
Memoirs of the Faculty of Engineering,Okayama University,Vo1.29, No.2, pp.89-94, March 1995

Backward Scheduling to Minimize the Actual Mean Flow Time
with Dependent and Independent Setup Times

Kenji SEKOGUCHI* and Shigeji MIYAZAKI**

(Received January 27 , 1995)

The present paper deals with a new perfonnance measure, the actual mean flow time, defmed as a

mean of the elapsed time of each job counted from the start time on a schedule to the corresponding

due date. For the one machine backward scheduling model with a common due date and independent

setup times, LPT schedule is shown as the optimal solution for the propos.ed measure. An optimal

algorithm is presented for the case with dependent setup times on the basis of the algorithm by

Arcelus and Chandra for a n / 1 / F forward scheduling problem. The proposed algorithm is coded

in C-Ianguage and a computational experience is reported through a 16-bit computer.

1. INTRODUCTION

Consider a set of n jobs J i (i = 1,2,··· , n) to be processed on one machine, where the processing time Pi (i = 1,2, ... , n) for

job J i is given and fIxed. The due date of each job is assumed as a common date (d) for all jobs. The ready time Ri (the preparation)

of each job is assumed to be able to correspond with the start time Bi on a schedule to be made. Every job should be completed before

or just on the due date (no tardy jobs allowed), and leave the shop simultaneously with its due date. Other conditions are the same as the

ordinary scheduling model [1).

According to the conditions above, the flow time of each job in the shop inevitably coincides with the elapsed time of the job

counted from the start time of each job on a schedule to the corresponding due date. In what follows the flow time defIned above is

called the actual flow time F' which is fonnulated as :

~=d-Bi, (i=1,2,"',n), (1)

An average of actual flow times over n jobs called actual mean flow time Fa :
Fa=(lIn)fF', (2)

i-I

In this paper actual mean flow time is used as a perfonnance measure and optimal scheduling algorithms for the setup dependent and

independent problems are proposed to minimize Fa under a constraint of no tardy jobs.

The backward scheduling is adopted here for a solution procedure, in which the job is scheduled in reverse order as from the last

position to the earlier position. The method has a merit of easy scheduling with no tardy jobs. For the one machine model with a

common due date and independent setup times, LPT schedule is shown as the optimum for the proposed measure. A Branch and Bound

algorithm is presented for the case with dependent setup times on the basis of an algorithm for a conventional forward n / 1 / F setup

dependent problem with the simultaneously arriving jobs. The proposed algorithm is coded in C-Ianguage and a computational

experience is reported through a 16-bit micro computer.

• The Graduate School of Natural Sience and Technology

•• Engineering Mathematics

89

90 Kenji SEKOGUCHI and Shigeji MIYAZAKI

2. SEQUENCE INDEPENDENT SETUP TIMES

The model treated here can be illustrated in Fig. 1, in which the setup time of J i is included in the processing time Pi and the

sequence of jobs is being determined along with J 1 through J 3. The completion time of the last job (J 1) should coincide with the

common due date (d) according to the constraint of no tardy job and for minimizing Fa .

d -

F/

The orderfor assigningjobs
j

Fa = (1 I 3)2,F~ - min.
i=1

Fig. 1. Sequence independent case.

[Theorem 1)

For the nilI Fa backward model with sequence independent setup times, LPT schedule (the shorter job comes later position)

gives the optimal solution.

Proof: nilI Fa backward model can be transformed into the equivalent nil I F forward model where SPT schedule is the

optimal [2]. The reverse of SPT yields the optimal LPT schedule.

3. SEQUENCE DEPENDENT SETUP TIMES

Transformation into a forward model

In the case that the setup time for next job J j is dependent upon the job J i that was immediately processed on the machine, the

setup time can be expressed by sij. The Gantt's chart for the one machine backward model with sequence dependent setup times for

minimizing Fa (the model is expressed by n/lI Fa, S ij I b) is illustrated in Fig. 2. In the model the completion time of the last job

should coincide with the due date (d) like the previous model.

The orderfor assigningjobs

Fig. 2. nilI Fa, S ij I b model.

Fa = (11 n)I Fa/i/
;=1

=(1ln)I(d-Bfij) - min.
i=1

If J [iJ denotes the job sequence at the ith position counted from the end position on a time scale as shown in Fig. 2, and if Fa/ i /

and P/ i/ denote the actual flow time and the processing time of J [i / ' there exists a relation :

Backward Scheduling to Minimize the Actual Mean Flow Time with Dependent and Independent Setup Times 91

where

P[jJ[j-l] = Prj] + S[jJ[j-l] (j =2,3,···,n),

PflJ[oj = P fl]

and S[jll j-I/ is the setup time attached for J [j/ followed by J I j-I/·

The actual mean flow time is given by :

F
a

=(1ln) ±±Pfjllj-lf=(1ln) ±(n-i+l)p[illi_I/
i.Ij_1 i-I

(3)

(4)

(5)

Arcelus and Chandra [3] have treated a one machine forward scheduling model with sequence dependent setup times for

minimizing F (the model is expressed by n I 1 I F ,sij I f). F is defined as :

n n

F=(1ln) "2.Fi=(lIn) "2.(Ci- O), (6)

i-I j _ 1

in which all the jobs are ready at time 0 , and Ci denotes the completion time of J i . The model is illustrated in Fig. 3.

o

FiIj

Fin-Ij

The order for assigning jobs

Fig. 3. nl 1 I F,sijl f model.

Finj

If J [i] denotes the job sequenced at the ith position counted from the beginning on a time scale in this· case, there exists a

relation:

F = (1 I nJ.f(n- i +1) P[i-Illi/,
.-1

where

P[i-I][iJ = p[i] + S[i-IJ[ij> (i =2,3,··· ,n)

(7)

(8)
P[OJ[I] = Pfl]

The difference between n I 1 I F ,sij I f and nlIIFa, Sij I b is that S[i-l][i] is substituted by S[i][i-l]' The arguments

above show that nl1 I Fa, Sij I b problem can be solved by the following procedures. First, the data of setup time matrix sij should

be transformed into S ji in a new matrix (the data in ith row and jth column in the original matrix is exchanged to jth row and ith

column in a revised matrix). Secondly solve the n I 1 I F ,sij I f problem based on the revised matrix, and the obtained sequence

should completely be reversed for the solution of nll /pa, sij I b problem.

Optimal algorithm

For n / 1 / F ,sij / f problem, an optimal algorithm employing a Branch and Bound method was presented by Arcelus and

Chandra. (AC algorithm) [3]. AC algorithm is adopting the frontier node search procedure which tends to expand explosively the

memory spaces. The algorithm must provide several complicated steps for updating the list of nodes to discard the inactive nodes and

renumber the active nodes consecutively. Although these steps are for saving the memory spaces, they cost much computational time.

This paper uses the active new node search procedure for saving the memory spaces beside the simple steps of the algorithm. The

another advantage of the procedure is that it can rapidly reach trial solutions, even if a sufficient computational time for obtaining the

optimal solution could not be provided.

92 Kenji SEKOGUCHI and Shigeji MIYAZAKI

. The proposed algorithm for n/I / Fa, Sij / b problem can be listed as follows:

[Step 1] The given matrix of setup times (Sij) is transformed into Sji. The element of the new matrix Sji is rewritten as sij again.

Make a matrix as shown in Tab. 1 in which the first row shows the processing time Pj of J j and the other rows show Pij defined by

Pij = Pj + sij. The minimum of each row i is denoted by r(i) (i =0, I,··· , n) and the minimum of each column j is denoted by

e(j) (j=l,l,···,n). Rearrange rei) (i=l,l,"',n) and e(j) (j=l,l,· .. ,n) in the nondecreasing order and denote them'as

r[I),r[2),···,r[n), and e[I),e[2),···,e[n).

Compute RBND(k) ,CBND(k) and BND(k) by :
k

RBND(k) = i.(k-j+l)r[jJ, (k=l,l,···,n-l), (9)
j_I

n-I

RBND(n) = n· reO) + '2.(n- j)r[jJ,
j-I

k

CBND(k) = '2.(k - j+I)e[j), (k -l,l,···,n),
j_I

(10)

(11)

BND(k) = max{RBND(k),CBND(k)}, (k = l,l,···,n), (12)

where RBND(k) ,CBND(k) and BND(k) stand for lower bounds based on the rows, the columns and the both of them in the

Pij matrix at the stage of k remaining (unassigned) jobs. BND(n) is used as the lower bound obtained in this stage. Go to Step 2.

Tab. 1. Matrix showing Pij (the sum of proccesing

time P j and setup time S ij).

To job
JI h """ Jj " " . In min

JI pI p2 ".. Pj ... pn reO)

JI - PI2""" Plj """ pIn r(1)

h P21 -- "". P2j " .• p2n r(2)
Fromjob : : : : :

Ji P~~ Pi2 """ py " "" pin rei)
: : : : : :

I npnl pn2" ." pnj ..• - r(n)

min e(1)e(2) "" cO) "" ern)

[Step 2] Obtain a feasible solution by "closest unvisited city" algorithm for the traveling salesman problem, and set the performance

measure of the solution as SOLN. If BND(n) = SOLN ,the feasible solution by "closest unvisited city" is the optimal solution, and

terminate the algorithm. Otherwise, set the branching level (the number of already assigned jobs) r=O, the branching node N~ = 0,
o "

the upper bound UB(N,) = SOLN, the performance measure of a best known solution f = SOLN, and go to Step 3. Note that

n - k = r holds, because k is defmed as the remaining (unassigned) jobs.

[Step 3] Perform the branching procedure for N~ and create (n - r +1) kinds of new nodes. Set r = r + 1 and k = k - 1.

[Step ~] For each node newly created, compute the total actual flow time of the partial sequence of already assigned jobs PAAF by :
r

PAAF = .'2.(n-i +I)Pfi-I/lij.._1 (13)

If the sum of PAAF and BND(k) by eq. (12) is greater than or equal to f', delete this node from the active node list and apply

Step 4 to another node newly created. If no other nodes are remain,ing in this step, go to Step 8. If PAAF + BND(k) < f', go to

Step 5.
[Step 5] Compute lower bound LB(N,) as follows: Revise the current Pij matrix shown in Tab. 1 by the following procedure. Delete

all the elements in the first row of the current Pij matrix; delete all the elements in the column corresponding to the job (J~) newly

assigned for creating N,; remove the row for J; to the top of rows and shift the other rows accordingly. Compute BND(k) by eq.

(12) based on the revised Pij matrix. Set lower boundas LB(N ,) = PAAF + BND(k) .
•

Compute SOLN based on the revised Pij matrix through the closest unvisited city algorithm. If the new SOLN is less than f '
set f' = SOLN. Otherwise, maintain the previous f'. If Step 5 has applied to all the nodes newly created, go to Step 6. Otherwise,

repeat Step 4 for the next node remaining at the same stage.

should be a new trial solution. Set f * = LB(N~), and go to Step 8. If

Backward Scheduling to Minimize the Actual Mean Flow Time with Dependent and Independent Setup Times

[Step 6] Choose the node having the minimum lower bound among newly created nodes as the objective node (N~) for a new
o • 0 •branching. If r = n, then go to Step 7. If r < nand LB(N r) < f ' then go to Step 3. If r < nand LB(N r» f ,then go to Step

8.
o • 0[Step 7] If LB(N r) < f ' then the current N r

0*0LB(N r)~ f ,then delete N r and go to Step 8.

[Step 8] If any active nodes having the lower bounds smaller than f* exist, then choose the node having the minimum lower bound

among the node nearest to the current node N~ . Set the node as the new objective node N~ for a branching. Reset r at the same level

as the choosen_N~. Delete all the newest nodes, and return to Step 3. If there exists no objective node for branching, then go to Step 9.

[Step 9] Reverse the sequence of the current trial solution t? obtain the optimal solution for the n/l / Fa, Sij / b problem. (END)

4. COMPUTATIONAL EXPERIENCE

The proposed algorithm has been coded in C-language and numerical examples were solved through 16-bit micro computer, NEC

PC-9801 VX, to obtain a computational experience. The average computational time to reach the optimal solution over ten example

problems is shown in Fig. 4, of which horizontal axis is the number of jobs included in each problem. The average computational times'

through the complete enumeration mothod are estimated as 1.3 years for 14-job problem and 20.1 years for 15-job'problem. Although

the computational time through the proposed algorithm increases exponentially, it is less than 2 hrs. for 21-job problem, and less than

3.5 hrs. for 22-job problem. This time is rather better than the computational time of other implicit enumeration methods for general

scheduling problems.

NEC PC-9801 VX (16-bit micro computer)

(Average ever ten example problems for each number ofjobs)

93

/
/

/
~ /

/
~

12500

~ 10000

:{
.~ 7500

1.'"i 5000

Iii
u

2500

o
14 15 16 17 18

Th. number ofjobs

19 20 21 22

Fig. 4. Average computational time through the proposed algorithm

By use of the active new node search procedure, the proposed algorithm can yield trial solutions before obtaining the optimal

solution. Each trial solution through the pass to the optimal solution was evaluated by the approximation ratio TJ :
OJ-t '

TJ=--xlOO (%) (14)
OJ - 0

where (0, t and 0 are the performance measures of the worst (maximum), the trial and the optimal (minimum) solutions, respectively.

The approximation ratio TJ defined by eq. (14) reaches 100% in the case that the trial solution coincides with the optimal one and 0% in

the case with the worst one. The average of TJ calculated by ten example problems vs. the ordinal number of trial solutions is shown in

Fig. 5, and the average of TJ vs. the required computational time is in Fig. 6. The average of TJ could attain 95% before obtaining the

10th trial solution and within the average computational time of 100 sees. for the example problems including less than 23 jobs.

94 Kenji SEKOGUCHI and Shigeji MIYAZAKI

100 i--7-------------======::=:¢====----<>-i

----<>-- IOjoo. -- 13jobs -I>-- 16joo. --<J-- 19jobs ----<>-- 22jobs
93 O-O==';~::::=.-__/__+----=-----'-------=--------=-----=--------'---1

99 I------,I----------='""""''''--------------==-=-.....=='\'

~98I_-----rC---------P<::.----~=--==''===--_o_==-<r-==:::::;~=o-'''::!i
Jle
.~ 97

.~ 96 I--,L~---___,L~=____=,....&=:::;',:_~;g::::::&;~::::::::=------_____.j

i: 951-----::-:=1,~~~~~c=:::=--------------------__j
t 94 I---=~ ~~---------------------_I
<

92 i?~_~_ _'__~_~_~~___''--'-_~~_~_~~_~_~~_~_~~_--J

SOLN 1th 2nd 3,d 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

The ordinal number of trial solutions

Fig. 5.Average approximation ratio vs. the number of trial solutions.

100

e 99

.~ 98
c
.~ 97
E·x 96e
"-"-as 95u

~
~ 94
-<

93
10 100 1000

Average computational time (sees.)

Fig. 6. Average approximation ratio vs. average computational time.

5. CONCLUDING REMARKS

The present paper proposed a new performance neasure, actual mean flow time Fa, which reflects the recent popular production

circumstance of which typical example can be seen in just-in-time production. The optimal algorithm for n/l / Fa backward

scheduling with sequence dependent setup times was also presented. The algorithm employs a Branch and Bound method for n / 1 / F

forward scheduling problem with a modification into the active new node search procedure.

The algorithm was coded in C-language and a computational experience was reported through a NEC PC-9801 VX micro

compu"ter. Although the computational time increases exponentially, it succeeded to obtain the optimal solution of 22-job problem

within one shift duration (eight hours). The trial solutions on the way to the optimal solution can be used as a practical solution, because

they revealed more than 95% approximationretio (performance measure attained among the range between the worst and the optimal

solution) and the required computational time is within 100 secs. for the problem of which size is less than 23 jobs.

REFERENCES

[1]. K.R.Baker, Introduction to Sequencing and Scheduling, John Wiley, New York, (1974).

[2]. R.W.Conway, W.L.Maxwell and L.W.Miller, Theory of Scheduling, Addison-Wesley, Reading, (1967), pp.27-28.

[3]. FJ.Arcelus and R.Chandra, On n / 1 / F setup dependent problems, Engineering Optimization, 7 (1983), pp 58-67.

