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SYNOPSIS

This paper describes the numerical simulation method of

the multi-crack prop~gation behaviour which appear in a

part of civil engineering structures with complex

geometrical configuration like steel bridges. Proposed

method can treat the interaction of several cracks which

locate in a short distance each other, and the process

of their growth can be grasped. The method is based on

the finite element method, and the linear fracture

mechanics is assumed. Proposed method includes following

tools for the simulation of the crack propagation

behaviour: Automatic Mesh Generators for 3-D, 2-D struc­

tural analysis, and 2-D crack propagation analysis,

Multi-level Structural Analysis Technique, Estimation

Method of the crack growth and the angle of cracks and

the modelling method of traffic loadings. The validity

of the method is investigated by comparing the result

to the experimental one.

1. INTRODUCTION

The crack propagation behaviour in structures due to the

repeated loadings is generally investigated by the structural ex­

periment,but it not only takes long time but also costs too much.

Moreover, the adjustment of the experimental conditions, for ex-
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ample the boundary condition and the dimensions of the specimen, is
very difficult.

On the other hand the numerical simulation method is gradually

recognized in accordance with the developments of the digital com­

puters and the computational method like the finite element method.

The main reason is the easiness of the setting the complicated

boundary condi tions and the physical conditions. The subsidiary

reason is its cost and the quickness. As far as the numerical

simulation method is used for our investigation, the difficulties

which occures at the structural experiments disappear.

Theoretical and experimental investigations on the crack be­

haviour in 2-dimensional structures have been done, and at present

the behaviour in 3-dimensional space is under the investigation.

The numerical investigation of their behaviour also have been done,

and some papers have also published.

But, their simulations are limited in the crack propagation be­

haviour in a structural member and not in a member included in a

complicated structure.

In this paper we propose a general numerical simulation method

for investigating single and multiple crack(s) propagation

phenomena in 2-dimensional area. It can be applied not only to

cracks in a structural member but also to a structural member in a

complicated structure like steel bridges. This paper shows the

details of the numerical simulation. technique, and several test

problems are solved and their solutions are compared with the the

experimental ones.

2. NUMERICAL SIMULATION OF CRACK PROPAGATION BEHAVIOUR

We assume several cracks initially locating in neighbourhood in

an arbitrary 2-dim. structural member which is a portion of a com­

plex structure, and our aim is to simulate their propagation be­

haviour due to applied loadings. The load to be considered is the

repeated ones with random intensity like traffic load.

The actual crack propagation behaviour is governed by the stress

distribution near the crack tip, and its circumstance changes at

every instance of the crack propagation. For example, following

items give serious influence to the stress distribution; the loca­

tion of the crack-tip, the geometrical condi tion near the crack-
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tip, the geometry of the structural member where the crack locates,

the structure containing the structural member, and the boundary

conditions of the loading and the constraint of the structure.

Moreover, if several cracks locate very closely each other, the

stress distributions near crack-tip areas give influence each other

and, as a result, we can guess that their propagation phenomenon

becomes very co.plex.

Theoretical investigations on the physical condition neaL

crack(s) have been done for a number of spesific boundary condi­

tions 1), but we encounter difficulties at the application of these

results to actual crack propagation problems. Especially, these

difficulties come from the dif£eren~e of the boundary conditions,

the geometrical conditions of the area where the crack(s) locates,

and the geometry of crack(s).

Now, we try to solve the crack(s) propagation behaviour numeri­

cally. As indicated already, the most important and serious problem

of the crack(s) propagation analysis is the treatments of the

boundary conditions, and the geometries of cracks and their struc­

tural member where cracks locate. The best tool for these problems

is the finite element method, and we introduce it to our system. In

next section we consider on the details of the necessary techniques

which are required for the simulation method of the crack(s)

propagation behaviour.

3. TOOLS FOR NUMERICAL SIMULATION OF THE CRACK(S) PROPAGATION BE­

HAVIOUR

3.1 Necessary Tools for The Numerical Simulation based on FEM

(1) The geometrical largeness and the complexity of the structure

treated in our investigation requires numerous number of meshes for

its finite element modelling. At the same time, in order to express

the singular stress distribution near the crack-tip area, very fine

meshes must be set at the area. Then, it is obvious that these two

requirements for the modelling cann' t be satisfied at the same

time, and, therefore, some effective tool of the structural

analysis is required.

(2) The behaviour of any crack can be expressed by using the stress
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intensity factors, and at present there are several methods to es­

tiamte these factors. Since these factors govern the behaviour of

the crack propagation, they must be estimated accurately.

(3) It is wellknown that whether any crack propagates is determined

by the stress condition at the crack-tip. Then, a criterion for

this judgement is required.

(4) Considering the characteristics of the digital computer, the

numerical sim)llation is based on the repetition of the stepwise

analyses of the behaviour of cracks. Then, at each analysis step,

the direction and the increment of the growing crack must be calcu­

lated for the loading condition.

(5) The load to be considered in this investigation is the trafic

load which varies randomly. Since it is impossible to introduce

this characteristics directly for our simulation, any artificial

modelling of the traffic loads is required.

(6) One of the most important problems of the use of the finite

element method is the modelling of the structure. Especially, the

structure with cracks changes its boundaries due to the growth of

the cracks, and the finite element modelling becomes complex. Then,

good mesh generation method is necessary for the simulation.

(7) For the modelling of a structure with one crack the size of

meshes surrounding the crack is already surveyed, but for multiple

cracks problem we have no information of the size of element.

3.2 Tools of the Finite Element Method

(1) Multi-level Structural Analysis 2)

In order to solve large-scale struc­

tural problem effectively and accurately,

we can introduce the technique of so­

called multi-level structural analysis

method, i.e. Zooming Technique.(See Fig.I)

By considering the memory-size and the

structure to be solved we firstly give a

finite element mesh model of the total

structure. Let the equations be as follow­

ing;

Fig.1 Zooming Technique
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(1)

Fig.2 Variables at Zooming

, where K, u, and p are the stiffness matrix, the displacement ves-

tor, and the force vector, respectively. And, we solve above equa­

tion for u.

Here, we consider to reanalyze the portion of the structure as

shown in Fig.2. Then, eq.l is newly expressed as following:
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(2)

We take out the portion and newly make finner mesh model for the

portion. Then, we can obtain a set of linear algebraic equations as

shown in (3).

K'·u'=P' (3)

Since the boundary of this substructure is equal to a portion of

the original structure, the displacement vector of nodes surround­

ing the area can be determined from the solution of eq.l. That is,

K' ·u'=P'-K' ·u'-K' ·u'
11 1 1 12 2 13 3

(4)

Here, we recognize the difference of the number of nodes on the

boundary, because the zoomed-up area has finner meshes and on its

boundary more nodes are set comparing to the original one. In order

to determine all values of u'-vector by using u, we introduce 2nd

order Spline function for the interpolation of u ' •

This procedure is repeated until we obtain a domain which is

treated for the crack propagation analysis.

(2) Calculation of Stress Intensity Factors

The behaviour of cracks is wholly determined by the stress in­

tensity factors K(I) and K(II) in case of 2-dim. problem. This in­

dicates these values must be accurately determined, and methods

having been proposed can be classified into two groups; the stress

method and the dispalcement method. By considering the analysis
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method, the accuracy and the applicability, we introduce the latter

one for our simulation method.

General displacement method for the stress intensity factors are

expressed as
y' ,v I

J¥ll. G (' ')K = -.-- y-y
I L K+1 C E

(5)

K = {2TI. -.£ (u' -u' )
II ~L K+l C E

, where K is (3-4 \) ) for plane strain

and (3- \) )/(1+ \) for plane stress, and

e

x'
U'

Fig.3 Crack-tip Elements
L is the mesh size at the crack tip.

See Fig.3 for all terminologies in eq.5.

Another effective method is proposed by Ingraffea 3), and it

expressed as

is

(6)

This equation can give better result comparing with the ones by

eq.5, and we introduce eq.6 into our simulation method. But, for

its introduction all elements surrounding the crack-tip must be re­

placed by singular isoparametric elements. 4)

The characteristics of this special element can be found at the

setting of the location of edge nodes, which are placed at 1/4 of

the edge length instead of the center of the edge, and by this node

setting the singurality of the stress distribution can be well

expressed. Details of this elements are explained in successive

section.

(3) Judgement of Crack Propagation

It is wellknown that any crack begins to propagate when the

stress at the crack.-tip reaches at a specified stress level. In

fracture mechanics the stress intensity factors are used in stead

of the stress, and these values are noted as the threshould,

K(th). In our system K(th)'s are determined from the structural ex-
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periments.

(4) Determination of the direction and the increment of a crack

At the analysis of the crack propagation behaviour the direction

and the increment of the crack length must be determined at each

analysis. Obviously, these two values are wholly determined by the

stress distribution at the crack-tip.

For the determination of the crack direction we introduce fol­

lowing two critera. 5)

(a) The maximum circumferential tensile stress criterion

(b) The minimum strain density criterion

These two criteria can determine the direction from the stress

state before the crack propagates. The difference of the calculated

values of these two methods are examined through the numerical ex­

periments, and we find little difference between them.

On the determination of the increment of the crack-growth, we

can find several tools all of which are empirical expressions, and

they are originally from the Paris' Rule which can be expressed as

following;
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where a and N are the

loads, respectively. C

specimen, respectively,

width.

(7)

crack length and the number of repeated

and m are the material constants of the

and ~K is the stress intensity factor

From this expression we can remark that the behaviour is sensi­

tive not only to the material constants but also to the stress in­

tensity factor, and, therefore, we have to give good values for the

constants and also we have to calculate the behaviour of the crack

accurately. Otherwise, the accumulation of small difference of

these values leads to big difference.

(5) Treatment of Traffic Loads

Since the traffic loads are applied repeatedly to the structure

and its intensity varies randomly, they must be modeled for our

use. At present there does not exist any established method for the
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30

25

0.4 0.8

or/or,max

Fig.4 Blocking Loads

~ 5 10 25 50 oeq

5 78.9 91.0 97.0 97.6 98.8

10 79.5 92. 2 98.2 98.8 99.4

25 80.1 92. 3 98.2 98. 8 100.0

50 80.1 92.3 98.2 98.8 100.0

Table 1 Accuracy of Stress Intensity
Factors (%)

SS Number of Blocks
SA : Number of Analyses for

the Same Crack Length

modelling. Then, we propose following method to model the trafic

loads. 5)

The data obtained from the traffic survey is divided into a num­

ber of blocks as shown in Fig.4, and we can obtain the relation be­

tween the intensity of the loads and its frequency.

Assume that several cracks locate in a structure, and solve the

stress intensity factors due to unit load applied to the structure.

By multiplying the actual load intensity to the calculated one, we

obtain the actual stress intensity factors.

Then, calculate following eqation by introducing the stress in­

tensity factors, and we obtain the stress intensity factor width

which can be directly introduced into the Paris' rule.

~
m)l/mIn. (60.·ill< -1)

6K = 1. 1. 0-
In

i

(8)

The accuracy of the stress intesity factor width by above method

is seriously influenced by the number of blocks, and one numerical

example of the application above method is shown in Table 1. Ac­

cording to this example the number of blocks should be more than

10.
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(7) Automatic Mesh Generation Method

The macro-flowchart of the crack propagation analysis is given

in Fig. 5. A<;:cording to this flowchart three types of mesh gener­

ation methods are required for our purpose. For the zooming tech­

nique 3-D and 2-D mesh generation methods are necessary, ~nd also

another mesh generation is required for the crack propagation

analysis.

The geometry of the steel structures is complex, and the zooming

technique requires the recognition of boundary nodes. Furthermore,

the region where cracks propagate is small comparing to other

domain, and the region where the finite element meshes must be

modified is restricted in the small zone. Considering these items,

we design all mesh generation methods by using the blocking method.

See Fig.6.

Blocking Method is explained as following: Divide the

with complex geometry into a number of subdomains with

geometry, divide each subdomain into finite elements, and connect

them so that they form the original geometry.

This method is easily applied to three types of mesh generators

required for our analysis. Especially, the former two are almost

same, and 2-D mesh generator becomes the basic tool for the 3-D
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mesh generator, because the structure treated in this investigation

is formed by a gathering of plate-like structural components. Then,

each structural component is divided into finite elements by using

the 2-D mesh generator, and it is connected to other structural

components by considering the plane where the component locates.

One example of the mesh generation process of these two mesh gener­

ations is shown in Fig.7.

Assume that the area for the crack propagation analysis is ob­

tained by the application of the zooming technique. Then, the

Fig.7 An Example of 2-D and 3-D Mesh Generation for Zooming Process

' .
•

• •

•

Step 1&2

•
•

•

Step 3 Step 4 Step 5

Fig.8 Mesh Generation Process uping Delaunay Triangulation
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geometrical configuration of the area can be assumed as simple as

triangle or quadrilateral. Here, we introduce the Delaunay Trian­

gulation Method for this mesh generation.6) We assume that the num­

ber of nodes on all edges and the location of cracks are given

beforehand. The mesh generation method is shown as following:7)

Step 1 Set all nodes in the domain.

Step 2 Set more nodes on the lines where cracks locate.

Step 3 Apply the Delaunay Triangulation Method.

Step 4 Modify the location of nodes by using the Laplacian

Method.

Step 5 Embed fine mesh pattern at the crack-tips.

The flow of this algorithm is illustr,ated in Fig.8. Refer to 7) on

the details of this mesh generation method.

4. NUMERICAL EXAMPLES OF CRACK PROPAGATION SIMULATioN

In this chapter we show some results of the application of the

proposed method, and through these numerical experiments we show

some important items and informations which are necessary for the

actual numerical simulation of the crack propagation behaviour, for

example the mesh si ze at the crack-tip area, the mesh ar rangemen t

at the area, the characteristics of the finite elements, and so on.

4.1 Three Point Bending Problem 8)

The test problem shown in Fig.9 is used for the examination of

items which give us necessary informations for the setting of the

finite element model. In following section we use following

parameters, i.e. L, a, and w for the smallest mesh size, the crack

length, and the width of the specimen, respectively.

(1) Finite Element Modelling of Crack Tip Area

The meshes near the crack-tip gives direct influen£e to the

stress distribution, and the purpose of this section is to survey

the most preferable mesh arrangement. The stress intensity factor

is used for the judgement of the numerical results, and they are

compared with the value obtained by the theoretical method.

Under the condition of Lla = 0.1, we examine the stress inten
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Fig.9 Three Point Bending Problem

(a) Two Layers
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Fig.ll Influence of a/w to K
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Fig.l0 Finite Element Modelling
of Crack-tip Area
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Table 2 Comparison of K's
for Fig.l0

Fig.12 Influence of L/a to K
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sity factors for the meshes shown in Fig.10. The evaluation of K's

is done by using eq.6.

The results are summarized in Table 2, and we can summarize that

three layers of regular fine meshes should be set so that they sur­

round the crack tip. This result is applied for successive numeri­

cal experiments.

(2) The Element Size at The Crack Tip

In this section we survey the minimum size of finite elements

which are set around the crack tip. For this purpose we introduce

the parameter L/a, which is the ratio of the mesh size and the

crack length. The test problem is the three point bending problem

of previous section, and the result obtained in former section is

introduced.

We calculate the stress intensity factors for L/a = 1/3, 1/5,

1/10, 1/15, and 1/20 by using the displacement method proposed by

Ingraffea. The results are summarized in Fig. II, and it clarifies

that for L/a < 0.1 we can obtain good results for K.

(3) The Crack Length in Specimen

This section is used for surveying the influence of alw to the

stress intensity factors. If the crack length is very small compar­

ing to the width of the specimen, its finite element modelling be­

comes difficult by the reason of the limited CPU memory. Then, the

value a/w becomes an important parameter for the modelling.

The results of numerical experiments are summarized in Fig.12,

and from it we can conclude that a/w should not be set too small

and also too large. This is caused by the existence of strained

meshes, and therefore, if we are allowed to use more memory, then

this restriction can be removed.

4.2 A Plate Structure with a Manhole

All the results obtained in previous section is introduced in

the modelling of a plate with a manhole shown in Fig.13.

For the analysis we introduce the zooming technique, and we ob­

tain the peak principal stress at the corner of the manhole. See

Fig.14. From this result we set the initial crack of length 10mm at

the position, and we continue the crack propagation analysis till
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a Manhole: Geometry and Boundary Conditions
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Fig.I3 A Plate with

L.~-~

~ Qc

/;',,1<,/'"14.
Ell_'

~ ~

~

B

(J

Fig.I4 Model and Result
Fig.IS Result of Crack

Propagation Analysis

ISO.

100.

50.

____ FEH
__ SR169

SR169~ ~

200. a <nun)100.0
Crack Length

Fig.I? Residual Life
100.0 20 .0

Crack Length

Fig.I6 Stress Intensity Factors

o.o+:;;;=::-:;;_S?.....-=:S.......:>.,..--'"------
-10.o-'----~---.-----.---~-,.---..----­

0.0



Simulation Method of Crack Propagation Behaviour

the crack length reaches at 270mm. The analysis is repeated for 8

times. See Fig.15.

The computational results are compared with the ones given in

Ref.9. The compariso~ is done by using the stress intensity factors

at each analysis step, and also the residual life of the structure.

(See F~g's 16 and 17.) The results show tha~ they show good agree­

ments each other.

4.3 Multi-crack Propagation Analysis

A portion of steel structure shown in Fig.18 is used for the

test problem of the numerical simulation of the multi-crack

propagation. In this structure five pieces of plate are welded, and

by considering its symmetricity a half of it is used for the

analysis as shown in Fig.19. From the structural experiment we knew

that fatig~e cracks occure from two not-welded part of the figure,

and henceforce we call them Cracks A and B, respectively. Further­

more, the structural experiments clarify that Crack A grows lately

than Crack B, but the final collapse occures by the growth of the

crack A. Then, our purpose is to, reappear this phenomenon. The

boundary condition and the loading condition are given in the

figure.

From the structural experiments we can forecast that the crack A

changes its -growth direction upward at the beginning, and for the

reappaerance of this curved crack very fine meshes must be set at

the portion. For this examination we set two types of mesh sizes,

i.e. 0.25mm and 0.025mm as the smallest mesh size at the crack tip

10). At the numerical experiment we calculate the number of load­

ings which is required for the pre sci bed crack growth, i.e. 0.25 or

0.025 mm, for the crack with smaller stress intensity factor.

The results are illustrated in Fig's 20 and 21, and the details

are summarized in Table 3. The results by the fatigue tests are

shown in Table 4. From these results we find that the simulation

using the coarse meshes cann't reappear the actual phenomenon, but

the result of the finer meshes can show. good coincidence with the

fatigue test. From these test we can conclude that if multiple

cracks are treated, t'en times finer meshes are required comparing

to the single crack propagation analysis.
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Fig.20 Crack Propagation Behaviour
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Table 3 Calculated K Values
Upper: Fine Mesh
Lower: Coarse Mesh

Cycles K'Crack A K'Crack B

Step 1 14.8546 18.0165
Step 2 44* 1O' .19.1889(0.25) 20.2397(0.42)
Step '3 62*10' 22.1765(0.50) 21.7703(0.68)
Step 4 77*10' 26.0743(0.81) 23.2053(0.93)
Step 5 91*10' 33.4470(1.29) 23. 5897( I. 18)
Step 6 98*10' 37.0881(1.72) 23.2001 (I. 30)

( ) Crack Length(mm)

Cycles K 'Crack A K 'Crack B

Step 1 13.2470 18.5728
Step 2 44* 1O' 19.3090(0.25) 21.5207(0.50)
Step 3 64* 1O' 21.7576(0.50) 23.9165(0.85)
Step 4 79*10' 24.5289(0.75) 26.5217(1.18)
Step 5 89* 1O' 27.2073(1.00) 29 .2442( I. 49)

K' (kgf/mm' '2) ( ) Crack Length(lIm)

Table 4 Results of Fatigue Test

60 Collapse Propagation
No. kg/mm2 Occured at Times (Cycles)

PI 12.1 Cracl< A 1,059,500
P2 15.1 Crack A 586,500
P3 18.0 Crack A 287,800
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Fig.21 Crack Propagation Behaviours (Fine Mesh)

5. CONCLUDING REMARKS

In this investigation the authors explained the numerical

simulation method of single and multiple cracks propagation in

steel structures. Moreover, through numerical experiments they

showed some useful informations for the actual simulation tech­

nique.

Through the numerical experiments they could show that the sys­

tem given in this paper can reappear single and multiple cracks

propagation phenomena by using the computer. This indicates that

the system may become an efficient and powerful tool for the es­

timation or the forecasting of the residual lives of existing steel

structures with cracks. At the same time, it is obvious that the

system can easily give, for example, the boundary condition or the

loading condition for the fatigue test which treats only the sub­

structure and also it can explain the details of the structural ex­

periments.
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