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SYNOPSIS

This paper includes a solver for a large sparse set of

linear algebraic equations which are obtained by the ap­

plication of the finite element method to static struc­

tural problems. Proposed method is a modification of

Robust Incomplete Choleski-Conjugate Gradient Method,

which belongs to Preconditioned Conjugate Gradient Method

suitable for supercomputers. Through a number of numer­

ical experiments the authors show that Robust Incomplete

Choleski-Conjugate Gradient Method sometimes fails in to

obtain the solutions, secondly they clarify the reason

of the failures from the theoretical viewpoint, and fi­

nally they propose a modification of the robust method

by the introduction of the theoretical result. Proposed

method is as effective as the original, and it can over­

come the demerit of Robust Method which is clarified

through numerical experiments.

1. INTRODUCTION

The recent development of the supercomputer requires newer and fast­

er solvers for large sparse sets of linear algebraic equations. The

characteristics of the computers require us more effective utilization

of CPU memory for large-scale problems, and therefore, new solvers are

necessarily selected among iterative ones. Thus, solvers belonging to
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conjugate gradient method are thought to be one of the best for this

purpose. [1] Though the method generally shows good convergence behav­

iour, it is still insufficient for large-scale problems which engineers

encounter, and the improvement of the convergence behaviour has been

required. One of the best ways for this improvement is the addition of

the preconditioner for CG method, and at present we find a number of

preconditioners. [2]

The role of a preconditioner is the improvement of the distribution

of all eigenvalues of a set of linear algebraic equations before the

application of CG method. All of the preconditioners at present in use

are classified into two types; the matrix splitting and matrix factori­

zation methods. Several preconditioners belonging to the latter are

already proposed, and the most popular one is the incomplete Choleski

factorization method.[2J Henceforce, we call the conjugate gradient

method with a preconditioner as PCG method.

PCG method is widely used in engineering fields, and in most cases

it gives good results comparing to the direct methods with respect to

the execution-time and necessary memories. But, in some cases of struc­

tural problems PCG method cann't be effectively applied or fails in the

computations. For overcoming this failure artificial methods are also

proposed. One of them is the robust incomplete Choleski-conjugate grad­

ient method which was proposed by Ajiz and Jennings, and a number of

investigations clarified its efficiency of the application in many

engineering problems. [3J

The main purpose of this investi8ation is to survey the efficiency

of the robust method. Through a number of numerical experiments of the

method we show that in some cases the method fails in the computations

of the matrix factorization. Then, we clarify the reason of the failure.

and by considering the reason "re propose modified robust incomplete

Choleski-conjugate gradient method.

2. PRECONDITIONED CONJUGATE GRADIENT METHOD

Let
Ax = b (1)

be a set of linear algebraic equations. Our aim is to solve the unknown
vector x by using PCG method.

Let B be a matrix which is appropriately determined, and the multi­

plication of B to (1) yields to another set of linear algebraic equation
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BAx = Bb (2)

If the matrix BA is equal to a unit matirx (i.e. B is the inverse

matrix of A), (2) directly gives the solution vector, x.

Let B be a matrix which is similar to the inverse matrix of A. Since

the matrix BA is near unit matrix, then the application of CG method

to (2) easily leads to the solution comparing to the direct application
of CG method to (1).

The procedure mentioned above is the basic idea of PCG method, and

the matrix B is called a preconditioner. From these explanation we can

recognize the role of a preconditioner as following; the preconditioner

works to arrange the distribution of all eigenvalues so that CG method

can easily converge to the solution, and, therefore, the preconditioner

need not to be a strict inverse matrix of A but may be similar to it.

There are a number of methods to find and construct B matrix. [2]

These methods are classified into two categories; matrix splitting and

matrix factorization methods. Among these methods the former is usually

introduced in engineering fields, and the most popular one is the in­

coplete Choleski factorization method, which is a kind of Choleski

factorization method and factorizes off-diagonal elements in accordance

with some specified criterions. Henceforce, we call CG method with in­

complete Choleski factorization method as ICCG. Now, we explain the in­

complete Choleski factorization.

Before the explanation, we briefly summarize the process of Choleski

factorization, since the process has the important meaning at the rea­

soning of the failures of robust incomplete Choleski-conjugate gradient

method. The process of Choleski factorization is expressed as following;

For k = 2,3, ... , n,

k-l
2)1/2akk - 2: akjj =1

k-l
( a ik - a ij akj ) / akkj =1

, where k < nand i = k+1, k+2, . 0" n.

In above expressions we should notice that since the main diagonal

entries are subjected to the root computation, they must be always

positive through the factorization process. In other word, if there

arises a negative value at the diagonal entry, the computation stops at

the stage.
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Now, we explain the incomplete Choleski factorization. At first,

determine the set of elements P which are not factorized at Choleski
decomposition as

P = { (i,j) I L ..
~J

0, 1 < i,j < n } (5 )

Successively, we continue the Choleski factorization so that

if (i, j ) E P, then L .. 0,
~J

1
J

if (i,j) ~ P, then Qij A..
~J

(6)

At the selection of the set P there are a number of methods, and

thus, we can give several ICCG methods. They generally work very well

for many kind of problems, but sometimes we fail in to obtain solution

for following problems which include plate, shell and isoparametric

finite elements. This failure is due to the appearance of negative
value at the main diagonal entry. The reason of the occurrence of nega­

tive value is obviously due to the incompleteness of the factorization

process for the coefficient matrix, and in order to prevent the occur­

rence of the failures during the factorization, Ajiz and Jennings

proposed so-called robust incomplete Choleski-conjugate gradient method

. [3) Since by (4) the diagonal entry is modified by off-diagonal values

, it may happen that the diagonal value becomes negative by the proce­

dure neglecting the factorization of off-diagonals. Then, this method

adds to the diagonal entry a slight value which depends on the neglect­

ed values at the factorization process in order to prevent the appear­

ance of negative value.
Here, we explain the robust method by Ajiz and Jennings briefly.

Let a .. * be an off-diagonal element of the coefficient matrix in the
~J

factorization process, and ~ be a parameter which is arbitrarily deter-

mined as 0 < ~ < 1 by the user. If any off-diagonal element satisfies

(7)

, then the element is not factorized, and its diagonal element is mod­

ified by using following equations;

(8)
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a .. + I a .. 2 a . . /a ..
JJ ~J n JJ

(9)

49

Here, we should notice that (8) is used only when the last off-diagonal

entry of the i-th row is neglected. On the other hand, the modification

at (9) is always applied for the modification of a ...
JJ

From (7) it is obvious that the method is equivalent to the complete

Choleski factorization if ~ is equal to O. On the other hand, if ~ has

rather a big value, then the result of the factorization becomes

quite different from the one by the complete Choleski. As a result,

even though giving big value for ~ can save necessary CPU memory, it

results in the increase of the number of iterations which is required

for the computation of the conjugate gradient method. This indicates

that the setting of a parameter ~ is the most important factor at the

use of robust method, because it decides not only the CPU-time but also

CPU memory necessary for the method.

If any solver is required to be introduced as a general-purpose

method, it is necessarily applied to various types of linear algebraic

equations. Of course, it is also required to be fast and reliable. In

successive section we survey on these two faces of the robust incom­

plete Choleski-conjugate gradient method.

3. ON THE VALIDITY OF ROBUST INCOMPLETE CHOLESKI-CONJUGATE GRADIENT

METHOD

Robust incomplete Choleski-conjugate gradient method (henceforce

expressed as RCGM) is proposed to prevent the occurrence of the fail­

ure of the incomplete factorization process, and the main purpose of

this section is to survey whether the method can completely prevent the

failure. Since some papers report that the failures occur when we

treat "plate", "shell", and "isoparametric" elements at the finite

element analysis, the test problems treated here are one of these, i.

e. plate elements. [4]

Examples used for our examination are illustrated in Fig.I. Square

plate is divided into Nand M elements along two axes. The configura­

tion of elements are triangular. As described already, since the con­

vergency is governed by the distribution of eigenvalues of the coeffi­

cient matrix, a number of factors which mainly give the important

influence on the distribution are taken into consideration at the
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finite element modellings, for example the boundary conditions, the

mesh sizes, and so on. Since the parameter ~ plays the most important

role at the use of RCGM, the results of our numerical experiments are

summarized with respect to the values of ~. Note that the convergence

condition of the results is set to be 10-6 for all test problems.

The results are summarized in Tables 1 to 5. In these tables PSI

indicates the value of ~, RCGM indicates the ratio of nonzero entries

required for incomplete and complete Choleski factorizations, and IT

indicates the number of iterations required for the conjugate gradient

method. From the results we can notice that the state of the conver­

gency is largely governed by the prescribed factors which determine

the distribution of eigenvalues. At the same time, we also find that

in some numerical experiments RCGM failed in to obtain solutions.

These cases are indicated by using the mark "X" in the tables. Since

the test problem is the same one, these failures are caused by the

value of ~. Moreover, we cann't find any tendencies of the values ~'s

which lead to failures. Only one tendency we can find out is that the

occurrence of the failures increases in accordance with the size of

problems.

Now, let consider on the process of the occurrence of these failures

From the characteristic of the incomplete factorization the beginning

is the neglection of a nonzero off-diagonal element. T,{<e assume that at

least one off-diagonal element of the i-th column, which does not

locate at the last position in the row, is neglected at the factoriza­

tion. Then, (9) is applied for the modification of a." and a,. is
J J J J

necessarily overestimated by (9) comparing to the value due to the

complete Choleski factorization.
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We consider on the entries in the i-th row, which are subjected to

the numerical operation of (4). The neglection of off-diagonal entries

overestimates the value in the bracket of (4), and the value of a
kk

is already overestimated. Thus, as a result, the value of a
ik

of (4)

may be sometimes overestimated, and sometimes underestimated. As far

as the value of a ik is underestimated, there arise no problem at the

factorization process, because from (3) the influence of the under­

estimation of off-diagonal entries overestimates the value of a
kk

, and

negative value never appear at akk . But, if a ik is overestimated and

if it does not locate at the last position, it gives serious influence.

That is, since akk must be modified by (7), akk may become negative

and, as a result, the root computation of (3) becomes impossible. This

is the reasoning of the occurrence of the numerical failure of the

robust method.

3. MODIFIED ROBUST INCOMPLETE CHOLESKI-CONJUGATE GRADIENT METHOD

In previous section we could clarified the phenomenon of the numer­

cal failure at the use of the robust method. This section is used for

the proposal of the modification of RCGM which can prevent the occur­

rence of negative values at the main diagonals.

According to RCGM the diagonal elements (namely a .. ) is necessarily
~~

modified by (9) when any off-diagonal element in the i-th column is

neglected. But, the modification by (8) due to the neglection of off­

diagonal entry is applied only when the last off-diagonal entry is

neglected. Thus, if the diagonal entry can be modified by any neglect­

ion of off-diagonal element by the application of (8), the diagonal

value is always modified positively. On the value of the modification

, i.e. a .. of (8), we use the maximum value among the neglected ones
~J

in the row. From above consideration we can propose following method

which is a modification of RCGM:

[MODIFIED ROBUST INCOMPLETE CHOLESKI-CONJUGATE GRADIENT METHOD]

If some off-diagonal elements a .. 's are neglected in the i-th row
~J

at the incomplete factrization process by the judgement of (7), then

modify a ii by using (8).

Now, let's survey the efficiency of the proposed method. Henceforce,

we call the modified robust method as MRCGM. All of the test problems

presented in previous section are used for this purpose, and the

51
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results of numerical experiments are also summarized in the same tables

(see Tables 1 to 5). The results by MRCGM are given in the columns of

MRCGM in these tables. The results show that the proposed method can

always lead to converged solutions for all cases including those which

cann't be obtained by RCGM. On the aspect of the number of iterations

to obtain solutions by CG method, we can notice that the modified

method (MRCGM) requires slightly longer execution time comparing to

RCGM.

4. CONCLUDING REMARKS

In this paper the authors surveyed the efficiency of Robust Incomple­

te Choleski-Conjugate Gradient Method, and they could clarify that 1)

the method sometimes fails in to obtain the converged solutions, and

2) the failures are caused by the insufficient modification of main

diagonal element. By taking into consideration of this reasoning, they

could propose a modification method of the robust method, and a number

of numerical experiments showed the efficiency of the modified method.

As the concluding remarks, we can list that 1) proposed method is

more effective than the original one as a general-purpose solver for

a large sparse set of linear algebraic equations, and 2) it is as ef­

fective as the original on the aspect of the execution-time.
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Table 1

I
,

II i

I No.of Variables =96 No.of Variables = 199 No.of Variables =303
I

, I !
PSI RCGM IT MRCGM : IT RCGM IT I MRCGM : IT RCGM IT MRCGM : IT i,

,
0.01 0.642 : 13 0.631 : 16 0.496 : 21 0.484 : 22 0.399 : 26 0.391 : 30
0.02 0.576 : 17 0.564 : 21 0.452 : 26 0.446 : 28 0.365 : 37 0.350 :, 43
0.03 0.540 : 20 0.526 : 25 0.418 : 29 0.411 : 34 0.329 : 44 0.318 : 50

0.04 0.519 : 24 0.507 : 27 0.386 : 37 0.377 : 42
1

0.285 : 64 0.292 : 55

0.05 0.488 : 28 0.472 : 32 0.363 : 51 0.352 : 51 0.263 : 75 0.271 : 72

0.06 X 0.444 : 36 X 0.324 : 59 0.253 : 80 0.253 : 84

0.07 0.432 : 36 0.410 : 43 X , 0.315 : 62 0.246 85 0.241 : 92

0.08 0.406 : 40 0.383 : 47 X
,

0.301 : 65 0.232 : 93 0.234 ' 94

0.09 0.386 : 42 0.369 : 48 0.279 : 81 0.265 : 86 0.227 : 95 0.227 : 95
0.10 0.361 : 47 0.342 : 52 0.255 : 87 0.248 : 91 0.207 : 110 0.210 : III, ,

M/2 =6

N/2 =6

MI2 = 8

NI2 = 9

Table 2

N
M/2 =9 (B'C')~
N/2 =12

rot

I
No.of Variables = 96 No.of Variables = 199 No.of Variables = 303 I

i
!

IT !PSI RCGM IT MRCGM: IT RCGM IT MRCGM: IT RCGM IT I MRCGM:
,

0.01 0.622 : 17 0.608 : 21 0.475 : 23 0.469 : 28 X 0.382 : 37

1

0
.
02 0.552 : 24 0.549 : 28 0.425 : 32 0.416 : 38 0.356 : 40 0.349 : 47

0.03 0.530 : 27 0.522 : 33 0.395 : 41 0.385 : 45 0.322 : 51 0.311 ': 59

0.04 0.504 : 31 0.495 : 38 0.376 : 50 0.366 : 52 X 0.300 65

0.05 0.466 : 36 0.453 : 43 0.356 : 56 0.343 : 62 X 0.277 : 86

0.06 0.443 : 36 0.428 : 46 X 0.323 : 72 X 0.255 : 96

1

0
.
07 0.429 : 39 0.423 : 48 I 0.313 : 78 0.309 : 78 0.250 :, 95 0.246 ' 104

0.08 0.425 : 45 0.402 : 541

1

0.298 : 79 0.293 : 85 0.236 , III 0.232 : 115

1
0 . 09 0.402 : 46 0.389 : 57 I 0.286 :, 82 0.278 : 88 0.223 : 118 0.220. 122

~.10 0.387 : 47 0.375 : 58 I! 0.259 : 98 0.250 : 103 I! 0.211 , 130 0.211 134

MI2 = 6

N/2 =5

MI2 = 8

NI2 = 8

N
M/2 = 9 (B,C')I~

NI2"1I "LJ
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Table 3

~i-\

No.of Variables = 100 No.of Variables = 203 No.of Variables = 304

~I
I PSI I I I

RCGM IT I MRCGM : IT RCGM IT MRCGM : IT RCGM IT MRCGM : IT
I I I

0.01 I 0.679 : 33 0.637 : 44 0.524 : 63 0.493 : 75 X I 0.389 : 110

0.02 i 0.591 : 45 0.543 : 53 X 0.391 : 93 0.321 : 112 0.306 : 130

0.03 0.498 : 51 0.478 : 60 0.359 : 89 0.349 : 102 0.289 : 142 0.266 : 147

0.04 0.461 : 55 0.440 : 65 0.338 : 102 0.316 108 0.256 : 144 0.247 : 157

0.05 0.424 ; 62 0.403 : 71 0.305 107 0.297 : 121 0.235 : 158 0.233 : 174

0.06 0.386 : 66 0.377 : 77 0.285 : 111 0.281 : 129 0.217 : 168 0.212 : 202

0.07 0.358 : 70 0.333 : 85 0.261 : 123 0.250 : 148 X , 0.183 : 236

0.08 0.330 : 80 0.313 : 91 0.220 : 153 0.215 : 170 X 0.162 : 272
0.09 0.289 : 86 0.286 : 100 0.195 : 173 0.191 : 187 X 0.141 : 297
0.10 0.268 : 91 0.258 : 105 0.179 : 192 0.180 : 202 0.128 : 305 0.130 : 311, ,

M=5
N/2 =6

M=7
N/2 = 9

Table 4

N
M = 8 (B.(.)~

N/2 012 M~

~

II
~

I No.of Variables = 101 No.of Variables = 196 No.of Variables = 308
I

I
IT I ITt IT :

I PSI RCGM MRCGM : IT RCGM MRCGM : IT RCGM IT MRCGM :
I I

0.01 0.647 : 15 I 0.633 : 18 X ! 0.442 : 30 0.378 : 33 0.374 : 37

1
0.02 0.579 : 20 0.577 : 23 0.393 : 321 0.380 : 37 0.336 : 41 0.327 : 47

0.03 0.555 : 23 0.550 : 27 0.339 : 48 I 0.337 ; 49 0.312 : 44 0.301 : 57
1

0.04 0.525 : 28 0.515 : 32 0.301 : 57 0.299 59 0.290 : 64 0.282 68
1

0.05 0.487 : 32 0.474 : 37

1

0.276 : 63 0.274 : 65 X 0.251 881
0.06 0.463 : 34 0.450 : 40 0.267 : 68 0.265 : 69 0.242 : 86 0.239 : 91 !

0.07 0.444 : 35 0.437 : 41 0.256 : 71 0.254 : 73
1

0.231 : 90 0.226 : 97 1
I

0.08 0.432 : 40 0.415 : 46 I 0.243 : 73 0.242 : 771 0.219 : 97 0.218 : 103 I
0.09 0.415 : 40 0.398. 49 0.234 : 77 0.232 :

:: II
0.210 : 101 . 0.203 : 113

10.10 0.396 : 41 0.384 : 50 0.213 : 86 0.221 : 0.199 : 107 I 0.194 :
II I 118 I

M/2 =6
N/2 =S

M/2 = 6

N/2 =10

aNa a
M. /2 =8 (B.c.)Cj
N/2 =12 a a

M a
a a

a
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Table 5

j

No.of Variables = 102 No.of Variables = 202 No.of Variables = 29~I

PSI
,

MRCGM : IT
,

IT RCGM IT MRCGM : ITRCGM IT IT RCGM MRCGM :, ,
,

0.01 0.670 : 0.657 :, 25
,

0.436 : 38 0.427 : 33 0.418 , 4121 X

0.02 0.619 : 26 0.601 : 32 0.388 : 39 0.376 : 46 0.357 : 46 0.356 : 54

0.03 0.573 : 31 0.547 : 38 0.336 : 57 0.334 : 61 0.350 : 58 0.340 : 59

0.04 0.532 : 33 0.513 : 43 0.301 : 67 0.296 : 73 X 0.328 : 67

0.05 0.510 : 35 0.502 : 47 0.274 : 75 0.270 : 79 0.310 : 78 0.310 : 78

0.06 0.498 : 38 0.488 : 51 0.265 : 79 0.262 : 83 0.305 : 81 0.294 : 92

0.07 0.472 : 43 0.456 • 62 0.253 : 86 0.251 : 89 0.283 : 103 0.281 : 103

0.08 0.452 : 49 0.434 : 69 0.239 " 90 0.237 " 96 0.272 : 106 0.265 , 114,
0.09 0.435 : 56 0.419 : 72 0.230 : 96 0.226 : 105 0.258 : 121 0.252, 126

0.10 0.411 : 61 0.403 : 75 0.209 : 105 0.216 : 110 X 0.230 : 143 I

M/2 = 7
N/2 = 4

M/2 = 6

N/2 =10

N
M/2 =10 (B.C.)~
N/2 =9

M

o




