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Synopsis

Two variational formulations for electromagnetic

field and charged-particle stream configurations, in

which both field and particles are described by the

field-like variables suited for the problems of

electrodynamics, are presented. One of them is

directly obtained through slight modifications of

Sturrock's original procedure but has a complicated

form. The other is obtained through linearization of

the preceding one and has a compact form. Both formu­

lations lend themselves to straightforward derivation

of the well-known energy-momentum tensor and/or its

conservation law. Specifically the latter one is of

academic interest because of its compact form.

Moreover, as a proof of its practical usefulness the

variational principle under the small-amplitude

approximation is derived from it, which is known to

provide a basis for the study of certain types of

instability in plasmas. It is, however, hoped that it

will find main applications in the electrodynamics

problems concerned with large-amplitude behavior.

1. Introduction

The classical description of the electromagnetic field and
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charged-particle stream configurations by a variational principle, in

which the stream is expressed in terms of "field-like" or Eulerian

variables, has been derived by various authors. Dirac has obtained

the variational principle in the course of setting up a classical

theory of electrons as a basis for a passage to the quantum theory

[1,2]. Low has developed that principle with the hope that it might
I

provide a powerful tool for attacking practical plasma problems [3].

Recently certain errors in Low's original formulation have be pointed

out and corrected by Galloway and Kim, who have applied the resultant

principle to the analysis of the problem of non-linear wave inter­

action in warm plasmas [4]. Furthermore, Sturrock has set up that

principle, who has intended to apply it the studies of amplification

of disturbances in electron beams and certain types of instability in
plasma [5].

Dirac's variational principle has the benefit that the energy­

momentum tensor is directly derivable through application of the

well-known technique, but is described in terms of the Clebsch

variables, which are not otherwise well suited for the problems of

electrodynamics. On the other hand, the remaining three vairational

formulations do not lend themselves to the derivation of the energy­

momentum tensor, although they are described in terms of the variables

which are suited for the problems of electrodynamics. They are in a

form convenient to use under the assumption of small-amplitude

disturbances. Under this assumption the small-amplitude power theorem

or Manley-Low relation is easily derivable from them.

In the present paper we shall present the variational principle

which is expressed only in terms of the variables appropriate for the

problems of electrodynamics and yet allows one the direct derivation

of the energy-momentum tensor from the corresponding Lagrangian

density. The method for our variational formulation is, in essence,

similar to Sturrock's one, which is based on an artificial pertur­

bation for charged-particle assembly by introducing the displacement

vector, which is chosen as dynamical variables, but there exist the

following differences between them; in our formulation the location

of the event in the perturbed system is chosen as independent

variables' and on the other hand that of the event in the unperturbed

system corresponding to the perturbed event as dynamical variables,

in contrast to Sturrock's choice. In §3 the formulation will be

given, being compared with Sturrock's one. The Lagrangian density

directly resulting from such modifications is in a complicated form.



·Variational Formulations for Charged-Particle Stream 81

It is, therefore, put in a simpler form by assuming that the pertur­

bation is infinitesimally small and then linearizing it. In §4 we

shall represent how this linearization is carried out and verify that

the resultant Lagrangian density leads back to the appropriate set of

equations and energy-momentum tensor in that physical configurations.

It is, for practical purposes, of importance to consider in what form

the Lagrangian density is expressed under the small-amplitude dis­

turbances, which was, indeed, the subject of Sturrock's paper. This

expression may be derived from the variational principle given in §4

as well as that in §3. In §5 we shall show how the derivation is

worked out from the former one as a proof of its practical usefulness

and present the two resu~tant expressions; one is in a simpler form

than the other, which is in agreement with Sturrock's one, whereas it

is not suited for the derivation of the power theorem.

2. Notation
l

For the convenience of comparison, we shall use the same

notations as those by Sturrock [5]. In this section they will be

reviewed briefly.

Our theory will be set up in covariant relativistic form and

with Gaussian system of units. We write x~, U~, and A~ for the

four-dimensional position, velocity, and magnetic potential vectors,

respectively, which are related to the original three-dimensional

vectors by the relations,

at ,

(i,r 1,2,3)

( 1)

(2)

where (x r ) and (v r ) denote the original three-dimensional position

and velocity vectors, respectively, t the time, a the velocity of

light, and

so that

and

y

u~ u = 1
~

(3)

(4)
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(i,Y' = 1,2,3) (5)

where ~ is the electric potential and

dimensional magnetic potential.

We adopt the following form for

A the original three­Y'

the metric tensor:

g . = 0,
O"l-

g. = 0, g .. = -0 .. ,
"l-O "l-J"l-J

(i,j = 1,2,3). (6)

Then the element of world distance ds is defined by

ds = g dx].l dx v .
].IV

(7)

With this definition the four-dimensional velocity u].l is expressed as

(8)

The antisymmetric field tensor is defined by

F = A
].IV V;].I

- A
j.l;V

(9)

The semicolon notation for differentiation will be used, as seen in

(9) .

We denote byN(x) the proper number density of charged-particles

which is related to p, the number density measured with respect to

the given coordinate system, by

Then the vector defined by

N
1yp (10)

which has components

(i,Y' = 1,2,3)

(11)

(12)

satisfies the equation of conservation of particles,

° . (13)

If we denote by q the charge of the particles under consideration,



Variational Formulations for Charged-Particle Stream

Maxwell's ~quations and Newton-Lorentz equations take the following

forms, respectively:

83

and

FlJ\I
; \I (14)

(15)

3. Variational Formulation

The action function for an assembly of charged-particles

interacting with an electromagnetic field may be written as the sum

of three terms:

(16)

where Sf' sp' and Si are the field, particle, and interaction
contributions, respectively. Under the approximation of the assembly

of discrete particles by a fluid model, the above functions take the

following forms:

and

me Jd"x N

(17)

(18)

(19)

The above formulas do not yet represent a variational principle for

the particle trajectories, since the representation of the trajec­

tories does not explicitly appears in them.
In order to describe an assembly of particles by field-like

coordinates and yet set up a variational principle for the trajec­

tories of particles, Sturrock has introduced a "displacement vector",

as defined as follows [5]. At first he has adopted as the base of

his system of variables an assembly of world lines characterized by

scalar and vector functions N(x), UlJ(x) and considered a perturbed

set of world lines, which is traced out by the same set of particles

as the unperturbed assembly of world lines. Then he has introduced

the displacement vector ~lJ(x), which is the function characterizing
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the perturbed set of world lines such that the particle which, in the

unperturbed system, passed through the event with coordinates x P is,

in the perturbed system, found to pass through the event with

coordinates xp+~p(x) (see Fig.l (a)). He has shown that when the

action function is expressed in terms of the displacement vector, the

resultant variational principle yields the appropriate field equations

and equations of motion. It might also be shown that we obtain the

same result by the adoption of xP(x)=x~+~~(x) in place of ~p(x) as

dynamical variables. His Lagrangian density involves some quantities

not to be varied and therefore is not in the form of a closed system.

Accordingly one fails to derive the energy-momentum tensor and/or its

conservation law from it. Furthermore, the set of equations resulting

from his variational principle is that in the perturbed system,

expressed as the function of the unperturbed position. This is

another reason for the above failure.

perturbed
world line

unperturbed
world line

"""'- ~o

(0)

perturbed
world line

unperturbed
world line

""-- ~o

(b)

Fig.l Definitions of dynamical variables; (a) dynamical variables

by Sturrock, ~(x), and (b) those by the authors, i(x).

These circumstances may be improved if we consider that the

particle which, in the perturbed system, passes through the event with

coordinate x P is, in the unperturbed system, found to have passed

through the event with coordinates xP(x) and then express the action

functions in terms of iP(x), which are taken as dynamical variables,

in contrast to Sturrock's original procedure (see Fig.l (b)). We

shall show bellow how this improvement is worked out.
It should first be noted that uP and N in the formulas (18) and

(19) are those in the perturbed system. Then we want to express U~(x)

and N(x) in terms of ijP(x) , W(i) , and i P , where ijP(x) and W(i) are the

velocity vector and proper number density of particles in the

unperturbed system. First of all, differentiate x~, which may be
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regarded as the functions of xv, with respect to the world distance B
in the unperturbed system and we obtain

dx ll ds 11 -v Ilds = ds U"(x) = U (x)x;v (20)

where ;v denotes the differentiation with respect to xv. In the above

equation the tensor (xiv) is the inverse of the tensor (x~v) and its

elements are expressed in terms of x~v as

Il _ v a4,i:-1
x· v- - X V(-4-), a x

(21)

where a4x/a 4 x denotes the Jaccobian and xV
v the cofactor of the

element x~v in the tensor (x~v)' which is expressible in terms of x~v

as follows:

From (4), (20), and (21) we obtain

(22)

ds
ds

(23)

so that again from (20) and (21)

From the preceding assumption of conservation of particles between

the perturbed and unperturbed systems, it follows that

(25)

where p(x) and p(x) denote the number density measured with respect

to the perturbed and unperturbed coordinate systems, respectively,
and d 3 x and d 3x the three-dimensional volume elements of the perturbed

and unperturbed systems, respectively. Equation (25) may be rewritten

as

( 4 - -) 4- ds -(-) 4 (a 4x) dsN x) d x = N(x d x -d- = N x d x -4-.d-
s a x s

where d 4 x denotes the four-dimensional volume element in the

unperturbed system. Equations (23) and (26) lead to

1
N(x) = N(,i:) [UV (,i:) ucr (,i:) XV v X llcr ] ~ .

(26)

(27)
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Substituting (24) and (27) into (18) and (19), we obtain

and
- q fd4 -v(-) !J

Si - - c x N x A!J X v '

(28)

(29)

where NV(x) denotes the current density of particles in the

unperturbed system. It is important to note that the contributions

to the integrals are characterized by, and integrated over, the

variables x lJ which denote just the location of the event giving rise

to the contribution.

The variational principle may now be expressed in terms of a

Lagrangian density,

o (30)

which is expressible as follows:

L (31)

where

1 (Av;!J _ A!J;v)(A - A )
~ V;!J !J;V

!
- mcN(x) [VV (x) ficr (x) X lJ v X!Jcr] 2.

and

(32)

(33)

(34)

It should be noted that the above Lagrangian density is expressed only
in terms of the variables to be varied, A!J and xlJ , which is in a form

appropriate to obtain the energy-momentum tensor and/or its conser­

vation law. It might be shown that the Lagrangian density leads back

to Maxwell's equations and Newton-Lorentz equations in the perturbed

system, expressed as the function of the perturbed position and,

indeed, yields the appropriate energy-momentum tensor [6].

4. Another Expression of Variational Principle

The variational principle obtained in the preceding section has
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a complicated form when the cofactor x~v is expressed in terms of the

dynamical variables x~. In this section it will be cast in a simpler

form, which may be convenient to use in some cases. It should be

noted, for this purpose, that the amount of the perturbation given the

distribution of world lines is arbitrary. Accordingly we may assume

that the amount is infinitesimally small. Then, we may identify x
with x and the proper number density and velocity vector of particles

in the unperturbed system, N(x) and U~(x), with those in the perturbed

system, N(x) and u~(x), respectively. It is noted here that the

arguments of N(x) and U~(x) must not be changed to x, since they

remain to be dynamical variables. Furthermore, under the above

assumption the cofactor x~v goes to

-~- x;v

as shown in Appendix A. It follows from the substitution of the

above transitions into (33) and (34) that the field, particle, and

interaction contributions take the following forms, respectively:

_1_ (A v; Jl _ A Jl; v) (A. - All " ,,)
l6TIC v,~ ~ v

(35)

and

L
P

-~ )x;v (36)

L.
'Z-

-~ )- x;v (37)

with x:: X.

We shall show below that the above Lagrangian density leads to the

appropriate set of equations and energy-momentum tensor in the

physical system under consideration.

The variables conjugate to A~ and x~, which are defined by

JI~v = dL

dA~; v

and
n~v dL

dX
~;v

(38)

(39)
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take from the preceding formulas the following expressions:

rr]lV = _1_ F]lV
4nc

and

The Euler-Lagrange equations derivable from (30) are

rr
]lV
; v

and

(40)

(41)

(42)

(43)

If we evaluate the right hand sides of (42) and (43), considering

that x=x, x?0=4, and x~v=o]lv' we obtain the following equations:

(44)

and

(45)

where we have used
the relation (11).

and Newton-Lorentz

The canonical

as follows [7]:

the equation of conservation of particles (13) and
Equations (44) and (45) are Maxwell's equations

equations, respectively.

energy-momentum tensor for our problem is defined

(46)

It follows immediately from the definitions (38) and (39), and from

the Euler-Lagrange equations (42) and (43), that

o (47)

This is the equation of conservation of energy-momentum tensor.
Furthermore, the physical energy-momentum tensor, which is symmetrical,

is given as follows [7]:

e V

]l
T v + (A rr

vo )
]l ]l ;0

(48)
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which also satisfies the law of conservation,

e~~ = 0 (49)

89

If we evaluate the right hand sides of (46) and (48), using the

the preceding expressions relevant to each term appearing in them and

the relation xa;~=oa~' we obtain for the canonical energy-momentum
tensor,

T v
~

(50)

and for the physical energy-momentum tensor,

e v
~

(51)

where we have used the Newton-Lorentz equations (45). These

expressions are well-known as the energy-momentum tensor for the

electromagnetic field and charged-particle stream configurations.

5. The Variational Principle under the Assumption of Small

Disturbances

In the case that small-amplitude disturbaces are impressed in the

physical system under consideration, we may linearize the set of

equations governing the disturbances. The variational principle for

leading to the linearized set of equations is obtained as follows;

express all quantities as the sum of the undisturbed and disturbed

parts and expand the action function in terms of the disturbed

quantities to retain only the second-order terms of them. The

Lagrangian density for the small-amplitude approximation might be

obtained from the action function given in §3, resulting in the same

expression as Sturrock's one. In this section we shall verify that

the same result may also be obtained from the action function &iven

in §4; although the mathematical manipulations used are rather

complicated. This verification may give a proof of its practical

usefulness.
In order to characterize the perturbations of all quantities

involved in the action function, we introduce the following

transitions in notation:
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-+-

-+-

where, on the right-hand side, capital letters denote the correspond­

ing quantities of the unperturbed system and small letters the

contributions to the corresponding quantities due to the perturbation.

It should be noted that the first transition is accompanied by the
transition x\l-+-X\l+x\l, where x\l=x\l and x\l=x\l, since the origi.nal x\l

should be indentified with the original x\l, as pointed out in §4. It

follows, therefore, that the independent variables change from the

original x\l to X\l. This change of independent variables requires

that the original four-dimensional volume element d 4 x in the action

function is replaced by {a 4 (x+x)/a 4 (x)}d 4 X and the differentiations

with respect to the original x\l by those with respect to x\l. Under

these circumstances the small-amplitude approximation requires for the

original quantities to be expressed as follows:

Nil (x) -+- Nil + Nil -v + 1 \l -v-a + nil + II -v. x ZN;v;ox x n;vx, v

Ull(x) -+- U\l + II -v + 1 II -v-a + u ll + II -v
U;v x T U;v; ax x u;vx

A\l (x) All + A\l x v + lA ll x v a + all + all x v
-+- x; v 2 ; v; a ;v

All (x) -+- [A ~ 0 + (A ~ T X T) . + 1 (A II T Y)
; V , , ,0 T ;T;YX x ;0

and

where on the right hand side of each transition all quantities,

whether perturbed or unperturbed, now are the functions of the new

independent variables xll and therefore the notation ;ll denotes the

differentiation with respect to Xll . The derivation of the last three

transitions will be given in Appendix B.

We substitute the above transitions into the action functions
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corresponding to the field, particle, and interaction contributions

to the Lagrangian density, (35), (36), and (37), and extract only the

terms of the second order with respect to the perturbed quantities,

and then ingnore the terms including neither the new dynamical

variables x~ nor a~. It should also be noted that we may remove the

terms resulting in the equations in the unperturbed system but at the

perturbed position from the action functions. In fact, this assertion

may be justified, since they are expressible as the action integral

of a total divergence by using the unperturbed set of equations.

After taking these procedures we obtain the following action

functions under the small-amplitude approximation:

and

s (2)
f

s (2)
p

(52)

(53)

(54)

where the supperscript (2) denotes the second-order contribution.

In (53) the action integral of a total divergence may be omitted.

By adding to (53) and (54) the action integrals of a total divergence,

and

respectively, and using the equations of conservation of particles in

the unperturbed and perturbed systems,

(55a)

and
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o (55b)

and then ignoring the terms not including dynamical variables, we

obtain the more convenient expressions for sp and Si" Thus the

expression of the second-order contribution for the Lagrangian density

becomes as follows:

where

and

£ (2)
f

£ (2)
p

£ (2) + £ (2) + £.(2)
f p 'Z-

1 (VjP p·v)( )
l67fc a - a' a v ; P - all; v

(56)

(57)

(58)

(59)
with xll :: x ll .

We shall now show that this Lagrangian density leads to the linearized

field equations and equations of motion.

The Euler-Lagrange equations under the small-amplitude

approximation now take the following form:

and

pV7f jV

n(2)

---aa-
II

(60)

pV n(2)
w = ---

j v ax
P

(61)

where we have introduced the definitions for the canonical momenta,

(62)

and

(63)

If we evaluate both sides of (60) and (61), using (56)-(59), we obtain

the following equations:
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and

fllV
; v - 41fqn ll (64)

where we have introduced the notation

By using the relations (11) and

nUll + Null

and the unperturbed equations of motion, (65) reduces to

Vil Vil _ q (Il VIl)
U U. + U u. v - ---2 uvF V + U f v, v , rna

(65)

(66)

(67)

(68)

Equations (64) and (68) are just the linearized forms for Maxwell's

equations (14) and Newton-Lorentz equations (15), respectively.

Although the Lagrangian density as given in equations (56)-(59) leads

to the appropriate linearized set of equations, it is not of the form

suited for evaluating the energy-momentum tensor as defined by

(69)

The reason is as follows; it follows from the definitions (62) and

(63), and from the Euler-Lagrange equations (60) and (61), that

dL (2)

- --ax;- (70)

and the existence of the perturbed quatities not to be varied in

(56)-(59), nil, u ll , and x ll , violates the conservation of energy, which

would hold without them, when the unperturbed system is static. The

method for resolving this problem is that one expresses the quadratic

Lagrangian density in terms of the unperturbed quantities Nand UIl,

and the dynamical variables all and xll . We shall now show how this is

worked out.

The small-amplitude contribution to the current density of

particles, nil, is expressed as
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(71)

as verified in Appendix C. Accordingly, n~a~ in (59) may be written
as follows:

(72)

Substituting (72) into (59) and using the relation (67) and the

equations of motion in the unperturbed system, we obtain

(73)

where we have ingnored the term expressed as a total divergence.

Furthermore, (73) may be written as follows:

L ( 2) = _ 1 f~ v f + (v + NVu ) x- ~-16 mc Nu U 'v'ITC lJV ~, lJ;V

(74)

The reason is that, since the term in the right hand side of (73),

NVflJv(x~-2xlJ), may be put as -NvflJvxlJ by identifying x~ with x~ when

one wants to vary a~, and as NVf xlJ by neglecting x lJ when to do xlJ ,
lJV

we may replace it by -Nvf xlJ if one inverts the sign of other terms
~v

involving x~ in the right hand side of (73). Adding to the right hand

side of (74)

which gives the unperturbed equations of motion at the position as

displaced by x lJ from x lJ when varied with respect to x~, and using the
expression for the small-amplitude contribution to the velocity, u~,

in terms of ulJ and x~, as verified in Appendix C,

(75)

we obtain
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(76)

95

where we have used the relation (11) and the equation of conservation

of particles and equations of motion in the unperturbed system and

further neglected the term expressible as a total divergence. In (76)

the following replacements are possible:

and

v 0 -\1NUx. x. v\1 ,0 ,
1 .,vUo- -\1

-LV X x2 \1;0 ;v

Furthermore, in (76) it is possible to substitute

1 NVF (0-\1 + \1-0) 1. NVF (~0;;:\1 + ~\1 ;;:0)2" \1 v; 0 x x x x - 2 \1 0 ~ ~; v ~ ; v~

for

as shown in Appendix D. Here again the following replacements are

possible:

and

Thus we obtain the following expression for the Lagrangian density

under the small-amplitude approximation:

( 1 NVUo- -lJ _ 1.NVUlJUOU'x- x- )
- me 2" x lJ ; ox; v 2 0 ; T lJ; v

. (77)

This is expressed only in terms of the unperturbed quantities

and the dynamical variables. The expression (77) is in agreement with

that derived by Sturrock, if we indentify xlJ with his displacement



96 Yoshitaka MORIKAWA and Hiroshi HAMADA

vector ~~ [5J. The energy term of the energy-momentum tensor, as

defined by (69), which is evaluated from this Lagrangian density, is

subject to the conservation of energy when the unperturbed system is
static.

6. Conclusion

Although two variational formulations for electromagnetic field

and charged-particle stream configurations have been presented, we

have a special interest in the variational principle derived in §4

because of its compact form. Academically, we are interested in the

formal similarity between the particle and interaction contributions

to the Lagrangean density. Practically, it is hoped that it will
find main applications in the electrodynamics problems concerned with

large-amplitude behavior, although the variational principle under the

small-amplitude approximation has been derived from it as an immediate

proof of its practical usefulness.
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Appendix A

If we put as

(Al)

the Jaccobiana"x/a"x is approximately expressed as

(A2)
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retaining the terms up to the second-order with respect to t; II ',.

Writing down (A2) with xli, we obtain

From (22) and (A3) , the cofactor Xliv is approximated as

or

(A3)

(A4)

97

This leads to the approximate expression,

(A4~)

1

~ [u\)(x)ucr(x)(oll,,+ollvt;~"C - t;iv) (OllO+ 0llOSyy - S1J;o)J 2:

Retaining the terms up to the first-order with respect to t;lI, we

obtain

or

where we have used the relation (4).

Appendix B

Under the transitions,

and

it follows that

(AS)

(AS ~)



98 Yoshitaka MORIKAWA and Hiroshi HAMADA

By making use of (21) and (22), we obtain

(Bl)

By identifying x~ and ~~ with x~ and x~, respectively, in (A2) and

(A4~), (Bl) may be approximated as

(B2)

where we have ingnored the terms of the second-order with respect to

x~, since they does not take part in the variation. It follows from

(B2) that

By reference to the above results, it is straightforward to show that

the transitions for A~v and d 4x as given in §S are followed.,

Appendix C

Let us consider the particle velocity of the perturbed system at

the position X~+x~. This is approximated as follows:

'" Uv ( Il ~ v - Il ~ vx ~ 0 + x ~ v) (1 + x: T - U
O

Uyx 0 • y)
" , ,

(Cl)

by making use of (24), where we identify x~, xU and u~(x) with x~,

x~+x~ and u~, and of (A4~) and (AS), where ~~ and U~(x) with -x~ and

U~. Accordingly we obtain

(C2)
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Next, let us consider the current density of particles of the

perturbed system at the position X~+x~. It follows from (24) and (27)

that

(C3)

By using the procedure similar to that which led to (C2), we obtain

(C4)

The use of the law of the conservation of particles in the unperturbed

system leads to

(C5)

Appendix D

Since we may write as

(Dl)

we obtain the following expressions:

(D2)

where we have used the law of the conservation of particles.

Neglecting the second term, which is a total divergence, and

exchanging the suffixes ~ and cr in the fifth term and v and cr in the

sixth term each other in the last expression of (D2) , the following

replacement is possible:
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1 'J O-jJ + 1 'J jJ-O 1 'J O-lJ 1 'J O-lJ
-+- 2" N F jJ 'J ; oX X 2" N F lJ 'J ; OX X - 2" N F lJ OX x; 'J + 2" N F jJ oX ; 'Jx

Exchanging the suffixes ~ and 0 each other in the fourth term of the

right hand side of the above replacement and using the identity

lead to the further replacement,




