
Memoirs of the Faculty of Engineering,Okayama UniversitY,VoI.25, No.2, pp.17-23, March 1991

Fatigue Strength of Age-Hardened AI-Zn Alloys
under Repeated Tensile Loading

Akira SAKAKIBARA*, Teruto KANADANI**, Toshiaki KANEEDA**,

and Norio HOSOKAWA**

(Received February 12 , 1991)

SYNOPSIS

Effect of the soft surface layer that was formed on low

temperature aging of AI-Zn alloy on fatigue strength. was

studied under repeated tensile loading. Vickers microhardness

test revealed that there existed less hardened region in the

vicinity of grain boundary and surface, and that the region

extends 50 to lOO~m from the surface inward. From the plot

of the stress amplitude against the number of cycles to fail­

ure, it is concluded that the presence of less hardened sur­

face layer strengthens fatigue resistance of the age hardened

AI-Zn alloys containing 8 to 16mass%Zn under the repeated

tensile loading.

1. INTRODUCTION

Aging phenomena of AI-Zn alloys have been studied in many works. Particu­

larly when these alloys are aged around 273K after quenching from high temper­

ature, many GP zones enriched in solute Zn atoms are formed, which is thought

to be the cause of low temperature age-hardening.(l) GP zones, spherical in

the initial stage, are sometimes grown to be several tens nm in size and become

ellipsoidal in shape depending on the heat treatment condition.(Z,3) It had been

considered in most works that GP zones were formed homogeneously through the

specimen except for the vicinity of, less than 1~m from, the grain boundary
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(PFZ). In the beginning of eighties, however, Ohta et al.(4-6) studied the de­

pendence of hardening on the distance from the surface and from the grain

boundary in AI-Zn alloys and found inhomogeneity of the rate and the extent of

age-hardening in the specimen heat-treated under a certain condition; age­

hardening was less advanced in their vicinity, especially in the vicinity of

surface, than in the regions distant from them. Later, Ohta et al.(7,8) gave

interpretation to the phenomenon, based on the study of electrical resistivity

(p) and X-ray small-angle scattering, that surface and grain boundary played a

role of effective sinks of excess quenched vacancies and accordingly the aging

in their vicinity was retarded or Virtually ceased on account of the depletion

of vacancies.

U1 tra-super Duralmin based on AI-Zn binary system has been used as struc­

tural members of aircraft because of its strength per weight. Fatigue failure

of the member is often taken to be one of the main causes of aircraft accident

these days. In many cases of fatigue failure micro-cracks generated at the

surface propagate in to the specimen, and therefore the surface characteristics

are important when it is used undet repeated loading. In this paper, the effect

of the less hardened surface layer on the fatigue strength of aged specimen is

studied using AI-Zn alloys of various compositions.

2. EXPERIMENTAL PROCEDURES

2.1 Specimen

Specimens, AI-2, 8, 10, 12 and 16mass%Zn in nominal composition, were pre­

pared by melting high purity materials, 99.99% aluminum and 99.999% zinc, togeth­

er in a high-alumina crucible in the air and by casting. Ingots were homoge­

nized at 723K for about 180ks in the air after peeling. They were worked to

strips, 20mm in width and 1.1mm in thickness, with over ten times of alternate

hot-forging and intermediate annealing at 723K for 0.9ks. Specimens for fatigue

test and hardness test, whose shape and size are the same as reported previ­

ously,(9,10> were made from these strips.

2.2 Heat Treatment

~pecimens were solutionized at 773K for 3.6ks by holding between aluminum

blocks in an electric furnace, then furnace-cooled to 673K, held there for 3.6ks

and quenched into iced water. Aging was carried out in an ethanol bath at

273K or 293K.

2.3 Fatigue Test
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Aged specimens, some of which were electropolished to remove the surface

layer, were attached to

fatigue machine <UF-15).

tensile loads.

the repeated tensile loading apparatus of Shimazu

Number of cycles to failure was measured under variuus

2.4 Hardness Test

Akashi micro-Vickers-hardness tester (MVK-E) and Akashi ul tra-microhardness

tester (MZT-1) were used. Hardness test was carried out at various loads from

0.001 to 9.8N to the specimen lightly electropolished and aged.

3. RESULTS AND DISCUSSION

In an ordinary hardness test grain size of the specimen is usually reduced

as much as possible and special attention is not paid to the position of inden­

tation. An example of age-hardening curves thus obtained is shown in Fig.l,

when a 10%Zn alloy was aged at 293K after quenching from 673K and tested at

0.49N. Measured hardness numbers scattered rather vastly at each aging time

(tA) in this case, standard deviation being up to ! 6. Next, variation of hard­

ness with location of indentation was taken. care of and the data were classi­

fied into three groups, that is, positions (1) more than 200j.'m distant from, (2)

about 70j.'m distant from, and (3) just on, the grain boundary. These aging

curves of lO%Zn alloy under the same heat treatment and the same load as in

Fig.l were shown in Fig.2, where the average values and the standard deviations

are written. It is noticed that the standard deviations are not so large in all

these curves, and that the nearer the location to the grain boundary, the

smaller the hardness becomes. Comparing Figs.l and 2, one can regard the scat-
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tering of hardness numbers observed in Fig.1 as mainly depending on the loca­

tion of penetration relative to the grain boundary.

Variation of hardness <Hv) with depth from the specimen surface was also

examined. Fig.3 shows plots of hardness against the load, of the 12%Zn alloy

aged at 273K for 120s after quenching from 673K, the surface of which was

removed layer by layer, each 50~m in thickness, by electropolishing. For non­

electropolished state (0), hardness was small at smaller loads, which suggests

softness 'of the surface layer. With increasing thickness removed, hardness

became independent of the load and inc-reased up to 97 of Hv when 100 ~ m

thickness was removed. Particularly when the surface layer thicker than 100 ~ m

was removed, ul tra-microhardness measurement using the load from 0.1 down to

O.OOlN showed constant hardness irrespective of the load. It is therefore

considered that the thickness of less hardened surface layer was not more than

100~m and hardness in the more distant interior from the surface was constant

under the present conditions of heat treatment. Thus age hardening in the Al­

Zn alloys progresses inhomogeneously in the specimen, more slowly near the

vacancy sinks, especially near the specimen surface.

Effect of the soft surface layer on fatigue strength was investigated.

FigA shows plots of stress amplitude <0') against number of cycles to failure

<N) from repeated tensile fatigue test for the specimen of 12%Zn alloy which was

heat treated in the same manner as Fig.3 followed by the removal of surface

layer, 0 to 100~m in thickness by electropolishing. Curves of the specimen

whose Surface was removed are lower as a whole than that not electropolished

(0). Fatigue strength of the specimens whose thickness of removed layer was

r
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Fig.3 Hardness vs. load plot of the

12%Zn alloy aged at 273K for

120ks after quenching from 673K.
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Fig.4 S-N curves of the aged 12%Zn

alloy. Thickness of the surface

layer removed: 0 O~m, b:. 10~m,
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Fig.5 Effect of the surface polishing

on the S-N curve of the aged 12%

alloy. 0 non-electropol ished,

e electropol ished before aging.

Fig.6 S-N curve of the annealed 2%Zn

alloy. Thickness of the surface

layer removed: 0 O.um, 0 50.um.

501Lm and 1001Lm coincide with each other. Together with the result in Fig.3

that the soft surface layer was less than 100.u m in thickness, this suggests

that the soft layer had an effect of increasing fatigue strength.

In order to examine the dependence of the fatigue strength on whether the

surface was polished or not, the specimen electropolished beforehand was aged

and fatigue tested. Fig.5 shows that its fatigue strength ce> was almost the same

as that of the specimen non-electropolished CO>, indicating no effect of polished

surface. Furthermore, 2%Zn alloy heat treated in the same way as above, in

which the same hardness CHv=20> was observed both at the surface and the inte­

rior because of the absence of GP zones,OO shows constant fatigue strength

irrespective as to whether or not the surface layer was removed by electropol­

ishing Csee Fig.6>.

Effect of the alloy composition was also examined. Figs.7 and 8 show the
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Fig.7 S-N curves of the 8%Zn alloy aged

at 273K after quenching from 673K.

Thickness of the surface layer

removed: OO.um, 0 50.um.

Fig.8 S-N curves of the 16%Zn alloy aged

at 273K after quenching from 673K.

Thickness of the surface layer

removed: 0 O.u m, 0 50.u m.
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Fig.9 Variation of the S-N curves

of the aged AI-Zn alloy

with composition.
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ness of the alloy, but it is worth

further investigation because the

thickness of the soft layer may vary

wi th composi tion.

8"Zn alloy consists mainly of intragran-

ular fracture, while that of the 16"Zn

alloy mainly of in tergranular fracture.

Thus lower fatigue strength of the

16"Zn alloy may be due to the brittle-

fatigue strength of 8" and 16"Zn alloy heat-treated as above, of which one

group was aged only and the other aged and electropolished to remove surface

layer 50J'm in thickness. For both alloys the latter, surface removed, clearly

showed lower fatigue strength. Since thickness of the soft surface layer

examined by harness test was less than 50J'm and less than 100J'm for the 8"

and 16"Zn alloy, respectively, presence of the soft layer is considered to

increase fatigue strength of the aged alloys of these composi tions, too. A

specimen of 20"Zn alloy showed the same result as these.<l2)

u-N curves of the specimens aged only, of which the surface was not

removed, are collected from Figs.4, 7 and 8, and are shown in Fig.9. Fatigue

strength increases with increasing solute concentration from 8 to 12"Zn, but

to the contrary that of 16"Zn alloy

decreases a little. SEM fractographs of

fatigue failure for the 8 and 16"Zn

alloy are shown in Photo 1(a) and (b),

45 J.lrn ,

SEN fractographs of fatigue failure: (a) 8XZn alloy, (b) 16"Zn alloy.
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