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This paper proposes an algorithm for generating prime order elliptic curves over
extension field whose extension degree is a power of 2. The proposed algorithm is
based on the fact that the order of the twisted elliptic curve is able to be a prime
number when the extension degree for the twist operation is a power of 2. When
the definition field is F(240−87)4 , the proposed algorithm can generate a prime order
elliptic curve within 5 seconds on PentiumIII (800MHz) with C language.

1 Introduction

In the modern information-oriented society, various de-
vices are connected via the Internet. Information se-
curity technology has played a key role in protecting
these devices or important information from unautho-
rized invasion and evil Internet users. Especially, the
public-key cryptosystem has many uses such as to sign
digitally and to realize electronic commerce. The RSA
cryptosystem, a public-key cryptosystem, has been the
most widely used, but its key for ensuring security is
approximately 2000 bits in length. Therefore, it is not
efficient to implement the RSA cryptosystem on de-
vices with scarce computation resources such as an IC
card. On the other hand, since the elliptic curve cryp-
tosystem(ECC) attains the same security level with an
approximately 7-fold smaller key length as compared
to the RSA, the ECC has received much attention and
has been implemented on various processors.

This paper mainly deals with elliptic curves whose
defining equation is written as follows ;

E(x, y) = y2 − x3 − ax − b = 0. (1)

In general, the coefficients a, b are elements in a cer-
tain finite field, which is called the coefficient field in
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this paper, and the solutions (x, y) to Eq.(1) are called
rational points. The rational points forms an additive
Abelian group and the security attained by ECC relies
upon the difficulty of a discrete logarithm problem on
this additive Abelian group. This problem is called the
elliptic curve discrete logarithm problem(ECDLP)[1].
Since this additive Abelian group plays a role of the
key space, the order of the group that is the number of
rational points must be a large prime number or have
a large prime factor for security reasons of the ECC. In
practice, the large prime number should be at least 160
bits[2]. Correspondingly, from Hasse’s theorem[1], the
order of the definition field, in which the coordinates
of the rational points lie, has to be at least 160 bits[1].

The ECC has to avoid Anomalous attack[1], FR
attack[3], and Weil Descent attack[4]. In other words, if
these attacks can not reduce the ECDLP on the elliptic
curve and of course the order has an enough large prime
factor, it is said that the ECC is secure. From the view-
point of implementation and security, it is said that a
prime order elliptic curve is the best[5]. In order to
check whether or not the ECC avoids these attacks, it is
quite important to count the order of the elliptic curve.
As the conventional order counting algorithm, Schoof’s
algorithm[6], Schoof Elkies Atkin (SEA) algorithm[1],
and Satoh’s algorithm[7] are well-known. In this pa-
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per, we propose an algorithm for generating prime or-
der elliptic curves in which we use these order counting
algorithms.

Recently, several methods for generating prime or-
der elliptic curves have been proposed. We can roughly
classify them into two types, the one adapts some or-
der counting algorithm[5],[8] and the other adapts CM
method[9],[10]. The algorithm proposed in this paper
belongs to the former. Horiuchi et al. algorithm[5] can
generate prime order elliptic curves whose definition
field is a prime field. They modified SEA algorithm.
When the order of the definition field is about 160 bits,
this algorithm, for one prime order elliptic curve gen-
eration, requires about 16 times as much computation
time as the original SEA algorithm. Konstantinou et
al. algorithm[9] is based on CM method[1]. In this al-
gorithm, we cannot freely choose the definition field. In
the research area of implementation of ECC, we usually
fix the characteristic so as to fast carry out the arith-
metic operations in the field[11],[12]. This algorithm is
not suitable for the implementation of ECC.

The authors have already reported some properties
[13], [14] and experimental results[8]. This paper is the
extended version of these reports. In this paper, we
propose an algorithm for generating prime order ellip-
tic curves over the extension field whose extension de-
gree is a power of 2. We particularly deal with the case
that the characteristic of the definition field is larger
than 3. In what follows, Fq and Fqm mean a finite field
and its m-th extension field, respectively. Without any
additional explanation, p denotes the characteristic of
these fields. E(Fq) and E(Fqm) denote elliptic curves
defined over Fq and Fqm , respectively. In addition,
#E(Fq) and #E(Fqm ) denote their orders.

First, we start from an elliptic curve whose coeffi-
cient field is a proper subfield of the definition field.
According to Weil’s theorem[1], when the coefficient
field Fq is some proper subfield of the definition field
Fqm of an elliptic curve E, the order #E(Fqm) is eas-
ily calculated with the order #E(Fq). In general, the
computation time for the order counting algorithm ex-
ponentially increases as the order of definition field be-
comes larger, therefore Weil’s theorem achieves sub-
stantial savings of the order computation time. In this
paper, we call #E(Fq) the base order of elliptic curve,
and our objective is not for the base order.

Next, we introduce the fact that the base order
#E(Fq) divides #E(Fqm ). This fact indicates not only
that #E(Fqm ) is not a prime, but also that the largest
prime factor of #E(Fqm) is considerably smaller than
160 bits even if the size of the definition field Fqm is

about 160 bits. In order to overcome such an undesir-
able property, we introduce twist technique. We can
easily operate the twist by exchanging the coefficients
of the defining equation of the curve, and the order
of the twisted elliptic curve is easily calculated by us-
ing that of the original elliptic curve. Therefore, if we
know the order of the original elliptic curve, we can
obtain that of the twisted elliptic curve without any
complicated calculations. In this paper, we denote the
operation twist with ′. For example, #E′(Fqm ) denotes
the order of the twisted elliptic curve E′(Fqm).

After that, we show that #E′(Fq) divides #E′(Fqm)
when m has an odd number factor. In this case, the
previously mentioned undesirable property is not over-
come. On the other hand, the authors found a fact
that it is possible for #E′(Fqm) to be a prime number
or have a large prime factor when the extension degree
m is a power of 2. In this paper, based on this fact
and using Weil’s theorem, we especially propose an al-
gorithm for generating prime order elliptic curves and
then show some experimental results of the proposed
algorithm.

In the last of this paper, using the proposed algo-
rithm, we give some concrete examples of elliptic curve
suitable for elliptic curve cryptosystem. In addition,
since the proposed algorithm does not restrict the char-
acteristic of the definition field to an odd prime num-
ber, we give some examples in the case that the charac-
teristic is 2. The authors used Pentium III (800MHz)
processor with C language. When the definition field
is F(240−87)4 , the proposed algorithm can generate one
prime order elliptic curve within 5 seconds. We can
say that the proposed algorithm is enough practical.
Furthermore, since the proposed algorithm does not
restrict the order counting algorithm, we can adopt
another fast order counting algorithm, correspondingly
the prime order elliptic curve generation will become
faster.

2 Fundamentals

In this section, let us go over the fundamentals of
elliptic curve, Anomalous attack[1], Frey-Rück (FR)
attack[3], Weil Descent attack[4], other related works,
and the conventional order counting algorithms.
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2.1 Arithmetics on elliptic curve

2.1.1 Coefficient field and definition field

When the characteristic of Fq is not equal to 2 or 3, an
elliptic curve over Fq is generally defined by

E(x, y) = y2 − x3 − ax − b = 0, a, b ∈ Fq. (2)

The solutions (x, y) to Eq.(2) are called Fq-rational
points when the coordinates of x and y lie in Fq. This
paper deals with elliptic curves whose coordinates lie
in some extension field but coefficients a, b belong to its
proper subfield, in order to distinguish these fields, we
call the former definition field and the latter coefficient
field.

2.1.2 Order and trace of elliptic curve

Fq-rational points on an elliptic curve form an additive
Abelian group. In this paper, we denote this group and
its order by E(Fq) and #E(Fq), respectively. Accord-
ing to Hasse’s theorem[19], the existing range of the
order #E(Fq) becomes as follows ;

q + 1 + 2
√

q ≥ #E(Fq) ≥ q + 1 − 2
√

q. (3)

Therefore, the order of the definition field decides the
size of the additive Abelian group. Since the order
and trace of elliptic curve are closely related to the
security of ECC, it is crucial important for crypto-
graphic applications to count the order #E(Fq), where
t=q + 1 − #E(Fq) is called the trace of E(Fq).

2.2 Anomalous and FR attacks

Frey-Rück (FR) attack[3] reduces the ECDLP on
E(Fq) to the DLP in the multiplicative group of a cer-
tain extension field Fqk . It is known that the FR attack
can reduce the ECDLP which satisfies either of the fol-
lowing conditions, where t is the trace of E(Fq), p is
the characteristic of Fq. It is noted that E(Fq) is called
a supersingular elliptic curve if p divides its trace t.

• E(Fq) is supersingular.

• The trace t is equal to 2.

If the order #E(Fq) is equal to the characteristic
p, the elliptic curve is called anomalous curve and not
secure for use of ECC[1]. We can easily check these
weak elliptic curves from their orders.

2.3 Weil Descent attack

Weil Descent attack[4] reduces the ECDLP to the DLP
in the Jacobian of a hyperelliptic curve[4]. The con-
ditions for Anomalous and FR attacks are given on
the order of elliptic curve, however, the condition for
Weil Descent attack is given on the extension degree
of the definition field[15]. In Chap.4, we deal with odd
prime numbers and 2 as the characteristic. For exam-
ple, in order to avoid Weil Descent attack, when the
characteristic is 2, the following extension degrees are
recommended[4],[16];

• prime numbers larger than 160

• 178, 226, 1018, 1186

When the characteristic is odd, the extension degrees
must satisfy the following conditions[15],[17],[18] ;

• Every odd prime factor of the extension degree is
larger than or equal to 11.

• The extension degree is not divisible by 8.

2.4 Other related works

Horiuchi et al.[5] have proposed an algorithm for gener-
ating prime order elliptic curves whose definition field
is a prime field. They modified SEA algorithm. In this
algorithm, the characteristic of the definition field must
be larger than 160 bits from security reasons. When
the order of the definition field is about 160 bits, for
generating one prime order elliptic curve, this algo-
rithm requires about 16 times as much computation
time as the original SEA algorithm.

Konstantinou et al.[9] recently proposed a prime or-
der elliptic curve generation algorithm. This algo-
rithm uses Weber polynomials[1] and is based on CM
method[1]. In this algorithm, we cannot freely choose
the definition field and of course the characteristic.
This algorithm is not suitable for the purpose of the
implementation of elliptic curve cryptosystem because
in the research area of implementation we usually fix
the characteristic so as to fast carry out the arithmetic
operations in the field[11],[12].

2.5 Order counting algorithm and

Weil’s theorem

As the conventional algorithm for counting the order
of elliptic curve, Schoof’s algorithm[6], Schoof Elkies
Atkin (SEA) algorithm[1], and Satoh’s algorithm[7] are
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well known. In addition, when the coefficient and defi-
nition fields of an elliptic curve are Fq and its extension
field Fqm , respectively, we can obtain #E(Fqm) by the
following steps, where the base order is the number of
Fq-rational points on the elliptic curve.

1. Compute the base order #E(Fq).

2. Calculate the objective order #E(Fqm) by the
next Weil’s theorem[19] with the base order
#E(Fq).

Theorem 1 Let the coefficient and definition fields be
a finite field Fq and its extension field Fqm , respectively.
Let t1 = q +1−#E(Fq) be the trace of E(Fq), then we
have

#E(Fqm ) = qm + 1 − tm, tm = αm + βm, (4)

where α, β are complex numbers which satisfy αβ = q

and α + β = t1, and tm is the trace of E(Fqm).

In this paper, we call the above trace t1 the base trace
corresponding to the base order. Theorem 1 indicates
that, when the coefficient field is a proper subfield of
the definition field, we can obtain the order of elliptic
curve by using the base trace. The detailed usage is
shown in Eqs.(5).

3 Main result

In this section, we show a fact that it is possible that
the order of the twisted elliptic curve is a prime num-
ber or has a large prime factor when the twist is op-
erated over the extension field whose extension degree
is a power of 2. Then, based on this fact and using
two techniques of Weil’s theorem and twist, we partic-
ularly propose an algorithm for generating prime order
elliptic curves. After that, we show some experimental
results of the proposed algorithm.

3.1 Prime order elliptic curve

When the coefficient and definition fields are a finite
field Fq and its extension field Fqm , respectively, the
order #E(Fqm ) is given by

#E(Fqm ) = qm + 1 − tm. (5a)

Let t1 be the base race of the elliptic curve E(Fq) that
is t1 = q + 1 − #E(Fq), then tm is given as follows ;

tm =
�m/2�∑

i=0

m

m − i

(
m − i

i

)
(−q)it1

m−2i, (5b)

where �m/2� means the greatest integer less than or
equal to m/2. In this case, the following relation holds
for an arbitrary factor m′ of the extension degree m[1];

#E(Fqm′ ) | #E(Fqm), (6)

where X | Y means that X divides Y . Eq.(6) indicates
not only that #E(Fqm ) is not a prime, but also that
the largest prime factor of #E(Fqm ) is considerably
smaller than 160 bits even if the size of the definition
field Fqm is about 160 bits. Therefore, we must adopt a
further larger extension field as the definition field for
ensuring sufficient security. But it is not desirable from
the viewpoint of compact implementation of the cryp-
tosystem. This defect is due to the constrained setting
that the coefficient field Fq is a proper subfield of the
definition field Fqm . In order to overcome this prob-
lem, we allow the coefficient field not to be a proper
subfield of the definition field Fqm and also we adopt a
technique called twist[5].

For an original defining equation;

E(x, y) = y2 − x3 − ax − b = 0 a, b ∈ Fq, (7a)

The following E′(x, y) is called the twist of E(x, y).

E′(x, y) = y2 − x3 − aA2x − bA3 = 0, (7b)

where A is a non-zero element in the definition field
Fqm . Corresponding to whether A is a quadratic
residue (QR) or a quadratic non-residue (QNR), the
order of E′(x, y) over Fqm becomes as follows ;

#E′(Fqm) =

{
qm + 1 − tm when A is a QR

qm + 1 + tm when A is a QNR
. (8a)

(8b)

By using the twist technique, we can extend the coeffi-
cient field Fq to the extension field Fqm and easily ob-
tain the twisted order #E′(Fqm) with tm. As shown in
Eq.(5a) and Eq.(8a), when A is a quadratic residue in
the definition field Fqm , the previously mentioned un-
desirable property Eq.(6) remains since Eq.(8a) is equal
to Eq.(5a). In what follows, we consider that E′(Fqm)
is twisted with a QNR, accordingly the twisted order
#E′(Fqm) is given by Eq.(8b).

Now, let us examine whether or not #E′(Fqm ) is able
to be a prime number (or have a large prime factor).
When the extension degree m has an odd factor m′ �= 1,
then #E′(Fqm) also has the same undesirable property
as follows ;

#E′(Fqm/m′ ) | #E′(Fqm ). (9)
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On the other hand, when the extension degree m is
equal to 2c with a positive integer c, we can calculate
the twisted order #E′(Fq2c ) by

#E′(Fq2c ) = q2c

+ 1 + t2c , (10a)

t2c =
2c−1∑
i=0

2c

2c − i

(
2c − i

i

)
(−q)it1

2c−2i,(10b)

and there exist a lot of t1’s such that the twisted or-
der #E′(Fq2c ) is a prime (see A). The absolute values
are tabulated in Table 1. The reason why we use the
absolute values is that from Eq.(10b) #E′(Fq2c ) in ei-
ther case of ±t1 are equal to each other. In the case of
(q,m) = (228 +3, 8), for example, #E′(Fq8 ) becomes a
prime when t1 = ±59. Concluding this section, we can
generate prime order elliptic curves when the extension
degree m for the twist Eqs.(7) is a power of 2.

Table 1: The absolute values of t1’s such that the

twisted order #E′(Fq2c ) becomes a prime number

q† 2c absolute value of t1

215 + 3 16 23, 39, 63, 103, · · ·

224 − 3 8 39, 217, 261, 345, · · ·

228 + 3 8 59, 79, 91, 111, · · ·
† In this table, each q is a prime number.

3.2 Proposed algorithm

Prime order elliptic curve generation algorithm

Input: Coefficient field Fq and extension degree 2c.
Output: A prime order elliptic curve E′(Fq2c ).

Step1: Choose coefficients a, b ∈ Fq of the defining
equation E(x, y) at random. Then, test the irre-
ducibility of E(x, 0). If E(x, 0) is not irreducible,
then choose different coefficients again. Other-
wise, go to Step2.

Step2: Compute the base order #E(Fq) of the no two-
torsion elliptic curve obtained in Step1. Then, de-
termine t1 = q + 1 − #E(Fq).

Step3: Calculate t2c by Eq.(10b), then test whether
or not the twisted order #E′(Fq2c ) calculated by
Eq.(10a) is a prime number . If it is not prime,
then return to Step1. Otherwise, go to Step4.

Step4: Determine the twisted equation Eq.(7b) with
a quadratic non-residue A∈Fq2c . Then, E′(Fq2c )
is a prime order elliptic curve.

Input coefficient field Fq and 2c

Choose a, b ∈ Fq at random

Is E(x, 0) irreducible?

Compute #E(Fq) and

Yes

calculate t1 = q + 1 − #E(Fq)

Calculate t2c and #E′(F
q2c )

Is #E′(F
q2c ) a prime?

Yes

Output the twisted defining equation E′(x, y)

No

No

Figure 1: Calculation flow of the proposed algorithm

In Step1 and Step2, it is well-known that the sufficient
and necessary condition for an elliptic curve to be a no
two-torsion elliptic curve is that E(x, 0) is irreducible
over Fq[1]. The terminology ”no two-torsion elliptic
curve” means that the elliptic curve does not have any
rational points of order 2, accordingly the order of no
two-torsion elliptic curve is an odd number.

The computational complexity of the irreducibility
test in Step1 is bounded at O(log q) polynomial modulo
operations over Fq by Hiramoto et al. algorithm[20].
On the other hand, that of the order computation in
Step2 is bounded at O(log6 q) by SEA algorithm[1],
or at O(log8 q) by Schoof’s algorithm[6], respectively.
In this paper, we do not deal with the primality test
at Step3 into detail, however, its computational com-
plexity is bounded at O(23c log3 q) bit-operations by
Solovay-Strassen algorithm[21], for example. The ma-
jor step in this procedure will be Step2.

3.3 Experimental results

In this section, we evaluate the performance of the pro-
posed algorithm by using the computation time for gen-
erating one prime order elliptic curve. We adopted Hi-
ramoto et al. algorithm[20] for the irreducibility test at
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Step1, the Schoof’s algorithm[6] for Step2, and a pri-
mality test library[22] for Step3, respectively. We im-
plemented them on a PentiumIII (800MHz) processor
with C language. In this section, we deal with a prime
field Fp as the coefficient field and use prime numbers
224 − 3, 228 + 3, and 229 − 3 as the characteristic p.

Now, let us estimate the probability of generating
a no two-torsion elliptic curve at random that is the
probability of success in one iteration of Step1. The
number of possible pairs of the coefficient a, b is equal
to p2 and the number of Fp-irreducible polynomials in
the form of x3 + ax + b is (p2 − 1)/3[23]. Therefore,
we can estimate the probability at about 1/3. Ta-
ble 2 shows the average times for irreducibility test,
Step1: no two-torsion elliptic curve generation, and
Step2: order computation by the Schoof’s algorithm,
respectively.

Table 2: The average times for irreducibility test,

Step1, and Step2

p
Irreducibility Step1 [µs] Step2 [ms]

test [µs]

224 − 3 18.03 53.61 13.82

228 + 3 18.60 56.59 22.03

229 − 3 22.25 66.59 22.43

From Table 2, we can find that Step1 requires ap-
proximately three times as much computation time as
irreducibility test and that Step1 is carried out much
faster than Step2. In what follows, we do not take the
computation time for Step1 into account.

Next, let us experimentally estimate the probability
that E′(Fp2c ) becomes a prime number at Step3. For
the extension degrees 2c = 2, 4, 8, 16, Table 3 shows the
number of t1’s such that the twisted order #E′(Fp2c )
is a prime number. It is noted that the base trace t1
satisfies that t1 = p + 1 − #E(Fp).

Table 3: The number of t1’s such that the twisted order

#E′(Fp2c ) becomes a prime number

p
Extension degree m = 2c

2 4 8 16

224 − 3 418 478 328 178

228 + 3 1406 2290 1280 758

229 − 3 2662 752 1290 1028

The following facts have been already known ;

• It has been experimentally shown that the base or-
ders are almost uniformly distributed in the range
given by Eq.(3)[5].

• In the range given by Eq.(3), there are �2√p� dis-
tinct odd numbers.

• The base trace t1 is odd if and only if the elliptic
curve E(Fp) is a no two-torsion elliptic curve.

Based on these facts, we can estimate the probability
by dividing the numbers tabulated in Table 3 by �2√p�.
The results are shown in Table 4. For example, in

Table 4: Probability of E′(Fp2c ) being prime in Step3

p �2√p�
Extension degree m = 2c

2 4 8 16

224 − 3 8191 0.051 0.058 0.040 0.021

228 + 3 32768 0.042 0.069 0.039 0.023

229 − 3 46340 0.057 0.016 0.027 0.022

the case of (p, m) = (224−3, 2), since the probability is
0.051, we can generate a prime order elliptic curve with
about 20 iterations from Step1 to Step3. In addition,
from the table, we can find a tendency that the prob-
ability decreases as the extension degree increases. It
seems that the distribution of prime numbers becomes
sparse as the number increases in accordance with a
heuristic reasoning, using the prime number theorem.

Last, Table 5 exhibits the average time needed for
generating one prime order elliptic curve E′(Fp2c ).

Table 5: The average time for generating a prime order

elliptic curve [ms]

p
Extension degree m = 2c

2 4 8 16

224 − 3 326.5 203.1 380.9 665.4

228 + 3 472.7 325.7 537.1 977.5

229 − 3 449.2 854.8 971.7 1256.5

For example, in the case of (228 + 3, 8), the aver-
age time becomes 537.1ms. In the case of (224 − 3, 8),
the average time becomes 380.9ms which is faster than
that of the first case. This is because an order compu-
tation in the second case is faster than the first case’s
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as shown in Table 2. On the other hand, in the case of
(228 +3, 16), the average time becomes 977.5 ms which
is slower than that of the first case. This is because,
as shown in Table 4, the probability that the twisted
order E′(Fp2c ) is a prime number in the third case is
lower than that of the first case.

4 For elliptic curve cryptosys-

tems

In this section, using the proposed algorithm, we con-
cretely generate elliptic curves suitable for ECC. We
do not deal with the case that the characteristic is 3.
The authors have used Pentium III (800MHz) proces-
sor with C language for programming.

4.1 when the characteristic is larger

than 3

First, in order to avoid FR attack, we modify Step3 in
the proposed algorithm as follows ;

Step3’: Calculate t2c by Eq.(10b), then test whether
or not the characteristic p divides t2c . If p divides
t2c , then return to Step1. If not, then test whether
or not #E′(Fq2c ) is a prime number. If it is not a
prime number, then return to Step1. Otherwise,
go to Step4.

Next, in order to avoid Weil Descent attack, in this
section we consider Fp as the coefficient field and re-
strict the definition field to extension fields Fp2 and
Fp4 , where p is the characteristic. Correspondingly, we
choose about 40 bits and 80 bits prime numbers as the
characteristic p for ensuring sufficient security.

Table 6 and Table 7 show examples of the twisted
elliptic curve whose order is a prime number. For the
base order computation at Step2 in the proposed algo-
rithm, we used Schoof’s algorithm and SEA algorithm
in Example(1) ∼ (3) and Example(4) ∼ (6), respec-
tively. In the case of Example(3), for example, the
order of the twisted elliptic curve, which is generated
by the proposed algorithm, becomes a 188 bits prime
number, where the detail is shown in Table 9. From Ta-
ble 6 and Table 7, we find that when the definition field
is Fp4 the proposed algorithm generates such an ellip-
tic curve within one minute on PentiumIII (800MHz).
On the other hand, when the definition field is Fp2 it
takes several minutes.

4.2 when the characteristic is 2

Let us consider the case that the characteristic is 2,
that is q = 2d, where d is a number. In this case,
the defining equation E(x, y) is generally written as
follows;

E(x, y) = y2 +y−x3−ax2−b = 0, a, b ∈ Fq, (11a)

E(x, y) = y2+xy−x3−ax−b = 0, a, b ∈ Fq . (11b)

It is well-known that the base order #E(Fq) of the el-
liptic curve defined by Eq.(11a) is odd. On the other
hand, the base order #E(Fq) of the elliptic curve de-
fined by Eq.(11b) is even and correspondingly the base
trace t1 is odd. In what follows, we particularly con-
sider the latter defining equation Eq.(11b). When the
characteristic is 2, the defining equation of the twisted
elliptic curve is given as follows[19] ;

E′(x, y) = y2+xy−x3−(a+a′)x2−b, a′ ∈ Fq2c , (12)

and the twisted order #E′(Fq2c ) is given by

#E′(Fq2c ) =

{
q2c

+ 1 − t2c when Tr(a′) = 0

q2c

+ 1 + t2c when Tr(a′) = 1
,

(13a)

(13b)

where t2c is given by Eq.(10b) and Tr(·) means the
following trace function over the prime field F2 ;

Tr(x) =
2cd−1∑
i=0

x2i

. (14)

From Eqs.(13) and Eq.(10b), t2c becomes odd, corre-
spondingly #E′(Fq2c ) becomes even. Therefore, FR
attack can not reduce the ECDLP on this twisted
curve. In other words, when the characteristic is 2,
in order to avoid FR attack the order of elliptic curve
must be even, that is the reason why we consider the
elliptic curve in the form of Eq.(11b).

From the above discussion, when the characteristic
is 2, it is the best that the order of elliptic curve is a
product of 2 and some large prime number. As shown
in Sec.3.1 and A, it is possible that #E′(Fq2c ) is a
product of 2 and a prime number when the order is
given by Eq.(13b). We modify Step3 as follows ;

Step3’: Calculate t2c by Eq.(10b), then test whether
or not #E′(Fq2c ) is a product of 2 and a prime
number. If it is not a prime number, then return
to Step1. Otherwise, go to Step4.
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Table 6: Examples of prime order elliptic curve over Fp4

Example(1) Example(2) Example(3)

characteristic p 240 − 87 244 + 21 247 + 5

coefficient field, definition field Fp, Fp4 Fp, Fp4 Fp, Fp4

modular polynomial x4 − 7 x4 − 2 x4 − 2

Schoof’s algorithm over Fp [ms]† 138 263 361

irreducibility test over Fp [ms]†† 1.6 1.7 1.7

average time [s]††† 4.53 7.23 12.3

original defining equation E(x, y) y2 − x3 − x − 12 y2 − x3 − x − 95 y2 − x3 − x − 91

twisted defining equation E′(x, y)‡ y2 − x3 − ω2x − 12ω3 y2 − x3 − ω2x − 95ω3 y2 − x3 − ω2x − 91ω3

order #E′(Fp4) 159 bits prime number 176 bits prime number 188 bits prime number

† Computation time of Schoof’s algorithm[22]. †† Computation time of Hiramoto et al. algorithm[20].

††† Average time for generating one prime order elliptic curve by the proposed algorithm.

‡ ω is a zero of the modular polynomial and a QNR in Fp4 (see C).

In addition, it should be noted that in this case we do
not need irreducibility test at Step1.

Table 8 shows two examples of the twisted elliptic
curve whose order is a product of 2 and a large prime
number. The one is defined over F2178 and the other is
defined over F2226 . In order to avoid Weil Descent at-
tack, we chose these extension degrees as introduced in
Sec.2.3. We used Satoh’s algorithm[7] for the base or-
der computation at Step2 in the proposed algorithm.
In the case that F2226 is the definition field, for ex-
ample, we consider F2113 as the coefficient field and
compute the base order #E(F2113). The order of the
twisted elliptic curve, which is generated by the pro-
posed algorithm, is a product of 2 and 224 bits prime
number, where the detail is shown in Table 9. We find
that the proposed algorithm generates such an elliptic
curve within a few seconds on PentiumIII (800MHz).

The hexadecimal representation (·)16 shown in Table
8 shows the vector representation of an element in the
coefficient field with the polynomial basis. For exam-
ple, (55C)16 shown in Example(8) means that

(55C)16 = (010101011100)2

= τ10 + τ8 + τ6 + τ4 + τ3 + τ2, (15)

where τ is a zero of x113 + x9 + 1 over F2.

5 Conclusion

In this paper, we have proposed an algorithm for gen-
erating prime order elliptic curves over the extension

field whose extension degree is a power of 2.

First, we started from an elliptic curve whose coef-
ficient field is a proper subfield of the definition field.
According to Weil’s theorem, when the coefficient field
Fq is some proper subfield of the definition field Fqm

of an elliptic curve E, the order #E(Fqm) is easily
calculated with the order #E(Fq), however, #E(Fq)
divides #E(Fqm). In order to overcome such an unde-
sirable property, we introduced twist technique. When
m has an odd number factor, since #E′(Fq) divides
#E′(Fqm), the previously mentioned undesirable prop-
erty is not overcome, where ′ means the twist oper-
ation. In this paper, we showed that it is possible
that #E′(Fqm) is a prime number or has a large prime
factor when the extension degree m is a power of 2.
Based on this fact and using two techniques of Weil’s
theorem and twist, we proposed an algorithm for gen-
erating prime order elliptic curves over the extension
field whose extension degree is a power of 2. Then,
we showed some experimental results of the proposed
algorithm.

In this paper, we gave some concrete examples of
elliptic curve suitable for elliptic curve cryptosystem.
Since the proposed algorithm does not restrict the
characteristic of the definition field to an odd prime
number, we also gave some examples in the case that
the characteristic is 2. When the definition field is
F(240−87)4 , the proposed algorithm generates one prime
order elliptic curve within 5 seconds on PentiumIII
(800MHz), for example. From these results, we can
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Table 7: Examples of prime order elliptic curve over Fp2

Example(4) Example(5) Example(6)

characteristic p 280 + 13 284 + 45 289 + 29

coefficient field, definition field Fp, Fp2 Fp, Fp2 Fp, Fp2

modular polynomial x2 − 2 x2 − 2 x2 − 2

SEA algorithm over Fp [s]† 5.34 7.43 6.02

irreducibility test over Fp [ms]†† 3.3 3.4 3.6

average time [s]††† 457 434 402

original defining equation E(x, y) y2 − x3 − x − 17 y2 − x3 − x − 282 y2 − x3 − x − 385

twisted defining equation E′(x, y)‡ y2 − x3 − ω2x − 17ω3 y2 − x3 − ω2x − 282ω3 y2 − x3 − ω2x − 385ω3

order #E′(Fp2) 160 bits prime number 168 bits prime number 178 bits prime number

† Computation time of SEA algorithm[22]. †† Computation time of Hiramoto et al. algorithm[20].

††† Average time for generating one prime order elliptic curve by the proposed algorithm.

‡ ω is a zero of the modular polynomial and a QNR in Fp2 (see C).

conclude that the proposed algorithm is enough prac-
tical.
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Table 8:Examples of elliptic curve of order 2×(large prime number) over F2178 and F2226

Example(7) Example(8)

characteristic p 2 2

coefficient field, definition field F289 , F2178 F2113 , F2226

modular polynomials† x89 + x38 + 1, x2 + x + 1 x113 + x9 + 1, x2 + x + 1

Satoh’s algorithm over F289/F2113 [ms]†† 23 48

average time [s]††† 1.1 3.2

original defining equation E(x, y) y2 + xy + x3 + (9B)16 y2 + xy + x3 + (55C)16

twisted defining equation E′(x, y)‡ y2 + xy + x3 + ωx + (9B)16 y2 + xy + x3 + ωx + (55C)16

order #E′(F2178 )/#E′(F2226) 2× (176 bits prime number) 2× (224 bits prime number)

† The authors adopted ”tower field” technique[24]. †† Computation time of Satoh’s algorithm[25].

††† Average time for generating one prime order elliptic curve by the proposed algorithm.

‡ ω is a zero of the modular polynomial x2 + x + 1 and satisfies Tr(ω) = 1 (see B).

Table 9: The order #E′ of each example
Example(1) 1461501636868331575725438632312124851656849706689

Example(2) 95780971304575393148539249497511105354527454230979249

Example(3) 392318858461723299602733168476816100884047506580631580769

Example(4) 1461501637330902918203713968801912835046047843993

Example(5) 374144419156711147060145022013045099888660797782521

Example(6) 383123885216472214589586791588072484104180015164840489

Example(7) 383123885216472214589586755758696046901562121350876442

Example(8) 107839786668602559178668060348078503513673910646989329915360388519042

[21] R.Solovay and V.Strassen: SIAM Journal on
Computing, 1977, 84-85.

[22] http://indigo.ie/˜mscott/

[23] R.Lidl and H.Niederreiter: Finite Fields, Encyclo-
pedia of Mathematics and Its Applications, Cam-
bridge University Press, 1984.

[24] B.Selcuk: thesis of Worcester Polytechnic Insti-
tute, 2003. http://www.wpi.edu/
Pubs/ETD/Available/etd-0501103-132249/

[25] http://argote.ch/Demos.html

A It is possible that #E ′(Fq2c) is

a prime number

For ease of explanation, let us consider the case that
c = 2. In this case, using the base trace t1, the orders

are given as follows ;

#E(Fq) = q + 1 − t1, (16)

#E′(Fq) = q + 1 + t1, (17)

#E(Fq2 ) = q2 + 1 − t2

= (q + 1 − t1)(q + 1 + t1)

= #E(Fq)#E′(Fq), (18)

#E′(Fq2) = q2 + 1 + t2

= q2 + 1 − 2q + t21

= (q − 1)2 + t21, (19)

#E(Fq4 ) = q4 + 1 − t4

= (q2 + 1 − t2)(q2 + 1 + t2)

= (q + 1 − t1)(q + 1 + t1)(q2 + 1 + t2)

= #E(Fq)#E′(Fq)#E′(Fq2 ), (20)

80

Yasuyuki NOGAMI and Yoshitaka MORIKAWA MEM.FAC.ENG.OKA.UNI. Vol.39



#E′(Fq4 ) = q4 + 1 + t4

= q4 + 1 − 2q2 + t22

= (q2 − 1)2 + t22. (21)

In general, we have

#E(Fq2c ) = #E(Fq)
c−1∏
i=0

#E′(Fq2i ), (22)

#E′(Fq2c ) =
(
q2c−1 − 1

)2

+ t22c−1 . (23)

Therefore, undesirable properties shown in Eq.(6) and
Eq.(9) are all distilled to #E(Fq2c ). On the other
hand, it is possible that the twisted order #E′(Fq2c )
is a prime number, and of course it is possible that
#E′(Fq2c ) has a large prime factor.

B The proof of Tr(ω) = 1

In these cases, since ω is a zero of the modular polyno-
mial x2 + x + 1 over F2, ω satisfies

ω2 + ω = 1. (24)

In addition, since x2 + x + 1 is irreducible over F2, ω

belongs to F22 and therefore satisfies

ω22
= ω. (25)

On the other hand, when the definition field is F2178 ,
Tr(ω) is represented by

Tr(ω) =
177∑
i=0

ω2i

=
88∑

i=0

ω2i

+
177∑

i=89

ω2i

=
88∑

i=0

ω2i

+
88∑

i=0

ω289+i

=
88∑

i=0

ω2i

+
88∑

i=0

(
ω289

)2i

, (26)

substituting Eq.(25) into the second term of the right-
hand side of Eq.(26),

=
88∑

i=0

ω2i

+
88∑

i=0

(
ω2

)2i

=
88∑

i=0

(ω + ω2)2
i

, (27)

and substituting Eq.(24), then we get Tr(ω) = 1. In
the same, we can prove the case of Example(8).

C ω is a QNR in Fp4, Fp2

In C, we only consider the case of Example(1) into
detail. 7 is a QNR in Fp, where p = 240 − 87, since the
following relation holds ;

7(p−1)/2 = −1. (28)

Then, the modular polynomial x4 − 7 becomes irre-
ducible over F240−87[23],[11]. In the same way, we can
check whether or not ω, that is a zero of x4 − 7, is a
QNR in Fp2 as follows ;

ω(p4−1)/2 =

{
1 when ω is a QR

−1 when ω is a QNR
. (29)

According to the relation between the coefficients and
zeros of the modular polynomial, we have

ω1+p+p2+p3
= −7, (30)

and we can develop the left-hand side of Eq.(29) as

ω(p4−1)/2 = (ω1+p+p2+p3
)(p−1)/2

= (−7)(p−1)/2, (31)

noting that 4 | (p − 1) in this case,

= (−1)(p−1)/2 · 7(p−1)/2

= 7(p−1)/2, (32)

substituting Eq.(28), finally we get ω(p4−1)/2 = −1,
therefore ω is a QNR in Fp4 . Since every characteristic
p in Table 6 and Table 7 satisfies 4 | (p−1), in the same
way we can prove for the other Examples(2)∼(6).
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