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Electrochemistry of Redox Reaction

II. On the Kinetic Equations for Chronopotentiometry

* * **Tsutomu OHZUKU , Keijiro SAWAI and Taketsugu HIRAI

(Received December 20, 1983)

SYNOPSIS

Basic kinetic equations of chronopotentiometric

potential-time curves, in which the equations for re­

versible, quasi-reversible and irreversible electron

transfer process appeared in special cases, were given

and a chronopotentiometric method for determining

kinetic parameters was proposed therefrom. The method

was demonstrated for Fe 3+/Fe2+ redox reaction in acidic

aqueous media. The limitations of the method and the

double-layer charging effects on the potential-time

curve were discussed. The extension of the method to

more general electrode processes was also considered.

1. INTRODUCTION

There have been many excellent treatments on chronopotentiometric

potential-time equations for various electrode processes l - 7) •

In all of these, however, the equations have restricted applications,

i.e., the equations for reversible, quasi-reversible and irreversible

electron transfer process.

In the present work, we have considered a general chronopotentio­

metric potential-time relationship without any restricted conditions

with respect to kinetics of charge transfer, in which the equations
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for reversible and irreversible electron transfer process appear in

special cases. A discussion is given of the significance of the

equations together with the experimental confirmation of the treatments

and a chronopotentiometric technique for determining kinetic parameters

on redox reaction is proposed therefrom.

2. THEORETICAL BACKGROUND OF THE METHOD

In the case of a single elementary charge transfer reaction,

Ox + e Red ( 1)

(3)oo
CR' for t

which involves two soluble species, neglecting the double layer

effects, the current-polarization voltage characteristics under the

galvanostatic condition may be described8) as

:~ CR(o,t)exP{~~(E(t) - EO)} - Co(o,t)exp{-(l ;Ta)F(E(t)

o

- EO)}

(2)
-2 Swhere J C is the controlled current density in A·cm , J O is the apparent

standard exchange current density in A.cm- 2 , a is the transfer coef­

ficient for oxidation process, EO is the standard electrode potential

in V with respect to reference electrode ( vs. RE ) and E(t) is the

polarization voltage in V (vs.RE) as a function of time, while CR(O,t)

and CO(O,t) are the surface concentrations of the species Red and Ox,

respectively, in moles'cm- 3 as a function of time.

In order to derive the chronopotentiometric potential-time equations,

the surface concentration of Red and Ox must be obtained by solving

Fick's equation for linear diffusion under the following initial and

boundary conditions,

C~ and CR(x,t)

and -+- co (4)

aC
R

(x,t)
FDR( ax )x=o (5)

where cg and C~ are the bulk concentrations of Ox and Red, respectively,

in moles·cm- 3 • It was assumed that no rate processes except diffusion

participated in a mass transfer and that the conditions of semi­

infinite linear diffusion were fulfilled.

Employing the Laplace transform method to the boundary value problem'
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and putting x = 0 in the final solution, CO(O,t) and CR(O,t) can be

obtained
l

) Co(O,t) = CO + P .tl / 2 (6) C (0) CO _ P .tl / 2 (7)
o 0 R,t R R

with and (8)

(9)- CL) F (E (t) - E )}
RT 0

No hypothesis on the kinetics of charge transfer was made in the deri­

vations of CR(O,t) and Co(O,t) in eqs.(6) and (7), and consequently

the equations can be combined with eq.(2) to derive a chronopotentio­

metric potential-time equation.

Combination of eqs.(2) ,(6) and (7) with the elimination of CR(O,t)

and Co (0, t) yields the expression

J c
JS

. 0

(10)

controlled current

1/2 =
'0

PR t l / 2 at time '0 in eq.(9), one may define the

'0' where E(t) + +00 , for an oxidation process
F01/21Tl/2CO

R R
2JC

and also define the transition time 'R' where E(t) + _00 , for a

where t is the time in seconds elapsed since the

J c was applied.

Putting C~ =

transition time

reduction process

1/2
'R

FO~/21Tl/2C~

2J
C

(11)

Equations (10) and (11), first derived by Sand9 ), indicate that one

can determine 00 and/or OR from the transition time measurements.

3. ANALYTICAL RESULTS

In order to assess the previous treatments, the following special

cases were considered.

When Jc/J~ ~ 0, equation (9) reduces to the simple form

E (t) (12)

which is the same formula on chronopotentiometric potential-time
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equation for a

Assuming cg

application of

(13)

or

reversible electron transfer process l ) .

= 0 ( or c~ = 0 ) and rearrangement of eq.(12) with

eqs. (8) and (10) (or eq.(ll» gives

RT DR 1/2 RT t l / 2
E(t) = EO + l' In(-----) + l' In( 1/2· 1/2)

DO TO - t

D Tl / 2 _ t l / 2
E (t) = Eo + RT In (_R_) 1/2 + ~ In (-"R"----:--:-=-__

F DO F t l / 2

(15)

1 in

(14)

the first term ( or the second

than the second term ( or the

CO _ p .tl / 2
» E - RT In (_..,.R:--_....;.R_....-r::::_

o F CO + P • t l / 2
o 0

E (t)

By putting t l / 2/(T l / 2 t 1/ 2 ) = 1 or (T l / 2 _ t l / 2)/t l / 2
o R 1 2)

eq.(13), one can define the quarter-wave potential' El / 4 •
D

E
l

/
4

= E + RT In ( R_) 1/2
o F DO

It should be noted here that the condition of CO = 0 ( or cO = 0),
R 0

at which the quarter-wave potential has the specific meaning as was

expressed in eq.(14), does not hold in all rigor for any experiment

because of the nature of exponential or logarithmic function in eqs.(9)

or (12), respectively.

For an another special case, when

term) in eq.(9) is extremely larger

first term) ,i.e.,

for an oxidation process ( J C > 0 ) , or
cO _ p .tl / 2

E (t) « EO
_ RT In R R (16)

F CO + P .tl / 2
o 0

for a reduction process ( J C < 0 ) , equation (9) becomes the following

expressions

E (t) E + RT In (
J

C ) RT [ (_t_) 1/2J (17)- --In 1 -o aF JS.CO aF TO
o R

+ RT In[1 - ( .,.t
R

)1/2J (18)
(1 - a) F •

for an oxidation process J c > 0 ), and

RT J C
E(t) = EO - (1 _ a)F 1n(- J~S~C~O-

O· 0

for a reduction process ( J C < 0 ), where TO and TR are the transition

times for oxidation and reduction process, respectively, as were defined

in eqs.(lO) and (11). Equations (17) and (18) indicate that polar­

ization voltage versus the decimal logarithm of the quantity

{ 1 - (t/To)1/2} or { 1 - (t/T
R

)1/2} yields a straight line whose slope

is 2.303RT/aF for an oxidation process and 2.303RT/(1-a)F for
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a reduction process.

The equations (17) and (18) have the same formulas derived by Delahay

and Berzins 2 ) for totally irreversible charge transfer process but the

second terms in the equations and the conditions given in eqs.(15)

and (16) are different. Equations (15) and (16) are more specific

conditions to derive eqs.(17) and (18) because the right hand sides of

the equations are the corresponding potential-time equations for a

reversible charge transfer process.

Since the potential-time equations for reversible or irreversible

charge transfer processes appear in a special case, equation (9) may

be one of the general expressions for the chronopotentiometric

potential-time characteristics.

In order to illustrate a chronopotentiometric potential-time curve

and then to make visual inspection on the equation more specifically,

numerical analysis was carried out. Although numerical analysis on

eq.(9} was possible with the given J c ' J~, a, cg, c~, DO' and DR' it

is convenient to consider the following special case.

Putting c~ = cg = C and 'R = '0 ,(i.e., DR = DO)' one obtains

J c [ t 1/2 ] aF t 1/2 (1 a) F--= 1-(-) exp{-(E(t)-E)} - [l+(~) ]exp{- ~T (E(t)-EO)}
JS.C 1: RT 0 ,
o (19)

where Jc/J~ C is the symboli'zing kinetic factor to express" activity"

of electrode system and tiT is the symbolizing time factor.

Equation (19) indicates that the shape of chronopotentiometric

potential-time curve is simply determined by Jc/J~'c and T •

Figure 1 shows the results of numerical analysis on eq.(19) with

varying Jc/J~'c at a = 0.5. Curve (j) in Fig.l shows the Nernstian

potential-time curve, i.e., Jc/J~'C = O. Since the upper limit of
S 9 -2J O was calculated to be ca. 10 A.cm according to the absolute rate

theorylO), the curve approach to the ideal Nernstian potential-time

curve as close as they can, but they can not be superimposed onto the

ideal Nernstian curve.

For large value of Jc/J~'C' that is, small values of J~ and C with

large J C' the curve shifts systematically apart from the ideal Nernst­

ian curve with 2.303RT/aF or 2.303RT/(1-a)F dependence on 10gIJcI/J~'C'

which is corresponding to the Tafel slope. As can be seen in Fig.l,

the value of Jc/J~'c straightly affected on polarization voltage in

chronopotentiometric potential-time curves for both oxidation and

reduction processes.
S -1For small value of Jc/Jo'c, ca.below 10 ,a does not affect so much
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Fig.l Theoretical chronopotentiometric potential-time curves

calculated from eq.(19) with a = 0.5 and T = 273 oK as
Sa function of Jc/Jo·c.

Jc/J;' C ; (a) 10 7 , (b) 106 , (c) 105 , (d) 10 4 , (e) 10 3 ,

(f) 102 , (g) 10 1 , (h) 100 , (i) 10-1 and

(j) 0 (Nernstian)

on the shape of chronopotentiometric potential-time curve as can be

seen in Fig.l. The effect of a on the shape, however, is remarkable

for large value of Jc/J;'c as shown in Fig.2. Figure 2 indicates

that the transfer coefficient a can be determined together with J; in

Fig.l if one has specific chronopotentiometric potential-time curves

for oxidation and/or reduction process in a solution with equimolar

of Ox and Red.

From the above considerations, we may be able to conclude that

equation (9) is one of the general formulas on the chronopotentiometric

potential-time curves.
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Fig.2 Theoretical chronopotentiometric potential-time curves

calculated from eq.(19) with Jc/J~·C = 105 and T = 273

oK as a function of a.

a, I-a; (a) 0.2, 0.8, (b) 0.3, 0.7, (c) 0.4, 0.6,

(d) 0.5, 0.5, (e) 0.6, 0.4, (f) 0.7, 0.3,

(g) 0.8, 0.2, and (h) 0.9, 0.1

4. EXPERIMENTAL CONFIRMATIONS ON THE TREATMENTS

In order to confirm the previous treatments., chronopotentiometry

for Fe 3+ reduction on Pt-disk ( 1.0 cm2 ) in 2 N HCl solution was

carried out. Rather highly concentrated one by one mixture of Fe 3+
2+ -4 -3and Fe (1.80 x 10 moles·cm ) was used in the present study to

give large value of J~'C in eq.(19). The controlled current J c was

varied from 0.2 to 11.0 mA.cm- 2 , which gave longer transition times

than 7 sec, to reduce a double layer charging effectl ,11,12) on a

potential-time curve. All experiments were carried out at room

temperature ( 12.0 ± 0.5 °c ) to avoid a possible vibration due to an
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electric fan. In order to measure the transition time 'R properly,

Pt-disk in polyvinyl chrolide-tubing was placed horizontally9,13)to

avoid a semi-spherical diffusion on an edge, to minimize a natural

convection, and to maintain a linear downward diffusion, which enable

us to measure the long transition times upto 6 hours. A Teflon

hydrophobic agent was used to avoid a possible leakage between Pt-disk

and tubing wall. Reference electrode used here was platinum wire

in the same solution, which was calibrated to be 0.457 ~ 0.002 V vs.

AgCl/Ag at room temperature (12.0 ± 0.5 °C).

The IJ Ch ~/2vs. IJ CI plots were shown in Fig. 3. The products

IJcl.,~/2were independent of the controlled current J('. This means

that the additional rate processes except diffusion was not involved

in this system. Applying eq.(ll), the diffusion coefficient D
Fe

3+

was calculated to be ( 3.8 : 0.1) x 10-6 cm2• sec- l at 12.0 ~ 0.5 °C.

Applying the curve-fitting method on an observed potential-time

curve, that is, calculating the E(t/'R) from eqs.(8) ,(9) ,and (11)

with varying J~ and a systematically again and again until the best

~ 5~.........,.-.-.........,.-.-.....--r-,.----.---r----,
-U

G)

(,J~

'e 4
u

N<r.
I 0 3 Qj c£- - 9- - - - .()- - - - - - - - - ~- - - - - - -o-

X
...... 2

~a:..
-JJ

5 10
-3 -2

I Jell XIO A'em

Fig.3 The IJcl·,~/2 vs. IJcl plots for Fe 3+ reduction on Pt-disk

(1.0 cm2) with polyvinyl chrolide guard in 2 N HCl solution

at 12 : 0.5 °C.
o 0 -4-3CFe 2+ = CFe 3+ = 1.80 x 10 moles·cm
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-230 A'cm

-225 A'cm ,56.2 sec, J;
14.0 sec, J;

Comparison between experimental ( solid lines ) and theoretical

(open circles) chronopotentiometric potential-time curves for

Fe 3+ reduction on Pt-disk (1.0 cm2 ) with polyvinyl chrolide

guard in 2 N HCl solution at 12 ± 0.5 0C.
o 0 -4-3CFe 3+ = CFe 2+ = 1.80 x 10 moles·cm

(a) Jc = - 2.0 x 10-4 A.cm- 2 , 'R = 19930 sec, J;
and a = 0.55.

-3 -2(b) J C = - 4.0 x 10 A'cm , 'R

and a = 0.55.
-3 -2(c) J C = - 8.0 x 10 A'cm , 'R

and a = 0.55.

Fig.4

fitting curve was obtained, J; and a were determined.

Figure 4 shows the comparison between observed potential-time curves

(solid lines)and the theoretical curves (open circles) calculated from

eq.(9) with the determined J; and a from a curve-fitting method.

Kinetic parameters J; and a separately obtained from three potential~

time curves gave consistent values and fairly good agreement between

theoretical and experimental potential-time curves was obtained.

From the analytical and experimental results, we concluded that the

equation (9) was one of the general expressions on chronopotentiometric

potential-time curves.
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5. DISCUSSION

5.1 Criteria on Reversible and Irreversible Chronopotentiometric

Potential-Time Curve

On the basis of the previous treatments, we may discuss specific

criteria on chronopotentiometric potential-time curves for reversible

and irreversible processes.

According to eq.(12}, equilibrium electrode potential at any

moment during electrolysis at constant current may be given as
CO + P .tl / 2

E (t) ::: E + RT ln ( 0 o} (20)
e 0 F C~ _ PR.tl/2

where Ee(t} is the equilibrium electrode potential at time t.

Although a finite current is passed through, equation (20) indicates

equilibrium potential change of an electrode system. The same

situation can be found in potentiometric titrations with constant rate

of titration.

at any

difficulty

(22)

has somewhat

so far14}.
14}nt

One may be able to define concentration overvoltage n
C

as

n (t) ::: E (t) - E (O) (21)
c e e

Although the term II concentration overvoltage"

to use here, we obeyed the difinition reported

On the other hand, the charge transfer overvoltage

moment may be given as

J c ::: Jo(t}(exp{~~nt(t}} - exp{-(l;TCJ.}Fnt(t}})

with
E(t} - E (t)e ( 23)

and

where Jo(t} is the apparent exchange current density in A.cm- 2 at time

t, E(t} is the polarization voltage in V (vs.RE), while CR(O,t} and

CO(O,t} are the concentrations of Red and Ox, respectively, on an

electrode surface at time t. Consequently, another expression on

chronopotentiometric potential-time curve, instead of eq.(9}, may be

given by
(25)

where Ee(O} is the equilibrium potential at time t
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charge-transfer overvoltage at time t defined by eq.(23) and nc(t) is

the concentration overvoltage at time t defined by eq.(21).

When Int(t) I « RT/aF, RT/(l-a)F in eq.(22), nt(t) can be dropped

in eq.(25) and then eq.(12) is a good approximation for describing the

potential-time curves, that is, if the potential difference between

an observed curve and an ideal curve calculated from eq.(12) is within

a few millivolts during electrolysis, one may call "reversible process u
•

When Int(t) I » RT/aF, RT/(l-a'F, one of the exponential terms in

eq.(22) can be dropped. In such a case, equations (17) or (18) are

a good approximation, that is, if the potential defference between an

observed curve and an ideal curve calculated from eq.(12) is more than

120 millivolts for a = 0.5 and T = 298 oK at any moment during electro­

lysis, one may call" irreversible process ".

It should be recalled here that the shape of potential-time curve

is mainly controlled by the product Jc/J;'C as was stated before,

therefore, the distinction between reversible and irreversible process

is highly artificial, and then it is not necessary to define which is

reversible or irreversible process.

5.2 Effect of Double-Layer Capacity on Chronopotentiometric Potential­

Time Curve

Although the influence of double-layer charging on chronopotentio­

metric potential-time curve was not considered in the present study,

it is appropriate to discuss briefly on the double-layer charging

effects on the potential-time curves, which are frequently large

throughout the experiment.

The controlled current density J C may be written as the algebraic

sum of faradaic current density coupled with a mass transfer and

double-layer charging current density

(26)

where t is the time elapsed since the controlled current J c was applied.

The double-layer charging current density Jdl(t) in eq.(26) is given

by
_ dE

Jdl(t) - C(E)· dt (27)

where C(E) is the differential capacity in Farads.cm- 2 as a function

of electrode potential.

If one assumes that no adsorption occures at the electrode surface,
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charging of electrical double layer is the same as that on ideally

polarized electrode, and the differential capacity is independent of

electrode potential, one can estimate the effect of double-layer

charging on the curvesll- 13 ) • Since the current J dl is calculated

to be on the order of 10-5A' cm-2 when C ~ 10-5 Farads.cm-2 and

dE/dt ~ I v.sec- l , such a charging effect was negligible in the present

case.

Another type of double-layer charging current is due to an adsorbed

species, especially reacting species. Reactant such as Ox and Red

should transfer from the solution of bulk to an electrode surface as

close to the place at which electron(s) transfer takes place.

Although exact location where a reactant accepts or releaseselectron(s)

is not known, a reactant should exisits within a double layer for non­

polarizing electrode.

When the species Ox and Red exist within double layer on an electrode

and then mass transport of species Ox and Red from the solution of

bulk does not need to proceed an electrochemical reaction

Ox + ne t Red I

the electrode potential may be also ~epresented as

with

RT CR (0 ,t)
E = E - -In--",,,~-,,,,,

o nF CO(O,t)

CO(O,t) + CR(O,t) = c*

( 28)

(29 )

(30)

nF ( nF* (RT)exp -RT(E
= nFC

(1 + exp{-~~(E

C(E)

where C* is the total concentration of Ox and Red in moles.cm-2 while

CO(O,t) and CR(O,t) are the surface concentrations of Ox and Red,

respectively, in moles·cm- 2

By solving the equations15- l7 )under the given conditions, one may

have the differential capacity in Farads.cm-2 as a function of electrode

potential

(31)

if the species Ox

electrolysis.

Combination of eqs.(27) and (30) yields the charging current density

and the constant charging current density gives the chronopotentiometric

potential-time curves with the transition time

*L = L = nFC
o R J

C
or Red only exists on an electrode surface before
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Although there has been an ingenious technique, first developed by

Gerischer and Krause18 , 19) , to remove a double-layer elect on

electrode kinetics, the conpensation of such a charging current seems

to be difficult because the charging current is due to the faradic

current without mass transfer of reacting species, which should have

essentially the same kinetics. More specific and rigorous theoretical

treatrr~nts will appear in a separate paper together with cell and

electronic system design.

5.3 Extension to Multistep Charge Transfer ~eaction

For a hypothetical n-step reaction with consecutive n electrons

transfer8 ) -+
(E Ol ' JS)Ox + e .... I ml

a.
l

,
01

I ml + e -+ I m2 (E02 ' a.
2

, J S ).... 02
(32)

Im(n-l) + e ~ Red
S(E , a. , J )

On n On

the chronopotentiometric potential-time characteristics may be

represented as

n n
CR(O,t)exp{ L a..-G. + 1 (1-a..)G.} - Co (O,t)exp{-(l-a.1 )Gl }

i=l ~ ~ i=2· ~ ~
-----:::......:~---=--=----------------(33)

(34)

k
L (l-a..)G.})

i=2 ~. ~

G.
1.

n k-l
L +exp{ L a..-G. +

k=2 J i=l ~ ~
Ok

F
RT (E (t) - EOi )

1 ( 1 +
~ JS

01

with

(35)

(36)and 2JC 1/2
--".....,..;;;-......,.-_·t
nFD~/21Tl/2

where J c is the controlled current density, E(t) is the electrode
Spotential as a function of time while a.i , EOi and J Oi are the transfer

coefficient, the standard electrode potential and the standard exchange

current density, respectively, for the elementary step i.

It was assumed that Ox and Red were diffusing species and the inter­

mediates did not diffuse away from an electrode surface.
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When S S
and J~n extremely large, equation ( 33)(\ J Ol ' J O(n-l) , are

becomes
RT CR(O,t)

E (t) E - -In (37)0 nF Co(O,t)

with n
E =l:.- \'

O l. EO'
n i=l ~

where CR(O,t) and Co(O,t) were given by eqs.(35) and (36), respectively.

Equation (37) is the same formula of the Nernstian potential-time

curves at constant current for Ox + ne- t Red.

For an another extreme case, when JSo' .~ »JS
Om which is corre­

~'~Tm

sponding to the consecutive electrochemical reaction with single rate-

determining step, the potential-time curve may be given by

E (t)

n
L E. + a E

i=m+lO~ m Om
+

RT .In [1 _ (.!..) 1/2]
(n - m + a ) F TO

m
( 38)

E (t)

and

for oxidation process ( J C > 0 ) ,i.e.,

RT CR (0 ,t)
» E - - In---,.--­

o nF CO(O,t)

E (t)

m
2 EO' - a E

i=l ~ m Om

+ RT 1 [1 _ ,t)1/2](m - a )p. n ~
m T R

(39)

for reduction process ( J C < 0 ) ,i.e.,

RT CR(O,t)
E (t) « EO - nF In Co (0, t)

where CR(O,t) and Co(O,t) were given by eqs.(35) and (36), respectively.

Since the potential-time equations for reversible and irreversible

processes for multistep electrode reaction with consecutive n electrons
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transfer appeared in special cases, equation (33) may be more general

expression than eq.(9) on chronopotentiometric potential-time curves.

5.4 Significance of the Chronopotentiometric Technique for Kinetic

Study

71

The proposed method, a curve-fitting method based on eq.(9), can

give the standard exchange current density J~ if one has specific

chronopotentiometric potential-time curve for planar electrode mater­

al. Although minor corrections on the solutions of boundary-value

probelms 20 ) due to the difference of diffusion mode would be necessary,

the proposed method, more specifically, the basic concepts of the

treatments would be applicable to kinetic studies on non-planar

electrode materials wuch as semi-spherical or cylindrical rods and/or

whiskers. The method will prove valuable in teh study of electrode

kinetics for redox reaction.
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APPENDIX: Derivation of eq.(30)

Combination of eqs.(28) and (29) gives

C*exp(_nF(E - E )]
RT 0CR(E) =

1 + eXP(-~~(E - EO)]

where E is operative with respect to time t.

The faradaic current J may be obtained by

dCR(E)
J=-nF( )

dt

dCR(E) dE
- nF ( ) • (-)

dE dt

(40)

(41)

On the other hand, the differential capacity C(E) may be defined as

C(E) = J

(dE)
dt

(42)

( 43)

Comparison between eqs.(4l) and (42) gives

C(E) = _ nF(dCR(E)
dE

Differentiating eq.(40) with respect to E and then putting it into

eq. (43), one may obtain eq. (30).

It should be noted here that the current J only appeares when the

electrode potential is changing, that is,the electrode system behaves

like pure capacitor as a function of electrode potential although the

current itself is a faradaic current in this special case.
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LIST OF SYMBOLS

E (t)

Controlled current density ( A'cm- 2 )

Faradaic current density coupled with mass transfer as a

function of time ( A.cm- 2 )

Double-layer charging current density as a function of time
( A'cm- 2

Apparent exchange current density as a function of time (A'cm-2)

Apparent standard exchange current density based on 1 mole.cm- 3

as a standard ( A.cm- 2 )

Apparent exchange current density for i th step charge transfer
reaction ( A.cm-2

Apparent standard rate constant for charge transfer reaction
( cm' sec-1 )

Electrode potential with respect to reference electrode as a

function of time ( V )

Equilibrium electrode potential as a function of time ( V )

Standard electrode potential with respect to reference electrode

in equation for electrode reaction ( V )

Standard electrode potential with respect to reference electrode

for i th step electrode reaction ( V )

Charge-transfer overvoltage as a function of time V

Concentration overvoltage as a function of time ( V

Transfer coefficient ( - )

transfer reaction ( ­

as a function of time

sec

sec

Transition time for reduction process

Distance from electrode surface ( cm )
Temperature ( oK )

Faraday's constant ( coul'equiv- l

Gas constant ( joule.mole-l.deg-l

t

T

F

R

a i Transfer coefficient for i th step charge

Ci(x,t)Concentrations of species i at location ~

( moles'cm- 3 or moles'cm-2 )

Concentration of species i in solution of bulk ( moles'cm- 3

Total surface concentration of Ox and Red ( moles'cm- 2 )

Diffusion coefficient of diffusing species i ( cm2.sec-l )

differential capacity as a function of electrode potential
( Farads'cm- 2 )

Time elapsed since controlled current was applied ( sec )

Transition time for oxidation process




