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SYNOPSIS

An information processing task which generates combinatorial explosion

and program complexity when it is treated by a serial algorithm is investigated

using both Genetic Algorithms (GA) and a neural network model (NN). The

task in question is to find a target memory from a set of stored entries in the form

of "attractors" in a high dimensional state space. The representation of entries

in the memory is distributed ( "an auto associative neural network" in this paper

), and the problem is to find an attractor under a given access information where

the uniqueness or even existence of a solution is not always guaranteed ( an ill

posed problem ). The GA is used as an algorithm for generating a search orbit

to search effectively for a state which satisfies the access condition and belongs

to the target attractor basin in state space. The NN is used to retrieve the

corresponding entry from the network. The results of our computer simulation

indicate that the present method is superior to a search method which uses

random walk in state space. Our technique may prove useful in the realization

of flexible and adaptive information processing, since pattern search in high

dimensional state spaces is common in various kinds of parallel information

processing.
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1 Introduction

Although quick and great progress has been made with modern LSI computers

working based on the von Neumann type of serial algorithms, there has been

growing interest in parallel or flexible ( non von Neumann type) information

processing such as those typically observed in biological systems. Serial algo

rithms run into problems with (1) combinatorial explosion and (2) program

complexity in realizing flexible functions. One possibility to improve flexibility

in information processing is the application of complex nonlinear dynamics in

cluding chaos, which attracts increasing interest not only in the field of physics

but also in the interdisciplinary realm[I]. Complex dynamics is characterized as

"emerging complex behaviour generation" [2]-[4]. The great variety of possible

dynamical structures suggests to us that an application to complex information

processing may avoid combinatorial explosion and/or growing control complex

ity [5], [6], [7]. The main problem of flexible information processing function is,

generally speaking, due to the fact that there are too many degrees of freedom

for sequential control. Therefore, in a practical sense, the internal complex

ity contained in nonlinear complex dynamics is actually useful to decrease the

control complexity as well as help to avoid combinatorial explosion[8] , [9].

In order to make the problem clearer, we shall concentrate on a particular

information processing task. However, if we impose too severe restrictions for

the proposed information processing context, it will lead us to a less or even

poorly interesting result because of a very ad hoc solution for the problem,

while such restriction brings us an easy modeling and formulation. Therefore,

in setting the context, one needs to pay attention so as to keep the universality

of application to wide field of processing. We propose pattern search in a high

dimensional state space[8], [9], in which the stored information is represented

as distributed memory entries ( a neural network in the present paper) in the

form of "attractors" [10]. In more detail, the task is to specify or retrieve, if
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existent, one or more of the stored patterns under the condition that the given

access information is not complete and not sufficient to reach the target pattern

directly. This is a kind of ill-posed problems in which the uniqueness or even

the existence of a solution is not guaranteed. It is a desirable function of the

information processor to solve this complex problem efficiently, and there are

two important points with respect to the search process in the state space[9].

They are

1. How can the processor quickly and efficiently find the target basin from the

ambiguous acccess information ?

2. Provided there is no memory which satisfies the access information, can the

search processor generate information close to the requested pattern ?

Several methods qualify for the envisioned function. (1) random walk in

state space ( [11]' for an example ), (2) chaotic dynamics [7]-[9], [12]' (3) genetic

algorithms - frequently called evolutionary strategies, (4) neural networks, (5)

cellular automata [13], [14], (6) general nonlinear dynamics [15]. In this paper,

we employ a method which uses both a neural network (NN) and Genetic

Algorithm (GA). The former area has a long history and became an especially

active field during the past decade as a powerful method for parallel processing

[16]-[17]. Associated memory and classification of highly complicated signals

[18] are two prominent applications. The latter also attracted a large number

of workers in the past years especially in the field of optimization in high

dimensions [19]- [23].
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2 The Neural Network Model

To begin with, let us start with the description of the state space considered.

Without loss of generality, we employ a state space of image patterns consisting

of 20 x 20 pixels and introduce one neuron corresponding to each pixel. Using a

Hopfield network, neural activity is restricted to two states, +1 ( firing state)

and -1 ( non firing state ), and we obtain a state space consisting of bit patterns

the number of which is 2400 ( the top points of hyper cube in 400-dimension ),

each pattern specified by a 400-dimensional state vectors, v = (VI, V2,"', V400).

In the present model, each neuron is assumed to be coupled with each other

and their coupling strength is represented by a synaptic connection matrix the

dimension of which is 400 x 400. In this state space, we embed 30 patterns as

the stored memories which form" attractors" .

Secondly, let us employ

400

Vi(t + 1) = 8(I: 1';jVj(t) - hi)
j=l

(1)

as the time developing rule of this neural network model, where each neuron

is represented by discrete variables Vi = ±1 and 1';j, the synaptic connection

matrix. 8 is a step function and hi is a threshold of neurons which is taken

to be zero in this paper for convenience. With respect to the 30 patterns we

used for actual simulations, the overlap between them is relatively large as can

be observed from Fig.I. Thus, retrieval performance would become very bad if

we applied an auto correlation memory. Therefore, we used orhogonalization

between patterns [24], [25] by introducing adjoint state vectors v! (a = 1,2, ..

,,30 ) which are defined by

v! •v{3 = ba {3, v! = I: aa'Yv'Y' a = 0-
1

, Oa{3 = Va. V{3 (2)
'Y

a is the inverse matrix of 30 x 30 correlation matrix the elements of which

are defined by the scalar products between two pattern vectors. The synaptic



Memary Search using GA and NN

connection matrix is now defined as

30

T=L:Va®V!
a=l

115

(3)

which is known as the pseudo-inverse of the pattern matrix. Tij is still sym

metric, so that the energy function, E = - Lij vJijvj, is a Lyapunov function

fur this system. The resulting basins of attraction in state space become quite

large now and it is expected that in these basins much information is dis

tributed which we call" seeds" for the access. With respect to the" seed", we

mean that it contains many compressed or partial features of target patterns (

at tractors ). Namely, once some pattern ( seed) containing the partial feature

of an attractor is given to the neural network, it will be entrained into the

attractors, as if one retrieve the specified person from glancing of the shape of

face.

By introducing the state space of the NN, our ill-posed problem of pattern

search becomes clearer. Suppose that there is an accessor who wants to find

a specified face ( not always one ) from data base of various faces with use of

ambiguous feature of target faces, in the present simulation, the feature of eye

shape. This type of information task is exemplified in the task of tracking a

criminal suspect using a large amount of face photographs under the ambiguous

evidence of an accidental witness. Therefore, our simulation was set to search

target face patterns which have the eye-shape feature consisting of 40 bit. The

state space is the 400-dimensional pattern space, but note that the existence

of a solution is not assumed. We gave eye-shape data ( 40 bit ) of the fourth

face pattern in Fig.1 as access information. The search algorithm is described

in the next section.
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3 The Genetic Algorithm

In this section, we consider the application of a Genetic Algorithm [26] to

generate an effective search orbit in the state space.

Let us define a gene string as consisting of 401 elements, where the first

element Xo is the header with the evaluation value of the gene and the other

400 elements Xi are a state vector. We introduce a certain number of these

genes and call them together the gene pool. Here as in most GAs, two different

kinds of operations are performed, "mutations" and "recombinations". The

former are operations randomly changing a certain number of components of a

gene. The latter are operations where two or more genes cooperate to generate

a new gene string with a certain number of elements coming from each parent

string.

In both operations, the elements subject to the operations are chosen using

random generators.

In the following, we give a brief description of the applied operations.

a) Mutation:

Mutations in the present paper consist of the following three different

operations. They are

(1) Single flip: choose a gene =? generate a random number 1 ::::; ni ::::; 400 =?

flip one component ni

(2) Complement: choose a gene =? generate two random numbers 1 ~ nl, n2 ::::;

400 =? flip all components between ni and n2

(3) Inversion: choose a gene =? generate two random numners 1 ::::; nI, n2 ::::;

400 =? invert the order of components between ni and n2

b) Recombination ( Cross over) :
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choose two genes, say gene a and f3 =} generate two random numbers

between 1 :S nl, n2 :S 400 and take n3 = Min [ nl + n2, 400 ] =} exchange the

components of gene a and f3 between nl and n3 with each other.

By these operations constantly varying strings are supplied which are se

lected according to their quality as follows.

c) Selection:

Each trial string which is the result of an application of one of the above

operations onto a string from the gene pool is put into the neural network as

an initial pattern and is updated until the neural network gives the converged

pattern. Then, the converged pattern is evaluated in comparison to the given

access information and will substitute its predecessors from which it was gen

erated if it possesses higher or equal quality. It will be discarded if its quality

is lower than that of the predecessor. Since every string carries its quality sig

nal, this is a totally local selection method. It was already successfully applied

in the case of the travelling salesman problem [26]. Fig.2 shows the overall

process.

4 Results of Simulations

A simulation was done by employing nine genes in the gene pool and both

mutation and recombination processes. A comparison was done with the re

sults of random search which used random walk in state space. In both cases,

we started with randomly chosen patterns. Fig.3 shows intermediate patterns

along the time development of the search using the GA defined in the previous

section. Note that all the patterns are corresponding to local minima of the

energy landscape in state space since the trial patterns created by GA opera

tions are made to converge to the definite patterns after many updates in the

neural network.

In Fig.3 there appears a pattern worth to note because it is not the memory
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patterns. One can interpret this new pattern to be a spurious pattern which is a

partial superposition of stored patterns and notice that the network produced a

new meaningful pattern from embedded memories in the sense of" spontaneous

synthesis". This demonstrates us the possibility of information generation by

the processor when the system can not find a requested pattern in memory

which satisfies the access condition completely.

Now, let us turn to an evaluation of the search performance. We define

f(N) as the ratio between the number of successful trials and the total number

of trials. One trial means a search process using a gene pool with nine genes

with random patterns as initial state. A trial is successful if the access infor

mation is satisfied within the given iteration number N of operations. If there

is no appearance of the target pattern within the given iteration number N,

we regard the trial to be unsuccessful. The same quantity is calculated for the

random search and shown for comparison.

In the case of a random search, it is easy to calculate f(N). Let us note

the fact that it is posssible to define the one step success probability in random

search. It can be expressed by the ratio of the basin volume to the total volume

of state space because each step can be regarded as completely random so that

the process is considered to be Marcovian and there is no correlation or memory

effect between two succeeding steps. Therefore, f(N) has the form

(4)

In order to understand the N-dependence of f(N) in more detail, one can

regard f( N) as a continuous variable with respect to N. Then, a differentiation

yields

d~f(N) = (1 - p)Nlog1 ~ p = exp(-Nlog
1
~ p)logl ~ p (5)

This indicates that df(N)/dN should depends on N with an exponential damp

ing in random search. We show the statistical result of our simulation in Fig.4



Memury Search using GA and NN 119

and Fig.5 both in the case of random search and the genetic search with re

spect to df(N)/dN, where the differentiation was done numerically in the dis

crete and finite intervals. The result of random search indicates an exponential

damping, which is quite plausible as noted above. On the other hand, as shown

in Fig.5 the case of genetic search indicates a very characteristic distribution of

the differential success rate as a function of N. This tendency is not accidental

or due to fluctuation of statistics because a more accurate result gives the same

dependency as shown in Fig.6, which is obtained from the averaged success rate

of 10000 samples whereas the former was obtained from averaging over 1000

samples. It is an interesting question why the distribution function indicates

this very different behaviour in genetic search as compared to a random search.

However, it is sure that the genetic search is greatly superior to the method

of random search by almost an order of magnitude, as indicated in Fig.7. The

same simulation was done in for different numbers of genes in the gene pool.

Results are shown in Fig.8 and a considerable improvement can be observed if

we increase the population size n. Note that in order to obtain Fig.8 we have

divided the total number of trials by the size of the population.

A further imporovment can be obtained by adjusting the recombination

frequency carefully, see Fig.9.

5 Concluding Remarks

1. Genetic search algorithms are superior to random search by almost one order

of magnitude

2. The employment of both mutation and recombination operations improve

the search performance. An optimization of mutual freqency is beneficial.

3. The search performance is improved considerably when we increase the num

ber of genes in the gene pool. This indicates that the present method is

especially suited for parallel processing.
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4. In performing the simulation, many spurious attractors were found and there

were many useful spurious at tractors in the sense of synthesized patterns

( information generation) from the stored patterns.

Our method may prove useful in realizing flexible and adaptive information

processing because pattern search in high dimensional state space appears to

be common in various kind of parallel information processing.

The authors deeply thank to Dr. Peter Davis for his valuable comments.
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Figure 1: 30 memory patterns consisting of 20 x 20 pixels ( neurons ). Suppose the fourth pattern among the
face patterns ( third row) to be the target of memory search in our simulation of an ill-posed problem.
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Figure 2: Over all algorithm of the memory search simulation. Note following points in the algorithm: in the
mutation process, [1]when we operate one of the mutation operations defined in Section 3-a, the sequence of
operation in the repeating processes is taken as cyclic, i.e.[=> mutation.1 => mutation.2 => mutation.3 =>l [2]the
generated pattern ( gene) is given to the neural network as an initial condition and the recurrent updating of
firing patterns is done until it converges. [3]if any converged pattern has the given feature ( feature of target ),
the search process stops and is regarded as successfully finished. If not, the evaluation value is compared with the
predecessor ( gene ). In the recombination process, the evaluation procedure is the same with mutation process.
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Figure 3: (a)Initial random patterns as given to nine genes (b)Nine patterns possessed by nine genes after first
generation (c)Nine patterns of nine genes after 42-th generation. Note that the pattern in the left-lower corner
is a superimposed pattern between the shape of the first face and the eye, nose and mouth of the fourth face in
Fig.1 (d)Patterns of nine genes after 140-th generation. Most patterns have coverged to the target pattern.
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Figure 4: Differential success rate versus given upper limit of search step number in random search ( 1000 samples
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