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Focusing Characteristic Analysis
of Circular Fresnel Zone Plate Lens
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Fresnel zone plate lens (FZPL) has widely been used in electromagnetic antenna appli-
cations. Most analysis method based on the potential (scalar) wave approximation has
been applied to a few very limited and simplified cases. The present paper analyzes the
FZPL in more general form including the diffraction and transmission using the method
of moments (MoM). The focusing gain characteristics in the oblique incidence as well as
in the normal incidence are considered. The MoM solution using the three-dimensional
vectorial formulation requires a large memory space for the FZPL as it is operated at
a short wavelength. This is simply overcome by using an iterative conjugate gradient
method for the numerical evaluation. The MoM solutions are compared with the other
solutions.

1 INTRODUCTION

Fresnel zone plate lenses have been used as a flat optical lens [1]. Their equivalence has also widely been used in
electromagnetic antenna applications. The use for receiver antennas of the communication satellite televisions,
radio astronomical observation and so on, is reported because of their structural simplicity and low cost [2].
Hoashi et al. reported the evaluation of a FZPL antenna based on Kirchhoff’s scalar formula [3]-[4]. Guo et al.
considered the far-field analysis for the offset FZPL antenna design [5].

In the present paper, the FZPL is considered as the electromagnetic scattering and diffraction problems
in the exact manner, for which numerical techniques are attempted to solve the fundamental field equations,
subject to the boundary conditions and the geometry constraints. The formulation is presented and the MoM is
applied as a solution method. The MoM is a direct boundary integral equation method, suitable for the analysis
of electromagnetic scattering and diffraction problems [6]-[10]. The MoM reduces the integral equation to a set
of linear algebraic equation. Although the application is direct, however, when the dimension of the object is
large relative to the wavelength to be considered, enormous computational resources are required. This is simply
overcome by using a restart conjugate gradient method for the numerical solutions [8]-[10]. Some numerical
simulation results and the comparison with other solutions are presented.

2 MOMENT METHOD FORMULATION

The operation of the zone plate lens antenna is based on the wave interference as the results the diffraction,
scattering and the radiation from the induced surface currents. The integral expression is applied to 3-D surface
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of the conducting bodies of arbitrary shape for the electric field. The boundary condition is enforced in such a
way that the tangential electric field vanishes on the perfectly conducting surface

nx E™ =nx (jud)+nxV® onS (1)

where 1 denotes the outward unit normal vector on the conducting surface S, E™ is an impressed electric field
and w denotes the angular frequency. The magnetic vector potential A and the electric scalar potential ¢ are
derived as the following:

Alr) = p SlJ(r’)G(r,r')dS” (2)
o) = L[ (73661 3)
Gir,r) = 64_7:: (4)

where k = w(eu)'/? represents the wave number corresponding to the external medium (permittivity ¢, per-
meability 4) and R = |r — +'|. = and 7' are the position vectors at a field point and -at the source point,
respectively.

n-th edge
Triangle T,

Triangle 7,7

(4]

Figure 1 Triangular surface elements sharing a common edge /,,.

The unknown current distributions J(r') is expanded to be solved in the form:

J~ f: JnFn . (5)
n=1

where J,, is the unknown current coefficient and f, is the known expansion function. As shown in Figure 1, the
expansion function f, is definded on a pair of triangular patches T, and T, sharing a common edge I,, as:

o
T
n
where [, is the length of the common edge, AT is the area of the triangle patch T, and p¥ is the position
vector with respect to T.F [6]. Both sides of Equation (1) are integrated over the surface S, so that the MoM
expression is:

pE for T (6)

<fr BE™>=jw< f. , A>+<f. . V> (7)

where the notation < a,b > denotes a symmetric inner product or [sa - bdS. Here the weighting function f,,
is chosen to be the same as the expansion function f,. The linear algebraic equation is thus obtained

N
ZZann = Vn

n=1

or  [Zma]{Jn}

{V}, m=1,2,---,N (8)
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where Z,,, is a generalized system matrix and V,,, is a driving vector depended on an excitation. This fully
occupied equation system has to be solved numerically for the unknown current coefficient J,,. Especially for a
large-scale electromagnetic problems, the system matrix Z,,, is large, full and dense. The iterative conjugate
gradient method is applied to solve the discretized linear system for the numerical solution.

3 DETERMINATION OF A FRESNEL ZONE CONFIGURATION

A typical FZPL consists of the closed conductive opaque annuli rings as shown in Figure 2. The conducting
opaque zones are assumed to lie in the z-y plane, centered at (0,0,0) in the Cartesian coordinates. The focal
point must lie at (0,0, F), where F is the focal length. According to the concept of the Fresnel’s principle,
the focal point is created in such a way that rays via the boundaries of the rings yield successively path-length
difference of one-half of the wavelength. The relation of the inner and outer radius of j-th zone in the FZPL is
thus determined based on the optical ray theory as:

R™ = \J(F+j+ /42 - F? (9)
R = \J(F+(j—1/2)h + ho/4)2 - F? (10)

where Ay is the wavelength corresponding to the operation frequency in free space [4]. As shown in Figure 3, the
two complementary formulations are possible for diffraction with conductive rings and transmission through the
apertures. Kirchhoff scalar wave approximation can be applied to solve the transmission through the aperture.

X

Conducting annular ring

ginc — - ———-j-th Zone

Einc Focal point

Plane wave

y

Figure 2 Geometry of a circular Fresnel zone-plate lens.

4 NUMERICAL RESULTS

In this section, the numerical results are presented for some example of Fresnel zone plate lenses. The geometry
for the FZPL is determined based on Equation (9) and (10). The conducting annuli rings are discretized to
triangular patches. Since the unknown coefficients of the induced current are obtained by solving the system of
equations. The scattered electric field can be calculated directly from the induced currents. The scattered near
field solution from the conducting zone plates can also be obtained from the physical optics (PO) {11], which
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] conducting opaque annuli
aperture or open annuli

(a) Diffraction model with obstacles (b) Transmission through aperture

Figure 3 Two complementary models for the FZPL.

Jx|-component o Ty|-component
p ® p

Figure 4 Computed surface current distributions(F=5 cm, A\p=2.5 ¢cm): (a) is the magnitude pattems for the
case £™° = (° and (b) is the magnitude patterns for the case £ = 4°,
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is, to be exact, limited to an electrically large scatterer. For the complementary solution method, traditional
Kirchhoff’s approximation can be applied on a short wavelength wave such as the aperture problem, as shown
in Figure 3(b).
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Figure 5 Electric field distributions of the dominant component for various incident angles in z=5 cm plane
(F=5 cm, 2=2.5 cm).

The FZPL for the five conducting opaque rings is considered and operated at 11.92GHz (\y = 2.5 cm). The
focal length is supposed to be F = 5.0 cm (=2Ag). Assume that z-polarized plane wave with incident angle £
arrives from the left side of the FZPL as shown in Figure 2. The conductive zone rings are divided into 5352
triangular elements with 7224 unknowus. )

Figure 4 shows the magnitude patterns for the computed surface current distributions of each component
for various incident angles. Note that y-component as well as z-component for the induced currents on con-
ducting annuli rings also exists. In fact, if the aperture size is large in terms of the wavelength, the aperture
field may be approximately equal to those of the incident field except the field near the edges for Kirchhoff’s
approximation. In the PO method, the surface currents are also considered to be the incident electric field so
that y-component of the induced surface currents is not exist. Consequently, the solutions computed from the
PO method and Kirchhoff’s approximation are not included these y-component surface current for the next
axial focal characteristic calculations. The electric field distributions of a dominant component in the receiving
plane, 2=5 cm plane (X —Y plane), for the various incident angle are shown in Figure 5. Although the incident
angle is obliquely various, the patterns of the field distributions in the receiving plane are fixed.
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Figure 6 Relative field intensity distributions (in decibels) along the axis from the FZPL (F=5 cm, X=2.5
cm, € = 0°).
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Figure 7 Relative field intensity distributions (in decibels) along the axis from the FZPL for oblique incident
case (F'=5 cm, A\g=2.5 cm).
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Figure 8 Electric field distributions of the dominant component for various incident angles in z=30 cm plane
(F=30 cm, Ap=2.5 cm)

Figure 6 shows the field intensity distributions along the axis for the plane wave of the normal incidence
(¢imc = 0°). The plus signed line refers to the solutions due to the MoM, which is compared with other solution
methods, PO method and Kirchhoff’s scalar wave approximation. The discrepancy for the magnitude of each
solution is happened. It is occurred that y-component of the induced currents is ignored in the solutions of the
PO method and Kirchhoff’s approximation. The location of the focal point or the point of the maximum gain is
slightly shorter for the solution with Kirchhoff approximation than F=5.0 cm. The field intensity distributions
for oblique incidence are then investigated which is shown in Figure 7.

Next, the examination is extended to the case of a longer focal length. The FZPL is designed for three-zone
lens and F=30 cm (12X¢) at the same operation frequency. The rings are divided into 11080 triangle elements
with 15876 unknowns. The electric field distributions of a dominant component in 2=30 cm plane (X — Y
plane) for the various incident angle are depicted in Figure 8.

The calculated gains versus the distance from the zone plate lens are shown in Figure 9 for the normal
incidence. The focusing characteristics for the oblique incidence are shown in Figure 10. The PO method
gives closer solutions to the MoM. In some cases and in some regions, Kirchhoff approximation is not too bad.
For incident angle £ = 4°, the focal point may not lie on the axis so that the magnitude of the solutions is

decreased.
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Figure 9 Relative field intensity distributions (in decibels) along the axis from the FZPL (F=30 cm, A¢=2.5
cm, €M = (°).
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Figure 10 Relative field intensity distributions (in decibels) along the axis from the FZPL for oblique incident
case(F=30 cm, A\o=2.5 cm).
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CONCLUSIONS

The MoM technique is very general and applicable to the variety of problems. The FZPL is considered as an
electromagnetic scattering and diffraction model to which the MoM is applied. The FZPL is operated at a
relatively short wavelength. The MoM solution leads to a large system matrix, which could be handled by the
iterative conjugate gradient method of a restart version for the numerical solutions. Numerical results have
been presented including the oblique incidence, which are compared with other solutions.
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