Memoirs of the Faculty of Engineering,Okayama University,Vol.27, No. 1, pp.93-105, November 1992

Advection Dispersion by FEulerian
Lagrangian Finite Element Method

Makoto NISHIGAKI*, Teddy SUDINDA™**, Tomoyuki HISHIYA***, Ichiro KOHNO*

(Received September 30 , 1992)

SYNOPSIS
In this paper the author will be describe phenomena of advection dispersion in
subsurface flow by using Fulerian Lagrangian Finite Element Method. Where Finite
Element Method with Galerkin formulation and weigthed residual method is used to
solve seepage and advection dispersion equation. The problem of one dimensional
and two dimensional rectangular wave are analyzed in this paper And the result of
numerical analyses will be compared with analytical solutions. The numerical results

showed the very good agreement with the analytical solutions.

1. INTRODUCTION

Recently, allot of ground water contaminant problems are discussed to eétimate the behaviors of these
problems, numerical methods have been used as powerful technics. Generally, there are three numerical
methods to solve problems of ground water contaminant, that is Lagrangian method, Eulerian method and
Eulerian-Lagrangian method. The typical Lagrangian method is Particle Tracking Method, when we apply
this method to practical problem, we need lot of memory of computer Eulerian method is very popular
method to solve advection dispersion problem. But in this case of high seepage advection velocity and we
have to divide very small mesh size. So there is a limitation to solving practical this kind problem by using
Eulerian method. The Eulerian Lagrangian method is the most useful method to estimate the advection
dispersion problem. The previous researcher such as S P Neuman (1980) presented this method, where
numerical scheme for advection dispersion equation conjugate space time grid is used. It is used two grid
that is advection grid and dispersion dispersion grid. Both grids are fixed in space and have distinct spatial
and temporal increment {1]. Afterwards, S.P Neuman and S. Shorek (1982) presented Eulerian Lagrangian
method for advection and dispersion problem. Where the advection-dispersion problem can be solved
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independently at each time step, this new approach is called Method of Reverse Streaklines, or
Conventional Method of Continuous Particle Tracking [2]. The residual dispersion problem can be treated
by Bulerian Finite Element Method. Then S P Neuman (1984) discussed Adaptive Eulerian Lagrangian
Finite Element Method for advection dispersion problem as this method is based on the composition of
concentration field in two part, one advective and one dispersive, in rigorous manner that does not leave
room for ambiguity [3]. And then R.Cady and S.P Neuman (1988) presented three dimensional adaptive
Eulerian Lagrangian Finite Element Methodf4], in this method there is a little difference with S.P
Neuman previous method published in 1984. They were developed into three dimensional domain, but
unsaturated condition and density dependent phenomena is not considered. In this paper the Eulerian
Lagrangian Finite Element analysis will be extend to the saturated-unsaturated seepage problem and density

dependent problem. Furthermore, the result of numerical analysis will be discussed.

2. GOVERNING EQUATION
The governing equation the water movement in saturated-unsaturated with density dependent is derived

in the form :
f
pfv® 9C . o ss+ cso)) 22 - 2 ki (e) +k13kr(6) o) =0 ... )
p ot Bt oxi
Where :
pf = density of fresh water ; t=time ; a = 0 for unsaturated condition

Y bulk density ; p = pressure head ; o =1 for saturated condition
Cs(0) = specific capacity ; ki) saturated hydraulic conductivity tensor
pr = p/pf=relative fluid density ; kr = relative hydraulic conductivity

Ss= specific storage coefficient ; Cs = moisture capacity ; p = pf (1 +y C) = fluid density

The initial and boundary condition of the problem take the form
p(xi,t) =ywo(xi) ... 2)
p(xi,t) = po (xit) ... 3

- k. ©) (i = “’ +Ki3.pr) = VN (Xi, ) e )
Vn = darcy velocity of normal direction

The Governing Equation Advection Dispersion for the Analysis of Contaminant Transport
*
%€ _ v.(DV.C)-VsV.C-AR ¢+ )
i3 p 0.0
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R=(+ Ko ... ©6)

Where :

C = concentration; D = dispersion coefficient ; n= porosity

Vs = real velocity ; p = fluid density ; QpC* = source ; 8 = moisture content
A = radio active coefficient ; p = fluid density ; QpC* = source

P = bulk density of the solid ; Kd = infiltration coefficient

In cartesian coordinate the dispersion tensor can be written in the form ( Bear 1972 ) [6]:

D= aLVIIV]VI + ar V:;V|V3 + An T ... (7)
D12=D21=(3L'&r)¥'}vlli ------ ®
D33—aLV1MV1 + aTV:?‘)llg +apT ... C))
Where :

ap = longitudinal dispersivity

aT = tranversal dispersivit

am = diffusion coefficient
V1 = real velocity in y direction ; V3 = real velocity in x direction ; [V| = real velocity absolute

T = tortuosity

Advection Dispersion Equation with Eulerian Lagrangian Finite Element Method

We can rewrite in Eq.(5) in Lagrangian form as

_C_V'V'C=V VO -VV.C-AR .
ot = ) (DV.O-VV.C 5 .C-q ... (11
*
Where q = source term (-q=QpC)
p.6

Afterwards in Eq (11) , left side of second part and right side of second part yield and we obtain in the form

dC _ v.(D.vCO)-AR (. (12
R.dt ( ) . C-q e (12)

Then Neuman introduces an expression of C as the sum of two functions [2],[3]
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C(x,t) =C(x,t) + C(x,t) ...(13)

Where C = Concentration of Advection

C = Concentration of Dispersion

C satisfies the homogeneous differential equation

@ . RAE
RS - C (14)

In the Condition the advection problem, Eq. (14) can be solved for C independent of .
Subtracting Eq.(14) from Eq.(12) leads to residual dispersion problem for C, defined by

R.[% - %%] = V.(D.V.C) -R—pl-.(c O+q e (15)
3. NUMERICAL APPROACH

In the present work, an iterative Galerkin Finite Element Method is used to solve equation of transient
seepage in saturated-unsaturated porous medium (Eq. (1)) and Eulerian Lagrangian Finite Element is used
to solve equation advection dispersion (Eq. (5)). The method was implemented using quadrilateral Galerkin
Finite Element of relative ease of transforming from the global coordinate system into the local coordinate
system. This transformation is needed to evaluate interpolation that relies upon the finite element basis

function for particle locations.

3.1 NUMERICAL APPROACH OF SEEPAGE IN SATURATED UNSATURATED POROQUS
MEDIA
By adapting Galerkin Finite Element Method to Eq (1) , we obtained matrix differential equation such

as follow
0 aC,
ApmPm + Fom g)tm + Xom atm - Qn By, = 0 ... (16)
Where :
_ ON, ON_ ..g
Anm = f e S k@A a7n

Fom = an.Nm. (@.Ss + Cs.(0))dV . (18)

pf.y.0

Xom = fN,, .Np. .avo L (19)
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Q,,z]ni.N,,.Vd.dS ...... (20)

B, = I%N;f’_.(kijs.xr(e). or)dV 21

3.2 NUMERICAL APPROACH OF ADVECTION-DISPERSION IN POROUS MEDIA

The advection problem is generally solved by Single Step Reverse Particle Tracking (SRPT) combined
with the solution of Eq.(14) over time step. And Forward Particle Tracking (FWPT) is used in the vicinity
of steep concentration front to define the concentration field and residual dispersion problem is solved to
obtaine the nodal concentration at the end of the time step by using finite element of fixed grid.

CN(x,) is used to approximated C(x,y) and is defined as
C(x,t) =CN(x,t) = ¥ Cn(t)& (x) . (22)
n

Where N = the total number of nodes in the finite element grid

Cn = the concentration at node n.

& = finite element basis function for node n.

3.2.1 SINGLE REVERSE PARTICLE TRACKING METHOD

Consider a fictitious particle that moves from a location Kx, at tto a new location XX*! at e+l

which coincides with node n. Its initial location is then given by

i+l
Kx, = Xk*1 - I %.D.t ...... (23)
&

The final C value of the same particle upon reaching node n, ‘élxiﬂ, is obtained by solving Eq.(14)
analytically over At.

&+l

gkt cgexp[-J %)\- T - (24)

2

3.2.2 CONTINUOUS FORWARD PARTICLE TRACKING METHOD
Steep concentration fronts are tracked with the aid of particle cloud that covers the fronts until their
k
gradient dissipate. A particle p moves from its initial location at t* , XP, to a new location
ke

Xkl= XK + I d 25)

&

| <
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at t**1 where the integration is performed by the same method as in Eq.(23). If the particle concentration at

. Ck . . ..
s Cp , its concentration at t**1 is in analogy to Eq.(24)

(k1

Tl = C‘gexp[—f -3- dt] e (26)
&

3.2.3 RESIDUAL DISPERSION BY FINITE ELEMENT
By applying the Galerkin method to Eq.(15), we obtained matrix differential equation such as follow

aCy, oC,

Wam - ——=Wam * Gom . Cm * Hym G + (Cp - Co Mg +Uy =0 ... 7

ot ot

Where :

Wom = ch,, Cmdv=RfC,, Cndv ... (28)

0 fo]
Gam = Di-aC" e (29)
. 0x Ox
Hpm = f hvilalmds L (30
L,,=[7‘RCndv ...... (31)
A p
Up = ICn qdv. (32)

In the equation (31), we can approximated in the form ;

L, = ARIEI-NH v o (33)

where Pe = density of element

3.2.4 INTEGRATION OVER TIME

To integrate matrix differential Eq.(16), the time domain is discretized into sequence of finite intervals,
A t, and the time derivatives of %n and Cn are replaced by Finite Differences. And by the approximated
difference partial, Eq. (16) can be written as follow
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k+1/2 k k k+1/2
(o v o agim) wgt = ot - B - S e+ BB w0 AR v G0
A

Atk At
In this case w is depend on the scheme integration
Where = 1/2 =central difference
w = 1 = backward difference
And also matrix differential Eq.(27), can be written in the matrix differential partial, this equation can be
written i the matrix differential equation in the form :

|(Gom + Hom + Lan ) #2252 = (Lo + LWon) TV e (35)
t t

In analyzing for advection-dispersion matrix differential equation, we used backward differénce, SO matrix
differential equation (27) can be shown such as the above equation.

At the beginning of each time step, these are predicted by linear extrapolation according to

k
- ﬁ(wg SgEly (36)

2
wﬁﬂl-

The resulting set of simultaneous equation is solved by Gaus Elimination method. At each iteration, the
I+ 1 . ) k+1/2

most recent values of ¥n  are used to obtaine an improved value of ¥n from

YErU2 = 12 (K o+ pktly L (37

And the next step, the matrix differential equation for residual dispersion is written such as in Eq.(35), we

will obtained the value for concentration each node and time step.

4. PROGRAMING

The program consists of over 16000 lines of fortran 77 code, this code includes 161 subroutines or
function sub programs.The main program component of the code found in the Elus 90 files, consists of
dimensioning parameters to allocate space for the many variables that occur throughout the program and to
define number of permanent files and temporary files used in the program. The major of the code is
depicted in the general flow diagram shown as Fig.1.

Input data model is divided 22 types and the using of each types depends on the model that will be
analyzed.The program consists of three kinds of model analyses, that is perpendicular analyses, plane
surface analyses and axissimetry analyses. In particular, the program is used Eulerian-Lagrangian Finite
Element Method to analyses Advection-Dispersion Problem. In general processes of  calculation
Eulerian-Lagrangian method is follow : the seepage equation by using Galerkin Finite Element method and
weighted residual method will be shaped matrix equation of integral, and we call the lump mass
integration. And the coordinate system will be transferred from global coordinate to local coordinate with
using the Isoparametric elements. The problem of transferring coordinate will be solved with integral gaus
legendre, so we will obtain the equation matrix consisted of number that is possible to calculate all the
coefficient matrix. From this calculation we will obtained the pressure head for each node. The calculation
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of matrix is used Gaus Elimination Method.

In the next processes with the similar method that

explained above, by using Eulerian Lagrangian Finite
Element Method we will obtaine concentration for
each nodal point. The subroutine in the program
generally is divided into four classifications :
The first classification, to read variation of input data
that used for processes calculation, for example
coefficient of permeability, coefficient of dispersion,
to generate of node point and element and to read
boundary and initial condition,we will approximate
the model. The second classification, to calculate
seepage matrix which was formed from each
element, we will obtain the pressure head of each
point. The third classification, to calculate darcy
velocity for each element and with the correlation of
shape function, we will obtain the real velocity. The
final classification, from the real velocity by using
Fulerian Lagrangian Method,we will obtaine the
concentration each nodal point.

READ VARIOLS INPUT DATA, MATERIAL GOND!-
TION . BOUNDARY GORDITION, NODE POINT,

NUMBER ELEMENT.

A

" | SOLVE SEEPAGE £QUATION BY GALERKIN FINITE

ELEMENT METHOD.

Fi i MATRY
HEAD FOR EAGH NODAL POINT. I

TEST: oF

SEEPAGE

DETERMINE DARCY VELOGITY OF ELEMENT ‘

i

CALCULATE INITIAL VARIABLE FOR CONCEN-
TRATION.

SO VE ADVECTION - DISPERSION EQUATION BY
EULERIAN - LAGRANGIAN FINITE ELEMENT ME -
THCD.

1

FROM MATRIX EQUATION DETERMINE GONCEN.
TRATION FORE ACH NODEL POINT,

Fig.1 Flow Chart of Advection-Dispersion

5. COMPARISON OF ANALYTICAL AND NUMERICAL RESULT

To illustrate some of the problems with particular treatment of advection dispersion, simple examples of
one and two dimensional will be solved by the various Peclet number (Pe = V L/D), and Courant number
(Cr=V T/L). Where V = magnitude of velocity, L = characteristic length, T = time step and D = dispersion
coefficient. Afterward the results will be compared with analytical solutions.

5.1 ANALYTICAL AND NUMERICAL SOLUTION OF ONE DIMENSIONAL CASE
5.1.1 ANALYTICAL SOLUTION
In this case, we will approximate the one dimensional dispersion problem in a nonsteady state and uniform

velocity field over infinite one dimensional region by

2 - Q

C oI W€ o 0< X< X oo (38)3/ =
ot ox2 Ox L / i

[=)

7 2
subject to
C(x,0) = 00
Cc(o,t) =10 ... 39) Fig.2 Boundary conditions and initial condition

C(Xw,t) = 00
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Analytically solution to this case is [2],[3]

C(x,t) = 0.5.{erfc(%)+ exp(y%) erfe (

5.1.2 MODEL AND RESULT OF NUMERICAL ANALY SIS
The finite element consists of 50 rectangular  Table.1 Parameter values for one dimensional

elements and 102 nodes point. Fig.2 shown the
boundary and initial condition. All the parameters for
the one dimensional problem can be seen in table 1. In
this case we used various Pe number and Cr number.
The results of numerical analysis for various Pe
number can be shown in Fig 3, Fig 4 and Fig 5, in
these figure, solid lines are analytical solutions.
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Fig. 3 Comparison of analytical and numerical solutions for low Pe number
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Fig.4 Comparison of analytical and numerical solutions for middle Pe number
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Fig.5 Comparison of analytical and numerical solutions for high Pe number
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5.2 ANALYTICAL AND NUMERICAL SOLUTION OF TWO DIMENSIONAL CASE
5.2.1 ANALYTICAL SOLUTION
Partial Differential equation for two dimensional problem can be shown as follow

2 2
px 7€ . py T€ X € ¢ (41)

0x2 dy2? 0x dy ot

Initial and boundary condition are as follow

C(x,y,0) = 1.0 when Xc-2 S X < Xc*a

IA

YVe-b < y<y.+Db

C(x,y,0) = 0.0 otherwise
C(=20,y,t) = C(>,y,t) = C(x,>,t) =C(x,»,t) =00

Analytically Solution to this case is [3],[5]

a-(x-%X)+Vx.t

a+(x-x¢)-Vx.t}]
¥4Dx.t

b el T

C(x,y,t) = 025[erf {

b-(y-yc)+Vy.t b+ (y-y:)-Vy.t
e T ARANEE 1

5.2.2 MODEL AND RESULT OF NUMERICAL ANALYSIS

For this example, the elements consists of 2000 Table.2 Parameter for two dimensional model

elements and 2121 nodal points and the informations S— P P
of parameter values for two dimensional model are Po oo 00 oo
shown in Table. 2. The boundary condition is shown P o ol
in Fig.6. In this case, a rectangular wave dispersion o g o
phenomena was calculated in an uniform velocity Zy!((:/:c) fmm :’ o005
field over an infinite domain at relatively low Peclet axtm ool oot
Ay (m) 0.004 0.004
numbers, the background concentration is zero and D (m2fecc) 10 10
Dy (m2/sec) 0.1 0.1
the wave has an initial concentration of one. It is Fwe 0 3
centered at (%c,¥Ye) = (0.15,0.00) and a = 0.05 m, by
b= 0.008 m. Size of mesh has a length of 0.04 m
parallel to the x - coordinate and 0.01 m paraflel y -

- . . C=10 C=00 08 m
coordinate. And the results of numerical analysis are . __@Ig ;
shown in Fig.7 and Fig.8. These figures shown the = —l
behavior of concentration in the section through the 10m .

wave center parallel to the x direction and y direction

at six concecutive times. Fig. 6 Boundary conditions for two dimension
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Fig.8 Comparison of analytical and numerical solutions for y-coordinate

6. CONCLUSION

In this paper the numerical analysis by Eulerian Lagrangian Finite Element method h;clve been shown.
And also basic theory of saturated and unsaturated seepage flow and the Eulerian Lagrangian Finite Element
Method have combined. From the resuit of calculation, it become appear that the Eulerian Lagrangian Finite
Element Method is appropriate to solve the advection dispersion problem. This is caused that in the
Eulerian-Lagrangian method the advection dispersion problem with initial and boundary condition can be
formally decomposed into pure advection and residual dispersion. And from the result of one dimensional
case, we obtained that when Pe is small, dispersion dominates and equation is parabolic in characteristic,
and on the contrary when Pe is large, advection dominates and equation changes to hyperbolic. Then the
effect of forward particle to the result of calculation become obvious. This method strongly influences to
the steep concentration front.
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