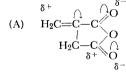
# Biologically Active Compounds. I. The Synthesis of 5-Substituted 4-Methyl-3-carboxy-3(or 4)-alkenamides

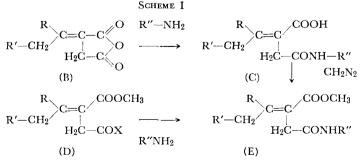
Sigeru TORII and Hitosi FUNAKOSI\*

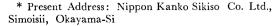
Department of Industrial Chemistry

# Akira TAKEDA


Department of Synthetics Chemistry

#### (Received March 15, 1968)


Monoamides of 5-substituted 4-methyl-3-carboxy-3(or 4)-alkenoic acids have been synthesized, starting with substituted itaconic anhydrides. The anhydride ring was opened by amines to afford N-aryl(or alkyl)-4-alkyl(or aryl)-3carboxy-3(or 4)-alkenamides. The structure of the amide was elucidated by the comparison with the reference compound prepared from the corresponding Stobbe half-esters.


In connection with a study of compounds related to biologically active substances, a number of N-substituted 4-methyl-3-carboxy-3-(or 4)-alkenamides were prepared by the reaction of the corresponding succinic anhydrides with amines. All the new compounds listed in Table I and II were tested for antibacterial, antifungal, and herbicidal activity, but none of the tests were promising. The compounds 1, 2, 3, 4, 7, 8, 10, and 14 show activity as herbicides. The compounds 2, 3, 4, and 7 have antifungal activity and the compounds 6, 13, 15, 17, 18, 19, 20, and 23 show antibacterial activity.

It has been considered<sup>1)</sup> that in itaconic anhydride (A) the exclusive formation of the



ester or amide derivatives at the  $\gamma$ -position with respect to the methylene group, may be due to the conjugation of C=C bond of A to the nearby C=O group, which leads to lowering of the partial positive charge of the carbon atom of the carbonyl group, whereas the remote carbonyl group is not affected. Similarly, it may be assumed that in the reaction of the substituted itaconic anhydrides with amines, attack by a nucleophlic reagent will occur at the  $\gamma$ -carbonyl group with formation of C. Steric effects of the substituents at the  $\alpha$ -position may favour the selective substitution at the  $\gamma$ -carbonyl. This assumption will be maintained if the amide (E) can be synthesized by an alternative route starting from Stobbe half-erter (D, X = OH) as is shown in Scheme I. However, difficulty in obtainning pure alkylidene type compound of the Stobbe halfester was encountered, since the amide ester (E,  $\mathbf{R} = \mathbf{R'} = \mathbf{C}\mathbf{H}_3$  and  $\mathbf{R''} = p \cdot \mathbf{Cl} \cdot \mathbf{C}_{\mathbf{b}}\mathbf{H}_4$ ) derived





from D (R = R' = CH<sub>3</sub> and X = Cl) showed ultraviolet absorption at  $\lambda_{\max}^{EtOH}$  249 m $\mu$  ( $\varepsilon$  15000),

mp 83-84°, whereas the amide ester (E, R =  $R' = CH_3$  and R'' = p-Cl-C<sub>6</sub>H<sub>4</sub>) prepared from pure alkylidene type compound (B, R = R' = CH<sub>3</sub>) exhibited absorption at  $\lambda_{max}^{EtOH}$  249m $\mu$  ( $\epsilon$  21700), mp 83-84°. Thus, the former amide must be of about 70% purity. Although complete identification by the infrared spectra of both types of amide was missed, the absorption of the pure amide (E, R = R' = CH<sub>3</sub> and R'' = p-Cl-C<sub>6</sub>H<sub>4</sub>) was well coincided with that of the former, as are shown in IR Charts III

and IV.

Esterification of the monoamides with a mixed solution of ethanol and benzene in the presence p-toluenesulfonic acid as a catalyst failed, but gave the corresponding imide derivatives (F).

$$\begin{array}{c|c} R \\ R'-CH_2 \\ H_2C-C \\ (F) \end{array} \begin{array}{c} C = C \\ N-R'' \\ R = R' = R'' = \\ Alkyl \text{ and aryl} \end{array}$$

| Table I N | -Aryl(or | alkyl)-4-methyl-3 ca | arboxy-3(or | 4)-alkenamides |
|-----------|----------|----------------------|-------------|----------------|
|-----------|----------|----------------------|-------------|----------------|

 $\begin{array}{c} CH_3 \\ | \\ R-CH-C-C-CH_2-CONH-R' \\ H \\ H \\ COOH \end{array}$ 

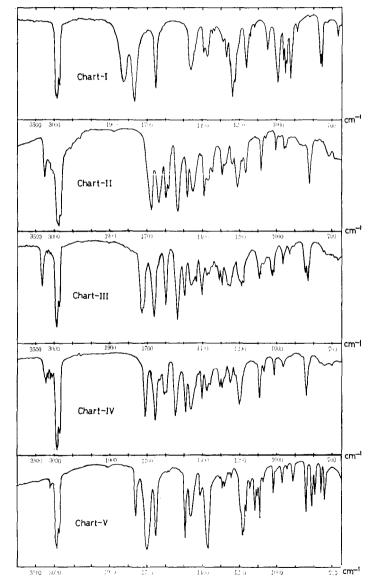
|         |                 |                         | 1   |        |                                                                 |       |          |      |       |      |      |
|---------|-----------------|-------------------------|-----|--------|-----------------------------------------------------------------|-------|----------|------|-------|------|------|
| Compd., | 1               |                         | Mp, | Yield, |                                                                 | / Ca  | alcd., 🤅 | %    | ∕—Fo  | und, | %—   |
| No.     | R               | R'                      | ٥C  | %      | Formula                                                         | С     | Н        | Ν    | С     | Н    | Ν    |
| 1       | Н               | 2, 3-Dichlorophenyl     | 143 | 75     | C <sub>13</sub> H <sub>13</sub> Cl <sub>2</sub> NO <sub>3</sub> | 51.67 | 4.34     | 4.63 | 51.60 | 4.42 | 4.75 |
| 2       | н               | 2, 5-Dichlorophenyl     | 157 | 70     | $C_{13}H_{13}Cl_2NO_3$                                          | 51.67 | 4.34     | 4.63 | 52.06 | 4.40 | 4.45 |
| 3       | Н               | 3, 4-Dichlorophenyl     | 160 | 82     | C <sub>13</sub> H <sub>13</sub> Cl <sub>2</sub> NO <sub>3</sub> | 51.67 | 4.34     | 4.63 | 51.51 | 4.40 |      |
| 4       | Н               | <i>p</i> -Chlorophenyl  | 152 | 63     | C13H14ClNO3                                                     | 58.25 | 5.27     | 5.23 | 58.23 | 5.27 | 5.14 |
| 5       | Н               | lpha-Naphthyl           | 162 | 75     | C <sub>17</sub> H <sub>17</sub> NO <sub>3</sub>                 | 72.06 | 6.05     | 4.94 | 71.70 | 6.00 | 4.88 |
| 6       | CH3             | 3, 4-Dichlorophenyl     | 140 | 74     | $C_{14}H_{15}Cl_2NO_3$                                          | 53.18 | 4.78     | 4.34 | 53.37 | 4.75 | 4.56 |
| 7       | CH3             | <i>p</i> -Chlorophenyl  | 149 | 68     | C14H16CINO3                                                     | 59.68 | 5.72     | 4.97 | 59.87 | 5.77 | 4.62 |
| 8       | CH <sub>3</sub> | o-Chlorophenyl          | 104 | 70     | C <sub>14</sub> H <sub>16</sub> ClNO <sub>3</sub>               | 59.68 | 5.72     | 4.97 | 59.88 | 5.72 | 4.97 |
| 9       | CH3             | <i>p</i> -Carboxyphenyl | 171 | 63     | C15H17NO5                                                       | 61.85 | 5.88     | 4.81 | 62.21 | 6.05 | 4.51 |
| 10      | CH3             | Isobutyl                | 124 | 45     | $C_{12}H_{21}NO_3$                                              | 63.41 | 9.31     |      | 63.38 | 9.32 |      |
| 11      | CH3             | Phenyl                  | 143 | 69     | C14H17NO3                                                       | 67.99 | 6.93     | 5.66 | 67.60 | 6.88 | 5.28 |
| 12      | Isopropyl       | 2, 5-Dichlorophenyl     | 104 | 70     | C <sub>16</sub> H <sub>19</sub> Cl <sub>2</sub> NO <sub>3</sub> | 55.82 | 5.56     | 4.07 | 55.85 | 5.70 | 3.93 |
| 13      | Isopropyl       | 3, 4-Dichlorophenyl     | 137 | 68     | C <sub>16</sub> H <sub>19</sub> Cl <sub>2</sub> NO <sub>3</sub> | 55.82 | 5.56     | 4.07 | 56.00 | 5.65 | 4.00 |
| 14      | Isopropyl       | <i>p</i> -Chlorophenyl  | 155 | 68     | C <sub>16</sub> H <sub>20</sub> ClNO <sub>3</sub>               | 62.03 | 6.51     | 4.52 | 62.27 | 6.59 | 4.29 |
| 15      | Isopropyl       | p-Carboxyphenyl         | 160 | 45     | C <sub>17</sub> H <sub>21</sub> NO <sub>5</sub>                 | 63.93 | 6.63     | 4.35 | 63.58 | 6.65 | 4.20 |
| 16      | Isopropyl       | Phenyl                  | 113 | 65     | C <sub>16</sub> H <sub>21</sub> NO <sub>3</sub>                 | 69.79 | 7.69     | 5.08 | 69.87 | 7.62 | 5.03 |

Table II N-Aryl-4-aryl-3-carboxy-3-butenamides

|         |                   |                        |     |        | соон                                                            |       |          |      |       |       |              |
|---------|-------------------|------------------------|-----|--------|-----------------------------------------------------------------|-------|----------|------|-------|-------|--------------|
| Compd., |                   |                        | Mp, | Yield, |                                                                 | /Ca   | alcd., 🤅 | %    | ∽—Fo  | ound, | %            |
| No.     | R                 | R'                     | 0C  | %      | Formula                                                         | С     | Н        | Ν    | С     | Н     | Ν            |
| 17      | H                 | 2, 4-Dichlorophenly    | 176 | 90     | C <sub>17</sub> H <sub>13</sub> Cl <sub>2</sub> NO <sub>3</sub> | 58.30 | 3.72     | 4.00 | 58.36 | 3.84  | 3.95         |
| 18      | н                 | 2, 5-Dichlorophenyl    | 185 | 80     | $C_{17}H_{13}Cl_2NO_3$                                          | 58.30 | 3.72     | 4.00 | 58.53 | 3.95  | <b>3.9</b> 4 |
| 19      | Н                 | 2, 3-Dichlorophenyl    | 190 | 80     | C <sub>17</sub> H <sub>13</sub> Cl <sub>2</sub> NO <sub>3</sub> | 58.30 | 3.72     | 4.00 | 58.28 | 3.92  | 3.84         |
| 20      | н                 | <i>p</i> -Chlorophenyl | 193 | 85     | $C_{17}H_{14}ClNO_3$                                            | 64.67 | 4.44     | 4.44 | 64.44 | 4.63  | 3.91         |
| 21      | $CH_3O$           | 3, 4-Dichlorophenyl    | 211 | 90     | C18H15Cl2NO4                                                    | 56.86 | 3.98     | 3.68 | 56.88 | 4.01  | 3.47         |
| 22      | CH <sub>3</sub> O | 2,4-Dichlorophenyl     | 188 | 85     | C18H15Cl2NO4                                                    | 56.86 | 3.98     | 3.68 | 56.91 | 4.04  | 3.37         |
| 23      | $CH_{3}O$         | 2, 3-Dichlorophenyl    | 184 | 90     | C <sub>18</sub> H <sub>15</sub> Cl <sub>2</sub> NO <sub>4</sub> | 56.86 | 3.98     | 3.68 | 56.75 | 4.11  | 3.46         |
| 24      | CH <sub>3</sub> O | 2, 5-Dichlorophenyl    | 191 | 85     | C <sub>18</sub> H <sub>15</sub> Cl <sub>2</sub> NO <sub>4</sub> | 56.86 | 3.98     | 3.68 | 56.77 | 4.15  | 3.55         |
| 25      | CH <sub>3</sub> O | <i>p</i> -Chlorophenyl | 196 | 85     | C <sub>18</sub> H <sub>16</sub> ClNO <sub>4</sub>               | 62.53 | 4.66     | 4.05 | 62.62 | 4.88  | 3.74         |

| Table III | Ultraviolet     | Spectra | of | Monoamides | (C) |
|-----------|-----------------|---------|----|------------|-----|
|           | CH <sub>3</sub> | COO     | Η  |            |     |

| R-CH CH <sub>2</sub> CONH-R'       |                                    |                                   |       |  |  |  |
|------------------------------------|------------------------------------|-----------------------------------|-------|--|--|--|
| R                                  | R'                                 | $\lambda = \lambda_{\max}^{EtOH}$ |       |  |  |  |
|                                    |                                    | mμ                                | 3     |  |  |  |
| CH3                                | C <sub>6</sub> H <sub>5</sub>      | 241                               | 15300 |  |  |  |
| $CH_3$                             | p-Cl-C <sub>6</sub> H <sub>4</sub> | 249                               | 15300 |  |  |  |
| $CH_3$                             | o-Cl-C6H4                          | 242                               | 13700 |  |  |  |
| $(CH_3)_2CH$                       | C <sub>6</sub> H <sub>5</sub>      | 241                               | 13800 |  |  |  |
| (CH <sub>3</sub> ) <sub>2</sub> CH | p-Cl-G <sub>6</sub> H <sub>4</sub> | 249                               | 13500 |  |  |  |
| (CH3)2CH                           | o-Cl-C <sub>6</sub> H <sub>4</sub> | 242                               | 15700 |  |  |  |


## **Experimental Section**

All melting and boiling points are uncorrected. Microanalyses were performed by Miss Teruko Nisi of our department.

**a-Alkylidene(or alkenyl)succinic Anhydrides.** — The anhydrides were prepared by the distillation<sup>2</sup>) of the Stobbe half-esters obtained in the usual way.<sup>3</sup>)

 $\alpha$ -l-Methylpropylidene (or propenyl) succinic anhydride, thus prepared, boiled at 115—119° (2mm),  $n_D^{21}$  1.4929.

Anal. Calcd. for C<sub>8</sub>H<sub>10</sub>O<sub>3</sub>: C, 62.32; H,



IR Charts: I,  $\alpha$ -1,3-dimethylbutylidenesuccinic anhydride; II, the compound C; III, the compound E from the path B; IV, the compound E from the path A; V, the compound F (R=R'=CH<sub>3</sub> and R''=p-ClC<sub>6</sub>H<sub>4</sub>, in nujol, respectively).

6.54. Found: C, 62.19; H, 6.66.

The ultraviolet measurement<sup>4)</sup> showed that the anhydride,  $\lambda_{\max}^{\text{EtOII}} 235 \text{ m/t} (\epsilon 8700)$ , contained 73% of an alkylidene compound. Upon standing for several months, pure  $\alpha$ -1-methylpropylidenesuccinic anhydride solidified,  $\lambda_{\max}^{\text{EtOII}}$ 235 m/t ( $\epsilon$  12000).

Similarly,  $\alpha$ -1, 3-dimethylbutylidene(or butenyl)succinic anhydride boiled at 162— 165° (11 mm<sup>3</sup>, n<sub>D</sub><sup>21</sup> 1.4841, mp 80—81° (from *n*hexane),  $\lambda_{\text{max}}^{\text{EtOH}}$  238 mµ ( $\varepsilon$  12400) (all alkylidene type compound). The infrared spectrum is shown in IR Chart I.

Anal. Calcd for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub>: C. 65.91; H, 7.74. Found: C, 66.10; H, 7.88.

a-Benzylidenesuccinic Anhydrides. — The  $\alpha$ -benzylidenesuccinic acids were dehydrated with SOCl<sub>2</sub> as described by El-Abbady.<sup>5)</sup>

Preparation of Amides (Table I and II). General Method. — To a mixture of  $\alpha$ -substituted succinic anhydride (0.01 mole) in 30 ml of chloroform a solution of a primary amine (0.01 mole) in 10 ml of chloroform was added at room temperature. Then, the mixture was stirred for 5 hr on water bath at 50°. When the mixture had cooled completely and set solid, it was collected on a filter and washed several times with benzene. The material obtained by this procedure was then recrystallized from a mixed solvent of ethanolbenzene without any special precautions: IR  $(cm^{-1})$  1670—1690 (amide C=O), and 1645— 1660 and 1530-1560 (amide NH). The infrared spectrum of an amide (C,  $R = R' = CH_3$  and R'' = p-ClC<sub>6</sub>H<sub>4</sub>) is shown in IR Chart II. The ultraviolet absorptions of the monoamides are shwon in Table III.

**N-(***P***-Chlorophenyl**)-**3-carbomethoxy-3(or 4)-hexenamides (E). Path A.** — To a suspension of 2.0g of N-(*p*-chlorophenyl)-4methyl-3-carboxy-3-hexenamide, prepared by the reaction of *p*-chloroaniline with  $\alpha$ -1-methylpropylidenesuccinic anhydride,  $\lambda_{\max}^{FIOH}$  235 m/t ( $\varepsilon$  12000), in 2ml of ether excess amount of an ethereal solution of diazomethane was added at 0—5°. After standing for 3 hr, removal of the solvent gave N-(*p*-chlorophenyl)-4-methyl-3-carbomethoxy-3-hexenamide in quantitative yield, mp 83-84°,  $\lambda_{\max}^{EtOH}$  249 m/ $\mu$  ( $\varepsilon$  21700). The infrared spectrum is shown in IR Chart IV.

Anal. Calcd. for  $C_{15}H_{16}CINO_3$ : C, 60.92; H, 6.14; N, 4.74. Found: C, 60.88; H, 6.50; N, 4.83.

**Path B.** — To a mixture of 4-methyl-3-carbomethoxy-3(or 4)-hexenoic acid (0.011 mole) prepared by the Stobbe condensation of methyl ethyl ketone with dimethyl succinate, l ml of pyridine and  $0.7 \,\mathrm{ml}$  of thionyl chloride pchloroaniline (0,015 mole) in 2 ml of benzene was added with stirring for 2 hr. The mixture was hydrolyzed with water and taken up in ether. The extracts were washed with water and dried over anhydrous sodium sulfate. On removal of the solvent, there was obtained 1.8 g (ca. 60%) of N-(p-chlorophenyl)-4-methyl-3carbomethoxy-3(or 4)-hexenamide, mp 83-84°,  $\lambda_{\max}^{EtOII}$  249 mµ ( $\varepsilon$  15000). The infrared spectrum is indicated in IR Chart III. Microanalyses of III gave correct result for carbon and hydrogen.

N-(*P*-Chlorophenyl)- $\alpha$ -1-methylpropylidenesuccinimide (F, R = R' = CH<sub>3</sub> and R'' = *P*-ClC<sub>6</sub>H<sub>4</sub>). —Refluxing of 2.8g of N-(*p*-chlorophenyl)-3-carboxy-3(or 4)-hexenamide (C, R = R' = CH<sub>3</sub> and R'' = ClC H.) with 30 ml of benzene and 10 ml of ethanol in the presence of a catalytic amount of *p*-toluenesulfonic acid monohydrate gave N-(*p*-chlorophenyl- $\alpha$ -1-methylpropylidenesuccinimide (F) in quantitative yield, mp 120—121° (from *n*-hexane). The infrared spectrum of F is shown in IR Chart V.

*Anal.* Calcd. for C<sub>14</sub>H<sub>14</sub>ClNO<sub>2</sub>: C, 63.76; H, 5.35; N, 5.31. Found: C, 63.74; H, 5.34; N, 5.18.

## References

- A. ZILKHA and U. GOLIK: J. Org. Chem. 28, (1963) 2007.
- K. SISIDO, S. TORII, and M. KAWANISI: ibid.
  29, (1964) 904.
- W.S. JOHNSON and C.H. DAUB: "Organic Reactions", Vol. VI, John Wiely and Sons, Inc., New York, N.Y., 1951, pp. 1.
- 4) M. Elliott, J. Chem. Soc.: (1956) 2231.
- 5) A. M. El-Abbady and L. S. El-Assal: ibid. (1959) 1024.