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In this paper, the easy design-method of trasformer tank is described.
Using nomographs induced here, the bending moments on the oval tank or

round cornered rectangular tank which is used for usual transformer, are briefly
calculated. And the relation between the type of transformer and the distri­
bution of bending moment is cleared. Using these results, even electric engineer
who has poor knowledge for strength of materials, can easily design a most
suitable tank.
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Pressure distribution of a transformer tank.

§ 2. The Way of Thinking for Mechanical
Strength of Transformer Tank

Since the transformer must 1:::e performed
vacuum oil preservation, and oil tight test, its
tank requires enough mechanical strength. Fig.
1 shows the pressure distribution on the tank.
Here we consider a transformer shown in Fig. 1
(a). The pressure distribution at operating con­
dition, oil tight testing condition and vacuum
testing condition are shown in Figs. 1 (b), (c),
and (d) respectively. Tn general, Fig. 1 (d)
shows the most severe condition, s) we calculate
only for Fig. 1 (d).

There are two ways b set the principal stay,
one is regarding horizontal stay as principal one
(see Fig. 2 (a», and another is regarding vertical
stay as principal one (see Fig. 2 (b». Generally,
from the limitation for transportation, the tank

Tank

Fig. 1.

§ 1. Introduction

Recently power equipments become larger
and larger, then unit capacity of the transformer
increases rapidly, and the oil-tank to put it in
becomes huge. Therefore it's quite important
to design the tank economically an:! to reduce
its weight. Usually as the transformer is de­
signed by electric engineers, electric parts of
the machine are calculated in detail, but they
have a poor hand in strength-calculation for me­
chanical parts Therefore when once the streng­
th has been calculated, it is desirable that the
results can be applied to every other case. But
these machines are almost order production,
and then case by case dirr.ension ani style are
different. Therefore it's necessary ta re~eat the
strength-calculation whenever the tank is de­
signed.

We induced a new method,
with which the necessary
reinforcements of the tank
can be obtained without
complicated calculation, if
the dimension and style are
decided fro:n the condition
for transportation, demand
of customer, and necessary
electrical insulating distance.

In this paper, we explain
only about transformer tank,
but the same method can be
applied to the design for
usual oil-immersed electric
machine, for example, cir­
cuit breaker and so on.
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Fig. 3.

As the thickness of tank is negligible, we
assume that the dimensions on the wa] of the
tank are represented by the inside length 2a and
2b. In Fig. 3, the moment of inertia is denoted
by II in the region of O-:::;'f)J, Ir in the region of
01 <0 <02, and 12 in the region of 0'2.02. The
co-ordinate of any point (P) is represented (x, y)
or (r, 0). Other symtols see Table 1.

(a) Eending moment.
Assuming the load of a tank as that shown in

Fig. 2 (a), the bending moment M at any point
(P) is

w = 1 . h (kg/em),

Where w is the distributed load per unit length
of beam, and h is the pitch of horizontal stays.

(1) A tank having general form.
We consider a tank having general form as

shown in Fig. 3.

Principal One

The general way of thinking in this case is as
follows.

It is difficult to calculate the Etrength of a
tank such as shown in Fig. 2. So we assume a
canti lever which correspond to a quarter of
circumference of the tank, then we can perform
strength-calculation of tank by this canti lever.
Namely, the canti lever which has fixed end (B)
and free end (A), takes uniformly distributed
load W, and takes concentrated load w· band
bending moment M about free end (A). Where
M is the statically indeterminate moment which
acts the rotatIng angle of the end (A) to be zero.

Since, in case of vacuum testing, force per
unit area is 1kg/cm2, equation becomes as fol­
lows:

w

w
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is divided into sections horizontally. Tl:erefore
we induce the method of convenient calculation
for Fig. 2 (a) in which we regard horizontal stay
as principal one. But for reference, the calcu­
lating equations for Fig. 2 (b) are found briefly
too.

Though we describe the method of calculation
for principal stay here, for auxilliary stays,
flanges, wall plate and so en will be described
later. And as the proofs of equations are com­
plicated, we describe only the results.

§ 3. The Calculating Method of Strength,
Regarding Horizontal Stay as
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Table 1. List of symbols.

113

Symbols Interpretation of Symbols I Units

~M Bending moment (positive direction; ). kg· em

M,,~o, Mv-o Bending moments at z=O and y=O. kg· cm

w Load per unit length of beam (external pressure is defined as positive). kg/em

a, b, r Inside dimensions of tank (see Fig. 3). em

z, y Co-ordinates at any point (P) (measured from the center of tank). cm

Cl =a-r; Length of straight section (see Fig. 3). em

Ca =b-r; Length of straight section (see Fig. 3). cm

SI =a+r (7t,/2-1); A quarter circumference of tank. em

Sa =a+b-r (2-7t'/2); A quarter circumference of tank. em

fl Co-ordinate at any point (P) on the curved section. radian

Ih, fia Changing positions of stay. radian

11m Position at which the bending moment has extreme value. radian

110 Position at which the bending moment is zero. radian

a =b/a; Constant determined by form of tank. -

fJ =r/a; Constant determined by form of tank. -

ZOl, Xoa, YOI, Yoa Positions at which bending moment are zero. em

K01-K04 Krl-Kra Reference to Eqs. (12), (15). (18), (20), (23), (26), (29) and (32). -

I Moment of inertia. em'

Z Modulus of section. ems

S Cross-section of stay. cma

The moment M,,=o at X= 0 or (A) is

M,,_o=B/ A, (2)

where

A = C1 +r81 +r(Ba-81)+ Cz+r(n/2-0z)
II I r I a

B = - w[~( C/+ CaS)+~(Cla_ 2Car)(~+ Oa-Ol + rr/2-0a )
6 II I z 2 II I r I z

++(aa-ba) ;a2 + rz{ CI (l-COSfJi + Casino l

+ Cl (COS01-COS!ja) + Ca (sin82 -sinOl )

I r

The moment Mv-o at y=O or (B) is induced from Eqs. (1) and (2).

Mv_o=C/A,
where

(3)
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+ C1(COS71 -COS7?)+ Cbin92-sin01) + C2(1-sin"2)+ C1COS"2}]
I r 12 ,

(6)

(7)

(8)

MM Wb2 w(~ 2)
= "'~o- 2 +2 X + Y ,

(a) Bending moment.

+ r2 ( 1- cos 71+ cos 71)}

II 12 ,

The lToment Mv-o at y=O is

Mv-o= C11Al ,

M",_o=B1/A h

where

A1=-<:::1+1"~~+r(n/2-fh) ,
II 12

B=- C{C/+C1r(~+n/2-01)
1 W 1 6 II 2 \ II 12

where

C1= -WC1{_<:::L- C1(~+!1
611 211

(4)

(b) Maximum and minimum value-points of
bending moment.

Let 8m is the angle at the extrere value-point
of bending moment on curved sectioI', we find

On the straight section, the point (A) and (B)
give the extreme values.

(c) Zero points of tending moment.

(i) X01=V'-2Mholw, YOl=b,
where

(b) Maximum and minimum value,points of
bending moment.

The points which give extre:re values are
only two poi:lts at x=O, and y=O Each tr.oment
at these two points is given by Eq. (7) and Eg.
(8) respectively.

(c) Zero point of bending moment.
Only the following one point gives the zero

point of bending mcme::t.

(2) Oval tank.

The equations for tl:e oval tank as shown in
Fig. 4 are inducej from example (1), as special
case.

1...---- X --.;ll>.1

--Cl--

o

I-Ol!!e----a -----1
Fig. 4.

XOI =y -2M",~o/w, YOl =b,

where

O:S;;: x01:S;;:a - r ,

or

sin!lo= r {(l1- I2)coSJ1+ I2} - I2CN3r
I 2( CI +r(Jl) + I1r(n/2-fh) ,

where

0:S;;:°0.

(9)
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(3) Oval tank which has stays with uniform
cross-section.

(a) Bending moment.
From Eqs. (6), (7)

M=~(X2+y2)_~(CI3+~Cl~r
2 251 3 2

(10)

Eq. (13) can be written as follows

M",~o= -wK02a2 X 10-2,
where

_ 102 {(1- (1)3
K02

- 1+;9(n/2-1) -6-

+~(1- ;9)2 + p2(1- p)}
4 ,

(14)

(15)

where

51 =circumference/4=a +r(n/2-1).
Eq. (10) can be written as follows

M = ~ (x2+ y2_ K Ola2X 10-2
), (11)

simi'arly

MY_O=W~I{_ ~12+ ~I(a+r)

(16)

(19)

(20)

Eq. (16) can be written

My~0=wKosa2X 10-2
, (17)

where

or

_ 102 {(1-;9)S
K 03

- 1+ p(n/2-1) - 6

+ (1- ;9)2(1 +;9)
2

+ p2(1- p) ( ; -1)}. (18)

. -I[ 3p2-(I-p? ]
Oo=sm 3/9{(1-p)+(n/2)p} ,

where

Also F: e relations between {1 and
K 02, K03 are determined fro:n Fig.
5. Therefore, the moments Mz~o

and My=o are obtained from Eq.
(14) and Eq (17) respectively.

(b) Zero point of bendins moment.
From Eq. (9),

XOI =K04a , YOI = r,
where

O<xOl~a-r,

O~ljo •

And
K 04 = ..j 2K02 X 10-1

•

From Eqs. (19), (20) when {1 is given, 80 and K04

are unconditionally determined. The relations
between {1 and 60, K04 are also shown in Fig. 5.

(4) Round cornered rectangular tank which
has stays with uni form croSs·section.

Fig. 5.

M=1'C.~-y2-KOID,2XI0-2) (kg. em)

Mxe o=-wKozD,2;QO-2 (kg' em)

M,"o=wKaaD,2XI0-2 (kg' em)

.\·0I=Ko4a, YCI=r (em)

100Ka,
Koz

1::
0.1 10

where

K
01

= 10
2

[(1-;9)3+ 392(1_,'1)
1+;9(n/2-1) 3 I t'

+ nS {(1-;9?+;9~}J (12)
2 ,

;9=r/a.
KOI is a function of only {1. Therefore, when

ria is obtained, K 01 is unconditionally deter­
mined. The relation between (1 and KOI is shown
in Fig. 5. The moment at any point is briefly
determined by this graph and Eq. (11). Here
we consider the moment of particular points.

From Eq. (10)

Mz~o= --~ Cl ( ?+ ~ Cl r+r2
). (13)

0.65 60 ~'

Ko.: //[0 6 50 50
OJ;

0.55 40 40 f
0.5 30

00

045 20 1<.82 20

0.4 10 10

0.35
!-3~.) 1(> ----:

0
0c3 02 0.3 o 4 0.5 0.6 0.7 0.8 09 1.0--. rOp---

a
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(25)

(a) Bending moment.
From Eqs. (1) aud (2)

M =~(x' + y') - -.!.E_ {---.!..-.(CiS + C,S) + Cib'
2 2S, 3

+ C,a'+2r'( Ci + C,)

+ ~(Cl ' + C,2 + r 2
)} (21)2 ,

where

S,= circumference/4 =a+b- r(2 -1C / 2).
Eq. (21) can be written as follows

M = ~ (x' +y'-Kria' X10-'), (22)

where

a=b/a, j9=rja.

The relation between a, {1 and Kri is shown
in Fig. 6.
From Eq. (2)

M~_o = - ~J ~ (CiS + C,S) + C2(a' - b')

+2r'( Cl + C2) + ~ (C12 -2C,r)}. (24)

Rtwriting Eq. (24)

Mz _ o= - wKr,a' X 10-',

where

(28)

10'
K ra = 1+a-(2-n/2)j9

[- ~ {(l_j9)s+(a_j9)S}

+~(1-a2)(1-j9)
2

-j9'(1+a-2j9)

- ~ j9{(a-j9)'

-2(1-{q)j9}J. (29)

Eq. (27) can be written

My_o= wKr,a2 X 10-2
,

where

Similarly in the case of Krl,

using Fig. 6, Kr, and Krs are ob­
tained as a function of a, {1. There­
fore each bending moment Mz-o,
My - o at x=O, y=O is obtained brief­
ly by Eqs. (25), (28), respectivelj.

0.1

K,.

'"1.0

Kr , =1+a-~g~1C/2)i ~ {(l_j9)s+ (a-j9)'}

+ ~ (a-j9)(1-a')+j92(1+a-2j9)

+!!"'j9{ (1-j9)'-2(a- j9) j9}J (20)4 .

From Eq. (3)

My_o= ~J- ~ (Ci
S + C,')

+ (a' - b') Ci - 2r'( Cl + C2)

-~(C,2-2Clr)} (27)
2 .

o

M='i(x2+U'·-K"a'x 10-2) (kg' em)

M•. o=-wK,za' x 10-2 (kg' em)

Mv~o=wK"a2x10-2 (kg. em)

XCI =K"a, YOI=b (em)

Xoz=a, Yoz=K"b (em)

,5=:-

1----:-'-.,---:-'-::-,-:::'-::-----;;...----..J-r----;;-'-;;-;;-'-2"~;!;--;;--:<-'.,,---,-I 0
1.0

b--a=-
--~-f"o." a

90

70

80

130

10

0 0.1
0.2 ~3~1~5

0.6

-10 1 j)

-20 ~
Fig. 6.

where

K ri = 1 + a-~~~1C/2)j9[ ~ {(1- j9)'+(a- j9)'}

+ (1- j9)a2+ (a - j9) + 2j9'(1 + a - 2j9)·

+ n; {(1-j9)'+(a-j9)2+j9'}], (23)
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(b) Maximum and minimum value·points of
bending moment.

The point which gives the extreme ., alue of
bending moment on curved section of the oil·
tank is given by Eq. (4), and the co·ordinates
(x, y) of its point can be obtained from Fig. 3,
because it is an intersected point of side wall of
the tank and the extension line 00', then the
extreme value of bending moment is given by
substituting the co-ordinates (x, y) into Eq. (22)
While, on the straight section, the point (A),
and (B) give the extreme values, and they are
given by Eqs. (25), (28) respectively.

(c) Zero points of bending moment.
From Eqs. (5)

(i) XOI=Y ~Kr'2axlO-I, YOI=b,

where

where M2n-1 and M2n rep:esent the cases
that the number of horizontal stays is 2n-1
(odd) and 2n (even) respectively. If n is larger
than 3, the maximum bending moment is approxi­
mately given by Eq. (36).

§ 5. Calculating Method of Necessary
Dimension for the Stay

As above mentioned, the maximum bending
moment arising in the principal stay has been
calculated, next we must calculate the require:!
modUlus of section. Let f1 be the allowable
stress of material, the required modulus of
section is given by the next equation.

(36)M · . 11+/2 H 2

16 .

(30)

O:S;;:XOI:S;;: CI•

(ii) X02=a,

Y02= Y(2KT2 X10 2 --1) a2 + b\

Table 2 shows dimensions, moments of iner­
tia I, moduli of section Z, and sectional areas S
0: principal stays use:l gecerally. Fro:n this
table, the most economical beam that satisfies
Eq. (37) is determined. In this calcUlation, it
is assumed that the wall of tank reacts as a part

(31) of ~tay, Lamely only 40 times as large as thick­
ness t. The symbols used in the table are
cleared in Fig. 7.

where

O:S;;:Y02:S;;: C2 •

Eqs. (30) can be written

(i) XOI = KT4a, YOI=b,

where

O<XOl:S;;: CI •

(ii) xo2 =a, Y02=Kr~b,

where

Z=M/t7. (37)

The relations between a, e and Kr4 , KT~ are
also shown in Fig. 6.

§ 4. Calculating Method of Strength, Re­
garding Vertical Stay as Principal One

Load·distribution diagram of the principal
stay is shown in Fig. 2 (b). It is assumed that
the beam is simple beam. In Fig. 2 (b), WI,

and W2 are

Fig. 7. Construction and dimensions of the stay.

§ 6. Relation between Type of Transformer
and Distribution of Moment

Here we consider the relation between a:: and
ewhich are a function of tank-form, and distri­
bution of bending moment.

(1) Oval tank with uniform cross-section
stays.

(a) In the case of single-phase transformer
tank, [3 is,

t-----h,

} (32)

} (33)

WI=h2/2 ,
h

w2=T(II+12)-wi

The maximum bending moments are

And

Kr4 = y2K;:;; X 10-1,

KT~=l-Y2KT2XI0 2_1+a2.
a
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Table 2. Constants for typical stays used generally.

h hl 12 h2 13 I Z S

(mm) (mm) (mm) (mm) (mm) (mm) (em4) (emS) (em2)

4.5 6 75 6 50 0 173 30.7 7.5
4.5 6 100 6 50 0 31.5 44.1 9.0

6 6 100 9 50 0 48.1 60.3 10.5

6 6 100 9 75 0 60.0 81.3 12.8

6 6 150 6 75 0 1,110 102 13.5
6 6 150 6 100 0 1,260 122 15.0
6 9 150 9 100 0 1,650 174 22.5
6 9 150 12 I 100 0 191 211 25.5
6 9 175 12 100 0 262 253 27.8
6 9 175 12 125 0 289 297 30.8
6 9 200 9 150 6 453 352

I

40.5
6 9 200 12 150 6 523 429 45.0

9 9 150 I 12 100 0 265 231 25.5
9 9 175 12 100 0 362 278 27.8
9 9

~
200 9 150 0 501 358 31.5

9 12 200 12 150 6 693 484 51.0
9 12 200 16 150 6 811 590 57.0
9 16 250 16 150 6 1,323 811 73.0

12 12 I 175 12 100 0 462 315 33.0
12 12 200 12 100 0 613 375 36.0
12 12 200 16 150 0 891 597 48.0
12 16 250 16 200 9 19,500 1,068 90.0

O.4~.e~O.65.

In the case of three-phase transformer tank,
.e is,

O. 25~.e~O. 4.

(b) When {3 is smaller than 0.479, the bend­
ing moment at y=O takes the maximum value.
that is, when the tank is slender, such as three­
phase transformer, the maximum bending mo­
ment exists on the major axis.

When fI is larger than 0.479, the bending
moment at x=O takes the maximum value, and
then, in the case of a tank such as single-phase
transformer tank, the bending moment on the

minor axis is equal to the bending moment on
the major axis, or slightly larger than that.

(c) When {3 is smaller than 0.366, zero point
of bending moment is on the straight section,
and when {3 is larger than 0.366, it is on the
curved section.

For the usual transformer, 80 exist ~ithin

30°.
(d) If {3 is smaller than 0.366, the co·ordinate

XOJ, which gives the zero point of bending mo­
ment, lies between O.60a and 0.64a, namely Xo(

is almost constant independently of fl.
The above mensioned summary is shown in

Table 3.

Table 3. Relation between form and bending moment of oval tank.

{3

Number of phases

0.1 0.2 0.3 0.4 0.5 0.6

1~3~1_-11-~1

0.7 0.8 0.9 1.0

Maximum value & its position --- M y=O, (y=O) --+---M",~o, (x=O) -----+1

Zero point of M -- On y =r ~I-- 0°<110<30° -~I
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Table 4. Relation between form and bending moment of round cornered tank.

1.0

Number of phases

%01

Y02

Deflecting direction at y = 0

____..;.a;;.... +....;;.o;.:.1~...;0;;;..=-2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I I 1~3-1:-~__1_ 1
1
---

1 _I
I I

+- Dec. +-- Mo.-o =MI/_o_Max. ----- Dec. ----
I I I

+- Inc. +-- MI/-o =M",_o-- Dec. ----0 --Dec. --
I I

---- Inc.----Max.--~ Dec. ---- %01=Y01
I I
o --+ Inc. -- Yot = %01

----(+)---------(-)---1

Diagrams of bending moment

(2) Round cornered rectangular tank with a
uniform cross-section stays.

(a) When 0.OSS:j9S:0.1, the influence of 19
affecting K r1-Kr6 is negligible. (When 0.7<<<
<0.9 and 0.06S:j9S:0.1, similarly the influence
of 19 is negligible.)

(b) In the case of a single-phase transformer
tank, «lies between 0.4 and 0.9. In the case
of a three-phase transformer tank, « lies be­
tween 0.25 and 0.50.

(c) When «<0.3, the maximum bending
moment on the major axis is larger than that
on the minor axis. In the case of a tank with «
..0.3, such as three-phase transformer tank,
the maximum bending moments on the major
and minor axis are nearly equal And when «
>0.3, the maximum moment on the minor axis
is larger than that on the major axis.

(d) When «>0.74, the deflection on the major
axis takes opposite direction compared with
that in the case of a<0.74, and therefore the
deflecting direction is the same as that on the
minor axis.

(e) Independently of a, Kr2 is almost const­
ant. (Therefore when th~ modulus of section

of stay at this point is designed so that it is
proportional to aJ , the stay has sufficient
strength.)

(f) Indepenpently of 19, the co-ordinate 'x01,

which gives the zero-point of bending moment,
lies between 0.6.1 and 0.7a.

The above mensioned summary is shown in
Table 4.

§ 7. Conclusion

The convenieJt calculating methx\ with
which we can briefly design the tank of large
power transformer, has been developed.

Using this metho." we can calculate more
shorter time than usual method (less than one­
hundredth times), and also the errors which
arise from complicated calculation, can be avoid­
ed. Moreover, the general tendencies such as
how the points of maximum or zero bending
moment move and how the deflecting direction
becomes are cleared. These tendencies are very
useful for the designer to grasp the key points.
Using this method we have already designed
many transformer tank, ani obtained the satis­
factory results.


