish at line 20, we can
calculate r exponentiations at the same time.

40

January 2008 Fast Exponentiation in Extension Field with Frobenius Mappings

n = (n5 p + n4)p4 + (n3 p + n2)p2 + (n1 p + n0)

ϕ1(A8A4 A1)A8A4A2

ϕ1(A8A4A2A1) A4 A1

ϕ1(A8 A1)A8A4A2

2 columns

3 rows

R1 = ϕ1(A8 A4 A1)A8 A4 A2

R2 = ϕ1(A8 A4 A2 A1) A4 A1

R0 = ϕ1(A8 A1)A8 A4 A2

C111C110C100C111 C011C111C011C100

Figure 1: Image of the calculations of Eqs.(15), Eq.(16), Eqs.(17), and Eqs.(18)

Algorithm 3 (the proposed algorithm)

1. B[0]← A, t← blog2(p− 1)c.
2. For 1 ≤ i < t, B[i] ← B[i − 1] ·

B[i− 1].

3. For 0 < i ≤ 2r, C[i] = 1.

4. For 0 ≤ i < r, R[i] = 1.

5. If n = 0, output 1.

6. Otherwise,

7. calculate the p–adic representa-
tion of n as Eq.(20),

8. for c > j ≥ 0,

9. for 0 ≤ k < t,

10. M = 0.

11. for 0 ≤ i < r,

12. if (nij & 1) = 1,
M ←M + 2i.

13. nij ← nij À 1.

14. if M 6= 0,
C[M]← C[M] ·B[k].

15. if j 6= 0,

16. for 1 ≤ i ≤ 2r,

17. C[i]← ϕ1(C[i]).

18. for 0 ≤ i < r,

19. for 1 ≤ j ≤ 2r,
20. if (2i & j) 6= 0,

R[i]← R[i] · C[j].
21. D ← R[r − 1].
22. for r − 2 ≥ i ≥ 0,
23. D ← ϕc(D), D ← D ·R[i].
24. output D.

(End of algorithm)

4 Application and simulation

As introduced in the preceding sections, one of
targets of the proposed exponentiation method is
the case that the base of exponentiation is often
changed and a Frobenius mapping cannot be fast
carried out in the concerned extension field. In this
simulation, we consider an exponentiation in such
a case.

4.1 Application

As an application of the proposed method, this sec-
tion considers Tate pairing over elliptic curve. As
introduced in Sec.2.2, a pairing needs an exponenti-
ation in extension field. Barreto et al. [11] have pro-
posed a class of non super–singular pairing friendly
(NSPF) elliptic curves defined as follows;

E/Fp : y2 = x3 + b, b ∈ Fp , (22)

41

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 42

for which, using a certain integer χ, the character-
istic p and its order #E(Fp) need to be given as
follows;

p = 36χ4 + 36χ3 + 24χ2 + 6χ + 1,(23a)
#E(Fp) = 36χ4 + 36χ3 + 18χ2 + 6χ + 1.(23b)

The embedding degree k is equal to 12. In other
words, let r = #E(Fp) be a prime number, we have

r | #E(Fpk) and r | (pk − 1). (24)

Noting that the embedding degree k is the least
positive integer such that r divides (pk − 1), the
exponentiation of the pairing calculation Eq.(7) be-
comes

A(p12−1)/r =
{

A(p6−1)(p2+1)
}(p4−p2+1)/r

=
{

B(p6−1)
}(p4−p2+1)/r

= C(p4−p2+1)/r, (25)

where A = fP (DQ), B = Ap2+1 = ϕ2(A)A,
and C = Bp6

B−1 = ϕ6(B)B−1. There-
fore, the major computation is the exponentiation
C(p4−p2+1)/r, C ∈ F∗p12 . Noting that log2 r = log2 p,
it is easily found that

logp

(
(p4 − p2 + 1)/r

)
= 3. (26)

In this case, the proposed method Eqs.(21) carries
out this exponentiation with n = 160 × 3, r =
3, c = 1, and t = 160. This exponentiation needs
160 squares, 142 multiplications on average, and
2 Frobenius mappings. The proposed algorithm is
also efficient for a scalar multiplication of rational
point of elliptic curve defined over extension field
that uses Frobenius mappings such as [12].

4.2 Simulation result

Table 1 shows the comparison of the calculation
cost for an exponentiation in Fpm between the pro-
posed method and Avanzi’s method [8]. The au-
thors considered a 160–bit prime number as the
characteristic p.

As shown in the table, the number of Fp–
multiplications needed for the proposed method
Eqs.(21) is about 20% larger than that of Avanzi’s

method; however, the number of Frobenius map-
pings needed for the proposed method is quite
small. As introduced in Sec.2.1, if a Frobenius
mapping cannot be fast carried out in the concerned
extension field Fpm , it is almost equivalent to a mul-
tiplication in Fpm . In such a case, the proposed
method will efficiently work than the other previ-
ous works such as Avanzi’s method [8].

5 Conclusion

In this paper, the authors have proposed an expo-
nentiation method in extension field that efficiently
uses Frobenius mappings but was not based on
the sliding window method. Compared to Avanzi’s
method [8], the number of multiplications needed
for the proposed method becomes about 20% larger;
however, that of Frobenius mappings is sufficiently
small. Evaluating the calculation costs, it was
shown that the proposed exponentiation method
was practical for the case that the base of exponen-
tiation was often changed and a Frobenius mapping
could not be fast carried out in the concerned ex-
tension field.

References

[1] D.Boneh, B.Lynn, and H.Shacham, “Short sig-
natures from the Weil pairing,” Proc. of Asi-
acrypt2001, LNCS 2248, pp.514-532, 2001.

[2] T.Nakanishi and N.Funabiki, “Verifier-Local
Revocation Group Signature Schemes with
Backward Unlinkability from Bilinear Maps,”
Asiacrypt2005, LNCS 3788, Springer-Verlag,
pp.443-454, 2005.

[3] D.Boneh, C.Gentry, and B.Waters, “Collusion
Resistant Broadcast Encryption with Short
Ciphertexts and Private Keys,” In Advances
in Cryptology (CRYPTO2005), LNCS 3621,
Springer-Verlag, pp.258-275, 2005.

[4] J. Silverman, The arithmetic of elliptic curve,
Springer-Verlag, 1986.

[5] H.Cohen and G.Frey, Handbook of Elliptic
and Hyperelliptic Curve Cryptography , Dis-
crete Mathematics and Its Applications, Chap-
man & Hall CRC, pp.280-285, p.458, 2005.

42

January 2008 Fast Exponentiation in Extension Field with Frobenius Mappings

Table 1: Comparison of the calculation cost for an exponentiation in Fpm

degree m 3 4 5 6 7
proposal r = 3 r = 4 r = 5 r = 3 r = 4
Eqs.(21) (159,150,2) (159,180,3) (159,234,4) (159,290,9) (159,320,18)
Avanzi w = 5 w = 5 w = 5 w = 5 w = 6
Eq.(13) (160,125,61) (160,156,92) (160,187,123) (160,218,154) (156,249,159)

degree m 8 9 10 11 12
proposal r = 4 r = 5 r = 5 r = 4 r = 4
Eqs.(21) (159,330,18) (159,383,35) (159,388,35) (159,470,33) (159,480,33)
Avanzi w = 6 w = 6 w = 6 w = 6 w = 6
Eq.(13) (156,275,185) (156,302,212) (156,328,238) (156,354,264) (156,381,291)

Remark : (#S,#M ,#F) means #S squares, #M multiplications and #F Frobenius
mappings in Fpm , respectively. r and w are the row size in the proposed
algorithm and the window size in Avanzi’s algorithm Eq.(13), respectively.
The characteristic p is a 160–bit prime number.

[6] F.Hess, N.Smart, and F.Vercauteren, “The
Eta Pairing Revisited,” IEEE Transactions on
Information Theory, Vol.52, No.10, pp.4595-
4602, 2006.

[7] Bodo Moller, “Algorithms for Multi-
exponentiation,” Proc. of SAC2001, LNCS
2259, Springer-Verlag, LNCS pp.165-180,
2001.

[8] R.Avanzi, and P.Mihailescu, “Generic Efficient
Arithmetic Algorithms for PAFFs (Processor
Adequate Finite Fields) and Related Algebraic
Structures,” Proc. of SAC2003, LNCS 3006,
Springer-Verlag, LNCS pp.320-334, 2003.

[9] D.Bailey and C.Paar, “Optimal Extension
Fields for Fast Arithmetic in Public-Key Al-

gorithms,” Proc. Asiacrypt2000, LNCS 1976,
pp.248-258, 2000.

[10] R.Balasubramanian, and N.Koblitz, “The im-
probability that an elliptic curve has subex-
ponential discrete log problem under the
Menezes-Okamoto-Vanstone algorithm,” Jour-
nal of Cryptology, 11(2):141-145, 1998.

[11] P.Barreto, H.Kim, B.Lynn, and M.Scott, “Effi-
cient Algorithms for Pairing-Based Cryptosys-
tems,” CRYPTO 2002, LNCS 2442, pp.354-
368, 2002.

[12] T.Kobayashi, H.Morita, K.Kobayashi, and
F.Hoshino, “Fast Elliptic Curve Algorithm
Combining Frobenius Map and Table Refer-
ence to Adapt to Higher Characteristic,” EU-
ROCRYPT ’99, LNCS 1592, p.176, 1999.

43

Hidehiro KATO et al. MEM.FAC.ENG.OKA.UNI. Vol. 42

	Index

