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SYNOPSIS

The ground state of a system of electrons accumulated in a pair of coupled
symmetric quantum wires is analyzed on the basis of density functional theory. It
is shown that, in a domain of physical parameters, electrons are localized in either
of wires. The main contribution to the total energy of this system comes from
the Hartree energy, or the electrostatic energy, and the exchange-correlation energy
between electrons. The ground state is determined by a competition between these
contributions: We have symmetric electron distributions when the Hartree energy
dominates and asymmetric (localized) states are realized in the opposite case. This
kind of simple system with bistable electronic states may be applied to semiconductor

memory devices.

I. INTRODUCTION
Owing to the development of technologies to control the crystal growth, there
have been numerous proposals of semiconductor microstructures whose new or higher

functions have now realistic meaning. In this paper, we show an interesting property
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of coupled quantum wires which may be utilized in electronic devices.

The essential part of the structure of our system is the quantum wires coupled
through a thin tunneling barrier. The result of our calculation shows that, under
appropriate conditions, electrons doped in this system localize in either of two wells.
For simplicity and also considering applications, we may assume that two wells are
symmetric. We also assume that the ionized donors are distributed symmetrically
around the wells.

At first sight, it seems natural that electrons are symmetrically distributed since
the Coulomb repulsion will keep them apart: In other words, the Hartree energy
increases when electrons are asymmetrically distributed. On the other hand, the ex-
change and correlation energy of electrons is negative and its absolute value increases
with the increase of the density with the power of one third (per electron). It is thus
possible that the exchange-correlation energy as a whole decreases for asymmetric
distributions and overcomes the increase of the Hartree energy.

It is expected that the distance between two wells needs to be very small; when
regarded as a capacitor, the electrostatic enmergy of our system increases roughly
in proportion to the mutual distance. We thus have to take the interference and
tunneling between two wells into account seriously.

This kind of possibility has been first pointed out by Ruden and Wu[1,2]. They an-
alyzed the stability of symmetrical distribution in two parallel two- or one-dimensional
electron systems with the first order exchange energy. In their analysis, however, two
systéms are assumed to be independent except for electrostatic interaction and the
interference and tunneling between two electron systems have been completely ne-
glected. In addition, the resultant mean distance between electrons in each system is
larger than the distance between two systems. The treatment as independent electron
systems therefore seems to fail at least quantitatively.

The purpose of this paper is to analyze the aforementioned possibility for realistic

structures with full account for interference and tunneling based on more accurate



Bistability of Coupled Quantum Wires 57

values of the exchange and correlation energy.

II. METHOD OF ANALYSIS AND FUNDAMENTAL EQUATIONS

We apply the effective mass approximation for electrons in our structure. The
main purpose of this paper is to analyze the many-body effects of electrons and we
expect those effects beyond the approxima,tioh may have small influence on main
conclusions.

In order to describe many-body effects, we adopt the density functional theory
in the local density approximation which is now one of standard procedures in these
analyses. As the functional describing the exchange and correlation energy, we use
the parametrized form of Vosko et al.[3] based on the results of Ceperley and Alder[4]
by the Green’s function Monte Carlo method. Application of this zero temperature
expression is justified aposteriori by the domain of density where the expected phe-
nomenon OCcCurs.

Following the method of Kohn and Sham[5], the electronic levels { E;} are deter-

mined by

(——h—A + Vo(r) + Vo(r) + Vu(r)) $i(r) = Elr), (2.1)

2m*

and the density of electrons n(r) is determined by filling electrons into these eigen-

states up to the Fermi level as

n(x) = 3 (o)l (2:2)

The potential Vy(r) denotes the conduction band offset between the well and the

barrier or the surrounding wall. The electrostatic potential V¢ (r) is given by

Vo(r) = ¢ / E(l”'I)T‘"_”Tf’l(f'—)dr', (2.3)

where np(r) is the density of ionized donors. The exchange-correlation potential

Vie(r) is calculated by



58 Hiroo TOTSUJ, Hiroyuki TACHIBANA, Seiji HASHIMOTO and Shigetoshi NARA

Vi) = 2zl (2.4

where E,[n(r)] is given, in the local density approximation, by

B [n(r)] = / drn(r)es (nr), (2.5)

with the exchange-correlation energy per electron in homogeneous system ¢,.. The

latter energy at T = 0 is expressed as

_ 9r\1/3 3 z2 25 _ Q
€zc(rs) = — (“i‘) m-%fl{lnm-i- atan 1——————2 5
beo [ (z—=0)® | 2(b+2z0), _; Q
fX(wo) [ln X(z) + 0 tan 7745 b] } ,(2.6)
g=r2 (27)
X(z)=2"+bs +o, (2.8)
Q = (40 - b2)1/2, : (2.9)

where density is expressed by the standard parameter r,.

Starting from some trial wave functions, we solve above equations self-consistently.
As a numerical method, we apply the finite element method to compute the solution
of the Schrédinger equation (2.1) and the Poisson equation (2.3) and self-consistency

is attained by iteration.

III. STRUCTURE
Our system is composed of two parallel quantum wires which are coupled via thin
potential barrier as is shown in Fig.1. We take the zero of the potential V;(r) inside
of the wells and denote the height of the barrier by V5. We may assume that the
potential in the medium outside of wires has the same height V; as the barrier. Two
quantum wires of GaAs embedded in AlGaAs may be an example of such a structure.
Values for GaAs are used as the effective mass of electrons and the dielectric constant.
An appropriate set of boundary conditions for the wave function and the electro-

static potential may be the Dirichlet condition at the surface of a domain containing
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our system and surrounding media with sufficient margins. In the results presented
in this paper, however, we impose the Dirichlet boﬁnda,ry conditions for both wave
functions and electrostatic potential at just outside of the region of wells and barrier.
We have compared the results with the former conditions and those with the latter
for a typical case to confirm that the errors due to this simplification is small (about
less than 10 percent).

Since the Coulomb energy associated with the localization increases with the
increase of the thickness of the barrier Ly, there may exist an upper bound for Lpg
to realize the localization due to the exchange and correlation effects. In this paper,
we tentatively adopt a rather small value of Ly = 17A.

In applications, the external electric fields may be used to change the position
of localization. The quickness of the response of our system to external fields will
be limited by the quantity of charges moving to the other side when the position
is reversed. In order to have a fast response, we assume that the size of wires are
relatively small: In our simulation we take approximately 1004 x 100A wires.

The height of the barrier Vg and the total line density of electrons n;, are taken
as parameters and analyses will be performed for various combination of these pa-
rameters. As for doping, we assume that the electrons are introduced to our system

by donors distributed in or around the wires and compare the results for two cases of
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FIG.1. Symmetrical structure of parallel quantum wires coupled through thin poten-

tial barrier. Positive charges of ionized donors are distributed with the same symmetry.
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IV. RESULTS AND DISCUSSIONS
Typical examples of symmetric and asymmetric distributions are shown in Fig.2.
In the asymmetric case, the reversed distribution is also possible: This bistability

may be the most important point in relation to applications.
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FIG. 2. Typical examples of symmetric and asymmetric electron distributions. In

asymmetric case, inverted distribution has the same total energy.

A. Parameter Domain for Localization

A measure of localization may be the difference in the electron densities integrated
in each well. The difference of the maximum densities in each well may also work
to signal the localization. In Fig.3, we show the second measure normalized by the
larger maximum density in the domain characterized by the total electron density
(per unit length) n,, and the barrier height V. In this case, the ionized donors are
distributed as uniform positive charges in wells and barrier. |

We observe that the localized states appears for larger values of the potential
barrier height. We also note that the barrier height necessary for localization sharply

increases when the total density exceeds 5 x 10°cm™.
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FIG. 3. Degree of localization as a function of characteristic parameters. Difference
in maximum densities in each wire normalized by the lager one is shown in linear scale:
Values nearly equal to 0 and 1 for smaller and larger Vg indicate symmetric and asymmetric
states, respectively. Positive charge density and dielectric constant are uniform throughout

the system.
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FIG.-4. The same as Fig.3. Positive charges are concentrated in the barrier.
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FIG. 5. The same as Fig.3. Positive charges are concentrated in the barrier and the

dielectric constant there is doubled.
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When An is the deviation of electron density in each well from symmetric distri-
bution n,/2, the Hartree energy may be estimated as

(An)?
e (4.1)

where the capacitance per unit length C is inversely proportional to L. On the other

hand, the exchange-correlation energy (per unit length) may be estimated as
const €2S[(ngor/2 + An)*® 4 (nyp /2 — An)*3], (4.2)

S being the cross section of the wire. This is proportional to

2
it (22) (43)

Ngot

for small values of An/n;,;. We thus expect the localization for small total densities.

The potential barrier between wires will help electrons to localize. Previous results
by Ruden and Wu[l, 2] correspond to the case of infinite potential.

The rapid increase of the potential height needed for localization for n;e > 5 %
10°%cm™! is consistent with the above expectation. This tendency continues at larger
densities not shown in Fig.3.

The critical potential height is almost independent of the total density for ny,; <
4 x 10%m™. This behavior has not been expected from the simple scaling argument.
As will be shown shortly, this tendency is dependent on the distribution of positive
charges and the dielectric constant and the critical value even increases in some cases.

It may therefore be difficult to give a simple explanation.

B. Effect of Distribution of Positive Charges

When the positive charges are concentrated in the region between wells, the
Hartree energy will be reduced in comparison with the case of uniform distribu-
tion. In Fig.4, the result in such a case is shown. We see that the critical values of
the potential height for high densities are slightly reduced compared with those in

Fig.3. Those for low densities, on the contrary, have the opposite tendency to our
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expectation which seems to be difficult to derive intuitively. This may indicate that

numerical analyses are important in this domain.

C. Effect of Distribution of Dielectric Constant

If the dielectric constant in the barrier is larger than other parts, we may again
have smaller Hartree energy: the electric field between two wells is mainly responsible
for the energy. The exchange correlation energy, on the other hand, will be affected
to a much smaller extent.

To clarify the effect of this kind of inhomogeneity in the dielectric constant, similar
computations have been performed for a system where positive charges are distributed
in the barrier and the dielectric constant is doubled there. The exchange correlation
energy is computed as if the barrier has the same dielectric constant as other parts.
The result is shown in Fig.5.

Compared with Fig.4, the criticzﬂ values of potential are reduced especially in the
case of low densities. The quantitative conclusion for this effect, however, seems to
be difficult to obtain. Unexpected result in the previous subsection tells us that these
reductions may be fortuitous. We may rather conclude that even with inhomogeneity
in dielectric constant or positive charges the results of uniform cases will be changed

less than 20 percent.

V. CONCLUDING REMARKS

We have analyzed the electronic states in symmetrical quantum wires taking
many-body effects into account by the density functional theory. It has been Vshown
that electrons in such a symmetrical system have asymmetric ground states which
are doubly degenerate: Electrons are mainly localized in either of wires.

The effects of distributions of positive charges and dielectric constant have also
been investigated and it is shown that the general tendency of the effects are consis-
tent with physical considerations. Quantitative conclusions, however, needs further

detailed analyses.
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