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Synopsis

In order to apply the numerical method to practi­

cal groundwater flow problem in the field, the

hydraulic properties must be estimated. In this paper,

new methods of analyzing drawdown tests were developed

and illustrated with some examples to determine

hydraulic properties of aquifer. Drawdown tests some­

times have to be performed near the boundary of the

aquifer or in the much groundwater supplied aquifer.

In such instances, the assumption that the aquifer is

of infinite areal extent is no longer valid. Therefore

the analytical solutions of unsteady flow due to

drawdown test are derived in the conception of "Island

Model" that the shape of groundwater level is fixed by

the circular water supply which is equilibrium with

the pumping rate. By using these solutions, new methods

of analyzing drawdown tests which are performed in a

confined aquifer and an unconfined aquifer were given

respectively and the effect of influence region was

evaluated. The example analysis to determine permea­

bility and storage coefficient were shown. As the

results,the propriety of the solutions is verified

comparing the analytical results with the drawdown test

data taken from a real aquifer project.

* Department of Civil Engineering.

95



96 Makoto NISHIGAKI and Iichiro KONO

1. Introduction

In Theis' or Jacob's method, the assumption has been made that

the horizontal extent of the aquifer was so great that for mathematical

purposes it could be considered as an infinite radial system. However,

adjusting drawdown test data gotten within relatively large time, the

drawdowns in an observation well are often no longer dependent of time

and their behaviors become nearly in steady state. It is difficult to

explain this behavior by using Theis' assumption that water is supplied

from an infinite radial region.

To give an explanation of this reason, it is considered that the

drawdown within relatively large time becomes to keep the equilibrium

with surrounding water supply, that is, the existence of an influence

region of which radial distance keeps the balance against the pumping

rate must be considered. Namely, the head around this region is equal

to the initial head of groundwater.

This conception in which that model is maned "Island Model" has

been applied for the model of analysis in steady state drawdown test

for a long time, but not the analysis of Island Model in unsteady

state has been yet.

The Island Model is as same as the practical situation bounded

in some manner, e.g., by a river or a reservior. In this situation,

the analysis of drawdown test has been solved by the method of images

for boundary. This method, however, is confined to the assumption

that the groundwater supply from many sourses, that is, from river-bed

water or neighboring groundwater is regarded as only one point well.

In this paper, first, the solutions of unsteady phreatic flow

due to drawdown test are derived in the conception of "Island Model"

that the shape of groundwater level is fixed by the circular water

supply which is equilibrium with the pumping rate.

By using these solutions, the methods of analyzing drawdown test

data in a confined aquifer and in an unconfined aquifer are given and

the effect of influence region is evaluated. Furthermore, the analyses

which have been separated in each cases of steady state and unsteady

state pumping test are consolidated."

In this paper, the analysis stand on following assumptions.

(1) Flow within the porous medium obeys Darcy's law.

(2) The aquifer is homogeneous and isotropic with respect to permea­

bility.

(3) Storage coefficient is time independent.

(4) Only single phase (or saturated) flow occurs in an aquifer.
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(5) The well is assumed to have no surface of seepage.

(6) The pumping well used in the testing operations will also be

assumed to be fully penetrating and to operate at a constant rate

of withdrawal.

2. Analytical Solution for Island Model Drawdown Test in a Confined

Aquifer

Indicating in introduction, the Theis' analytical solution

heretofore in use was derived on the assumption that water is supplied

from the region of infinite distance in drawdown test. Yielding this

assumption, the radial distance (r) from drawdown test well to the

observation well and the time (t) since pumping starts are always

treated in the form of (t/r 2
) or the inverse form of that, and draw­

down test data performed in ideal conditions can be plotted on a curve

independently of the position of wells.

But when drawdown data, which were obtained within large pumping

time, are adjusted according to Theis' or Jacob's method, the results

for each observation well are on the curve of Theis-Jacob's analytical

solution untill some time, and then they depart from that curve, that

is, each curve of them becomes parallel to the abscissa independently

of time.

To explain this reason, it is able to consider that there is a

constant head boundary in finite radius (R) as shown in Fig.2.l.

Q

Original piezometric surfaceGround surface
/' I

~ _l _____ ...----- - --....., ---.,.. -- ....... ~ 3 ----- .
lmpermeable- t'"_

"- ... ' - < Drawdown

~ ...I,•.'~urve
. . . - - .. • I J . .. .- - .. I I .' .. - H.. . . .. ,- I I -b .

" Confined h I ~.. - . , I -''- aquifer : "
J ..

'- . \ I· .. -. , .
c -. - " I

. -- .. I I . _ .
.. . - .. . . . .~

- - I .- I

//'W I r
F,-w

Impermeable
I R

Fig.2Al Nonsteady radial flow to a well penetrating a confined aquifer
on an island
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In this section, the solution of unsteady radial flow in a confined

aquifer will first be derived, after which the method of analyzing

drawdown test data will be given.

2.1 Basic equation and solution

The partial differential equation that describes the fluid

movement in this system is again

(2.1)

where as is hydraulic diffusivity of aquifer (=K/S s ) and ~ is drawdown

in aquifer (=H-h).

Eq.(2.1) must be solved sUbject to following conditions,

~( r,O

~( R,t

a~
lim r ---ar
r+O

o

o

_Q­
27TKb

(head initially constant) (2.2)

(constant head at water boundary)
(2.3)

(flow rate into well of zero
radius remains constant) (2.4)

To solve the initial boundary value problem given by Eqs.(2.2),

(2.3), and (2.4), Laplace transformation is applied to Eq.(2.l) using

initial condition Eq.(2.2)

(O<r::;R)

where q2=p/a s ' p is the parameter of Laplace transform and ~ is

Laplace transform of ~.

The boundary conditions Eq.(2.3) and Eq.(2.4), treated in the same way,

give

~ ( R, P ) '" 0

lim r a~arr-+O

___Q__l_
27TKb p

(2.6)

(2.7)

The solution of Eq.(2.5) will be of the form

(2.8)
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where IO(qr) is the zeroth order modified Bassel function of the first

kind and KO(qr) is the zeroth order modified Bessel function of the

second kind. SUbstituting Eq.(2.8) in Eqs.(2.6), (2.7) and solving

for A and B, ~ is gotten finally.

where

gl = Ko(qr)/p

gz KO(qR)

g3 Io(qr)/plo(qR)

(2.10)

(2.11)

(2.12)

Eqs.(2.10),(2.11), and (2.12) are now respectively, determined by the

Inversion Theorem.

gl = ~f:Z/4a t ~-udU
s

gz = 2~ exp(-Rz/4as t)

where a· are the roots of the characteristic equation
n

(2.13a)

(2.13b)

(2.13c)

(2.14)

By using the Duhamel Formulas and combining these results the solution

of ~ is derived,

J
oo· -A

1; =~[ _e_dA _
4nKb rZ/4a t A

s
J

oo -A
_e_dA 1

RZ/4a t A
s

x

(2.15)

If R becomes an infinite radial distance in Eq.(2.15), the result is

the same of Theis' solution.
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In general the value of permeability (K) is K=lxIO-2~10-3(cm/sec)

and the value of specific storage (8 ) is 8 =lxlO- s ~ 10-6(cm- 1 ), then
s s

the value of the ratio (a =K/8 ) becomes about a =10 2 ~ 10~(cm2/sec).
s s s

Therefore, on the right hand side of Eq.(2.15), the third term is as

small as negligible comparing with the first and second terms, and so

the approximate solution of drawdown (~) is given by

= _---5L-[ E (-r 2 /4a t) -E (-R2 /4a t)]
4nKb i sis

(2.16)

where E.(x) is the exponential integral and W(x) is the well function.
l

It can be expanded as a convergent series so that W(x) becomes

x 2 x 3

W(x) = -0.5772 - In(x) + x - ~ + 3'3! (2.17)

For large values of time (t), x is small, so that the series terms in

in Eq.(2.17) become negligible after the first two terms. As a result,

the drawdown can be expressed by the asymptote

~ ~ 2'~~~b[(loglo(t/r2) - loglO(Ss/2.25K)

~(loglO(t/R2) - loglO(S /2.25K»] (2.18)
s

;;i~Q loglO(R/r)

Eq.(2.18) is the solution of the model shown in Fig.2.1 for steady

state flow.

2.2 Effects of constant head at outer boundary

Eq.(2.16) is used to evaluate ~* as a function

of R* ranging from 1.5 to 100, in which

~* = 4nKb~/Q

t* = (K/S )(t/r2)
s

R* = R/r

of t* for values

(2.19)

(2.20)

(2.21)
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Dimensionless time (t*)
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Fig.2.2 ~* versus t* for limited aquifer with constant

head boundary

Fig.2.2 shows the resulting family of curves for several values

of R*. The type curves depart from the Theis curve in pairs with the

point of departure depending on the value of R*, and it is distinct

that the drawdown in the aquifer bounded by constant head becomes

steady state earlier than that in the infinite extent aquifer. From

Fig.2.2 it is also obvious that if the value ofR* is larger than 100,

the effects of the influence region is negligible. In other words,

the drawdown in such a condition is not affected by constant head

boundary. An interesting way of looking at this result has been sug~

gested by Mononobe for steady well problem. To use his own words [lJ

It In actual problem, the influence region extends since pumping starts,

whereas, by reason of the extent of aquifer, the effects of other wells,

and the infiltration of rain, the head at circular boundary does not

have to be constant. Therefore the influence region is not always

expanding into the infinite region.
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If a large pumping rate is continued the groundwater around well

may be dried up. In general, it would be safe to calculate the drainage

rate assuming the influence region must be within the range from 500

meters to 1000 meters. " We perform the pumping test at the condition

that the observation wells are set within about 20 meters of the radial

distance from pumping well. And so the value of R*>lOO means that the

influence region must be within 2000 meters. This is a theoretical

explanation of the assumption based on experiences.

2.3 Method of analyzing field data

The engineer wishes to determine the values of the aquifer

constants (K,S ) and the radial distances of the influence region,(R).s ".'
The properties of the aquifer will presumably to known from earlier

drawdown tests, and the approximate radial distances of the influence

region will have been predicted by geological reconnaissance.

In~hissection, the differences that appear in the data, and

the adaptations that must be made to the methods of interpretation,

due to the presence of boundary will be given.

Log-Log Method

The presence of a suspected circular boundary within the region

of influence of the drawdown test may be indicated by the inability

to match the log-log field data plot on time versus drawdown with the

Theis'method. Eq.(2.16) is rewritten by using dimensionless drawdown

(~*) and time (t*)

(2.22)

where

~* = 41TKb~/Q

t* 4a. t
s

} (2.23)

It is necessary to assume the value of R for calculating Eq.{2.22) in

numerical method. As indicating in introduction, the value of R is

defined by the conditions of the pumping rate and that of hydrology.

If a drawdown test is run for a relatively long time, the

drawdown will become in steady state. In this state the drawdown is

given by Eq.(2.18), the value of R can be calculated as follows:
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R = r.exp(2TIKb~/Q)
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(2.24)

In Eq.(2.24), the values of r, ~, b, and Q are from the relatively

long time drawdown test. The permeability (K) is obtained from the

application of Jacob's method. With this method, an observation well

near the pumping well is needed. Such a well will have a high value

of R*(=R/r), and as reference to Fig.2.1 shows, deviation from the

Theis curve due to the effect of the boundary will not occur until

considerable pumping time has elapsed. A rough estimate of permeability

(K) can be calculated on the basis of the early drawdown data from

such a well. A rough calculation of the value of R is gotten. Knowing

the values of R, one can prepare a graph.of log~* versus logt*/r 2

depending on the value of rfrom Eq.(2.22). When the drawdown data

from each observation well has been plotted log-log paper with the

same dimensions per cycle as used above, one matches the field results

to the theoretical curve.

When the curves are matched, one can read the ~imensionless

param(';ters that correspond to each point" of" field data. An equivalent

value'~* can be determined for any ~ measured in the observation well

and an equivalent value of t*/r 2
, for the corresponding value of real

time, t/r 2
• The permeability can be calculated from Eq.(2.23).

K = Q~*
. . 4TIb~' (2.25)

and the compressibility factor can be calculated from Eq.(2.23)

(2.26)

Moreover by the data of drawdown for a relatively large time, the

permeability can be obtained from Eq.(2.18) in the another method.

(2.27)
K = 2.30Q loglO(R/r)

2TIb~
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2.4 Analysis of drawdown test data

The following discussion gives example calculations of the

method given above. The drawdown test data are taken from a real

aquifer project that is located near Lake Shinji, Shimane Pref. in

Japan.

(

I II

Fig.2.3 Plane view of the drawdown test site

The plane view of this region is shown in Fig.2.3. This region is

bounded by the river on the west and by sea on the north. The

geological condition obtained from well logs is shown in Fig.2.4.

Two sand-gravel layers revealed as confined aquifers exist in this

region.

Firstly the drawdown test performed in the lower part confined

aquifer is going to be analyzed for example using an average rate of

Q=4.17xl0 3 cm 3 /sec. The thickness of this aquifer is revealed b=5.2m.

The drawdown test data is analyzed by Jacob's method as shown in Fig.

2.5, a rough estimate of permeability is obrained K=5.78xlO- 2 cm/sec.
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Fig.2.4 Hydrogeological cross-section through the experimental group
of wells

For the relatively large time (4 hours) drawdown test data of the

observation well (r=12m), the drawdown which is regarded as steady

state is' s=52cm. Interpolating these parameters in Eq. (2.24). The

rough calculation of the value of R is gotten

R = r.exp(2nkbs/Q) ~ 126m

The radial distance from pumping well to the river and sea is about

175m. From these results the value of R is estimated the four cases,

that is, 100m, 125m, 150m, and 175m. Matching the field results to

the theoretical curves for each value of R, the field data make a

satisfactory fit to the theoretical curves for R=150m as shown in

Fig.2.6.
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At the match point where ~*=5.0, and t*/r 2=2.3 xl0 3
, one reads

~=5.2xlOcm and t/r2=lO-2sec/cm2 for r=12m.

From Eq.(2.25), the permeability can be calculated

K = S.Ox4.17xI0 3

4xlTxS20xS.2xIO

From Eq.(2.26), the compressibility factor can be calculated

Interpolating these calculated values in Eq.(2.l6), the result of

comarison of theoretical curves with drawdown test data is shown in

Fig.2.7. It is definite that theoretical curves give a good match

with the drawdown test data. From the steady state data, the permea­

bility can be calculated from Eq.(2.27) interpolating R=150m, r=12m,

~=52cm, Q=4.l7 xl0 3 cm 3 /sec, b=5.2m

Secondly the drawdown test performed in the upper part confined

aquifer is going to be analyzed for the second example using an average

rate of Q=3.69 xl0 2cm 3 /sec. The thickness of this aquifer is revealed

b=2.l0m. With the same way of the first example, R is estimated R=

l3.5m. At the match point where~*=2.2xlO-land t*/r 2=13, one reads

~=4.0cm, t/r2=lO-2sec/cm2 as shown in Fig.2.8.

From Eqs.(2.25), (2.26) the permeability and the compressibility

factor

Interpolating these values into Eq.(2.l6), the result of comparison of

theoretical curves with the drawdown test data is shown in Fig.2.9.

In this case theoretical curves also give a good match with the

drawdown test data.
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3. Analytical Solution for Island Model Drawdown Test in an

Unconfined Aquifer

In section 2, the analytical solution on a confined aquifer has

been derived and example calculations are given.

In this section, consider an unconfined aquifer of finite

lateral extent that rests on an impermeable horizontal layer such as

that shown schematically in Fig.3.1. A well compeltely penetrating

the aquifer discharges at a constant rate Q, and water is released

from storage by gravity drainage at the free surface, neglecting the

storage by compaction of the aquifer material expansion of the water.

Q

Ground surfaceOriginal free surface f-, /"
~ __~i.._--...,---I- t--------==- -....

----~ ~ III ---- ....
--... ·....--111 1 Drawdown curve

Unconfined 1'1

aquifer ~ III
, . I H

IhIf II I
( Iz

/H/ r ,,.,
Impermeable

R

Fig.3.1 Nonsteady radial flow to a well penetrating

an unconfined aquifer on an island

3.1 Basic equation and solution

With the assumptions which are described in introduction, the

governing partial differential equation are given

( O<z<~, O<r<R) C3 .1)
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Eq.(3.1) must be solved subject to following conditions

i;;(r,z,O) = o}
(head initially constant)

l;(r,O) = H

113

C3. 2)

i;;(R,z,t) 0 (constant head at out boundary) (3.3)

(at the well-bore)

di;;
--az(r,O, t) = 0 (on no flow across lower boundary)

lim 'JI; r ~ri;; dz = -_Q_-
r~O 0 0 2nK

2Ln
+ 2Ln =~.1L.-}dr r dZ n K dt nz

(on free-surface boundary)
I;(r,t) = H - i;;(r,l;,t)

C3. 4)

C3 ~ 6)

S is the effective porosity or
y

where n , n is the component of unit outer nomal vector in r directionr z
and in z direction respectively.

specific yield.

Eqs.(3.1) - (3.6) can be linearized by using a perturbation

technique similar to that described by Dagan [2,3J, provided the

aquifer is thick enough and i;; remains much smaller than 1;. Here this

technique leads to a first order linearized approximation, obtained

simply by shifting the boundary condition from the free surface to the

horizontal plane z=H.

This eliminates I; from Eqs.(3.2) - (3.6), one obtains

where

i;;(r,z,O) 0

i;;(R,z,t) 0

di;;
~ (r,O,t) = 0

lim r di;; Q_
r"*O ar = - 2nKH

ex = K/S
Y Y

C3.8)

(3.9)

C3 .10)

C3.11)

C3. 12)

. C3.13)
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In solving the initial boundary value problem posed by (3.8) - (3.12),

it is convenient to divide ~ into two components

(3.14 )

Although both ~l and ~2 satisfy Eqs.(3.7) - (3.10), there is a change

in boundary conditions Eqs.(3.11) and (3.12), which now take the form

(3.15 )

~l(R,O)

~dR, t)

o

o

(3.16 )

(3.17)

-Q
2nKH (3.18 )

'"' 0

~2(R.z.O) = 0 (3.20)

~2(R.z.t) 0 (3.21 )

~~2(r.O.t) 0 (3.22 )

lim r o~: 0 (3.23)
r ....O

O~2 ( )---az r,H,t (r,H,t) (3.24)
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When Laplace transform is applied to Eqs.(3.15) - (3.24) with respect

to ~l and ~2, Eqs.(3.15) - (3.24) are given as follows;
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2- -
~ + -.!:..~= 0

Clr 2 r Clr

~l (R,p) = 0

lim r Cl~l = _l_~
r~O Clr p 2wKH

~2(R,H,p) = 0

C3. 25)

C3. 26)

C3. 28)

Cl~2 )az-(r,O,p o (3.30)

lim r Cl~2 = 0
r~O Clr (3.31)

(3.32)

The solution of Eq.(3.25) with respect to ~l can be obtained with the

conditions, Eqs.(3.26), (3.27).

~l = - 2W~b -%-In(rIR) (3.33)

The solution of Eq.(3.28) with respect to ~2 will be of the form

(3.34)
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where Jo(x) is the Bessel function of order zero of the first kind.

From the condition (3.30), Eq.(3.34) becomes

~z = Acosh(az)JO(ar)

To satisfy the boundary condition Eq.(3.29) a must be an infinite

number of real positive roots

a R is defined as A , then Eq.(3.35) can be rewritten asn n

~z = ~lA COSh(A z/R)JO(A r/R)n- n n n

(3.36 )

·(3.37>

The constant value An can be obtained from the condition Eq.(3.32),

~lA (A /R)sinh(A H/R)JO(A r/R)n- n n n n

= -(pia )[ (Qo/p)ln(r/R) + ~lA COSh(A H/R)JO(A r/R)]Y n- n n n

and the expression above can be rewritten as

~lA C JO(A r/R) In(r/R)n- n n n

where now

C = -(a /Q )[ (A /R)sinh(A H/R) + (p/a )coSh(A H/R)]n yOn n y n

and

Qo = - Q/(21TkH)

(3.38 )

(3.39 )

(3.40 )

(3.41 )

On a given interval O<r<R the right-hand side of Eq.(3.39) is expanded

in the form of Fourier-Bessel series,
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the Fourier constants an of ln~ in Eq.(3.42) are
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(3.42)

a =
n 2 fRo r[ln(r/R)] JO(Anr/R)dR

R2J 2(A )
I n

(3.43)

Integrating over r from 0 to R, one finds

2 2a = -2/(An J (A »
n 1 n

From Eqs.(3. 39), (3.42) and (3.44), the constants An are

A = a /Cn n n

(3.44)

Interpolating Eq.(3.45) into (3.38) and using (3.33), adding the

transforms of both components gives

~ = ~l + ~2 (Qo/p)ln(r/R) + n~l (an/Cn)

XCOSh(A z/R)JO(A r/R)
n n

(3.46 )

The inversion of the Laplace transform of ~ is accomplished, one

obtains the first order approximation to the original initial boundary

value problem.

The final solution is expressed as follows;

~ = - 2'IT~[ln(r/R)

2JO(A r/R)cosh(A z/R)exp[-t(A K/RS )tanh(A H/R)]
+ ~ n n n y n
n~l

A2Jt(A )COSh(A H/R)n n n

In Eq.(3.47), let t become infinite the result becomes

~ = - -L In(r/R)2'ITKH (3.48)
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this is just the steady state solution of the model shown in Fig.3.1.

3.2 Effects of constant head at outer boundary
4

To illustrate the analytical results, a computer program that
permits to determine the dimensionless ratio ~* (=2TIKH~/Q) as a

function of the dimensionless time t* (=Kt/RS ) for given dimension­
y

less values of r*(=r/R), z*(=z/R) and H*(=H/R), according to follow

expression of Eq.(3.47) has been prepared.

2J
O

(A r*)cosh(A z*)exp[-A t*.tanh(A ~*)]
00 n n n n

-In (r*) - n~I-""':"--:'-----~--_--:'----_""':"_-

A2J~(A )COSh(A H*)
n n n

(3.49)

The program has been run for various combinations of the parameters.

In Fig.3.2, drawdown curves at (z*=l) observation wells (r/R=100,20,

10,5,4, and 2) are presented for R/H=lO. The abscissa t*/(r*)2

(=~K~2) is the independent variable in the Theis formula, whose draw­

dow~ curve has also been represented in Fig.3.2.

The type curves depart from the Theis curve in pairs with the point of

departure depending on the value of R*(=~). It is noted on Fig.3.2,
r

as same as the confined condition, that the drawdown in the aquifer

bounded by constant head becomes steady state earlier than the draw­

down in the infinite extent aquifer.

3.3 Method of analyzing field data

In an unconfined aquifer, the engineer wishes to determine the
value of the aquifer constants (K,Sy) and the radial distances of the

influence region (R) in the same way of the case in the confined

aquifer. The geological condition of the aquifer is known from the

well logs. Here, an analysis of the drawdown data in the observation

wells is shown.

Log-Log Method

To prepare a graph of drawdown log~* versus logt* for the ap­
propriate r* (=r/R) between pumping well and observation wells from

Eq.(3.49), it is necessary to obtain the values of R, H. The thickness
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(H) of the aquifer can be obtained from the well logs and the measuring

the existent ground water level. The value of R is assumed from the

same way of confined aquifer, namely, if a drawdown test is run for

relatively long time, the drawdown will become in steady state, and

in this state the drawdown is given by Eq.(3.48).From that equation,

the value of R can be calculated

R = r·exp(2TIKH~/Q) (3.50)

In Eq.(3.50), though the known values are H, ~ , and Q, the permeability

(K) is unknown value. The permeability (K) is obtained from the

application of Jacob's method. With this method, an observation well

near the pumping well is needed. Such a well will have a high value

of R*(=R/r), and as reference to Fig.3.2, devision from the Theis

curve due to the effect of the boundary will not occur until consider­

able pumping time has elapsed. A rough estimate of permeability (K)

can be calculated on this basis of the early drawdown data from such

a well. Interpolating these parameters into Eq.(3.50), a rough cal­

culation of the value of R can be gotten. Getting the values 'of R,

one can prepare a graph of log~* versus logt*/r 2 depending on the

value of r from Eq.(3.49), in that equation

~* = 2TIKH~/Q

t* =(K/S )·t
Y

(3.51 )

(3.52)

By using the match point method, one can read the dimensionless para­

meters that correspond to each point of field data.

An equivalent value ~* can be determined for any ~ measured in

the observation well and an equivalent value of t*/r 2
, for the

corresponding value of real time, t/r 2 • The permeability can be

calculated from Eq.(3.51)

K = (Q/2TIH)(~*/~)

and the effective porosity can be calculated from Eq.(3.52)

S = K(t/t*)
Y

(3.53)

(3.54 )
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3.4 Analysis of drawdown test data
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The drawdown test data are taken from a real aquifer project

that is located near Goshyo, Kyoto City in Japan. The geological

condition obtained from well logs is shown in Fig.3.3. The drawdwon

test performed in the unconfined aquifer is going to be analyzed for

example using an average rate of Q=2.67 xIOcm 3/sec. The thickness of

this aquifer is revealed H=2.17m. The result of the drawdown test

data analyzed by Jacob's method is shown in Fig.3.4. From this

result a rough estimate of the permeability is obtained as K=1.12xIO- 3

em/sec. For the relatively large time (t=20 hours) drawdown test data

of the observation well (r=15.7m), the drawdown which is regarded as

steady state is s=17.5cm. Interpolating these values into Eq.(3.50),

the rough calculation of the value of R is gotten

R = r.exp(2TIKHs/Q)

1.57xI03exp(2x3.14Xl.12XlO-3X2.17Xl02x17.5/2.67xl03)

=42.4m

Though the Kamo river that is regarded as the constant head

boundary exists at the distance R=lOOOm from the pumped well, for the

reason that the pumping rate is small and the ground water supply is

large because the region is the center of the Kyoto Basin, the value

of the influence is estimated for ~ases, that is, R=25m, 30m, 40m,

and 50m. All observation wells have penetrations of z=2m and radial

distance of each well is shown in Fig.3.3. Then, interpolating these

values (z,R, r i , S, H)into Eq.(3.49), the theoretical curves are gotten.

Matching the field results to the theoretical curves for each

value of R, the field data make a satisfactory fit to the theoretical

curves for R=30m, as shown in Fig.3.5. At the match point where

s*=5.9 xIO- 1
, and t*=2 xI0 4

, one reads s=16cm and t=2.55 xI0 4 sec for

r=15.7m. From Eq.(3.53) the permeability can be calculated

K
26.66x5.9xIO- 1

2xTIx217x16

From Eq.(3.54), the effective porosity can be calculated

s
y

7.2xIO- 4 X2.55xI0 4

2xI0 4
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Interpolating these calculated values in Eq.(3.47), the result of

comparison of theoretical curves with drawdown test data is shown in

Fig.3.6. It is definite that theoretical curves give good match with

the drawdown test data.
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4. Conclusions

Makoto NISHIGAKI and Iichiro KONO

In this paper formulas and methods available to evaluate the

data from drawdown tests under a special condition have been developed.

Namely, to analyze drawdown test data obtained in the much ground­

water supplied region, a conception of "Island Model" has been applied

in unsteady state. The results of this study can be used to analyze

drawdown tests in order to measure the two aquifer parameters K and

S. These analytical solutions are very complex, but they can be re­

cognized that they have greater generality than previous solution.

The conclusions obtained in this paper are as follows;

(1) The unsteady analytical solutions of phreatic flow due to draw~

down test are derived in the conception of "Island Model" that

the shape of groundwater level is fixed by the circular water

supply both for confined and unconfined aquifer.

(2) By using these solutions, the methods of analyzing drawdown test

data performed in confined and unconfined aquifer are given.

(3) The effect of influence region is evaluated, and a theoretical

explanation of the assumption based on experiences was given.

(4) The example analysis to determine permeability and storage

coefficient are shown.

(5) The propriety of the soiutions is verified comparing theanalyti­

cal results with the drawdown test data taken from a real aquifer

project.
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