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We present a theoretical study of Si1_ xGex alloys based on tight-binding molecular
dynamics (TBMD) calculations. First, we introduce a new set of nonorthogonal tight­
binding parameters for silicon and germanium based on the previous work by Menon
and Subbaswamy [Phys. Rev. B 55, 9231 (1997); J. Phys: Condens. Matter 10,
10991 (1998)J. We then apply the method to structural analyses of SiI-zGex alloys.
The equilibrium volume and atomic structure for a given x are obtained by the
TBMD method. We also calculate the bulk modulus B, elastic constants Cn, C12

and C44 as a function of x. The results show that the moduli vary monotonically,
but nonlinearly, between the values of Si crystal and Ge crystal. The validity of the
results is also discussed.

1 INTRODUCTION

Recently, silicon/germanium interface and their mixture play important roles in many semi­
conductor devices. It has been known that SiGe alloys or superlattices have promising properties
for the optical applications where bulk crystals cannot be directly used because of the in-direct
energy gap in their electronic structures. The major problem in fabricating these materials is
the mechanical stability of the alloy structure and interfaces. Understanding the structural and
elastic properties of SiGe alloys and superlattices is therefore important for development of new
optical materials. Tight-binding molecular dynamics (TBMD) simulation is a powerful method
to investigate theoretically structural and electronic properties of semiconducting materials and
interfaCes.

In this paper, we present nonorthogonal tight-binding calculations for Sh-xGex alloys. The
computational efficiency of the tight-binding method over the other methods, such as those based
on the density-functional theory, derives from an empirical parametrization of the single-electron
Hamiltonian. Incorporation of the nonorthogonality of the orbitals allows better description of
the structural properties compared to the orthogonal tight-binding approximation [1J. In the
present study we report an approach proposed by Menon and Subbaswamy [2-8], and we modify
their TB parametrization of silicon and germanium with paying attention to the position of the
lowest conduction band. Using these parameters we perform TBMD simulations to investigate
minimum-energy structures and mechanical properties of Sh-xGex alloys with various values of
x.

This paper is organized as follows. In Sec. 2, we describe the basic methodology used in the
present study. In Sec. 3, we obtain relaxed structures and their characters of SiI-xGex alloys
using the TBMD method. We then calculate elastic constants as a function of Ge content x.
Finally, conclusions are given in Sec. 4.
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2 METHODS

2.1 Nonorthogonal Tight-Binding Hamiltonian

Given the basic formulation of the TB method in Appendix A, we begin with matrix elements
of a hypothetical orthogonal tight-binding Hamiltonian:

(1)

where V>.>.'", is the matrix element for orbitals of type Aand A' (s or p in the present case), JL is
the type of overlap configuration (0" or 71"), and do is the bond length at an equilibrium volume.

In the extended Huckel theory [9], the relationship between the parameters characterizing
the elements of the overlap matrix, T>.>.,,,,, and the elements of an orthogonal Hamiltonian V>,>,,",
is given as

K(r) is the Huckel nonorthogonal coefficient, and we take a simple expression as

K(r) = KoeO'(r-do)2.

(2)

(3)

The Hamiltonian matrix element Hfajl' (expressed in the nonorthogonal basis) is written by

(4)

where i and j are atom indices and a and f3 are orbital indices (s, Px, Py, pz). EiCtjl' is a
hypothetical orthogonal matrix element. Here, the function

T2 = Tssu(r) - 2y'3Tspu(r) - 3Tppu(r)
4

(5)

describes the overlap between two sp3 hybrids, which depends on interatomic distance implicitly
through the Tu'", terms.

The total potential energy of the system is given by the sum

Epot = E bs + Erep +Eo,

where Ebs is the sum of the one-electron energies En for the occupied states:

(n is. the band index) and Erep is given by a repulsive pair potential:

Erep = EI>p(rij),
i j>i

(6)

(7)

(8)

which accounts for the core-core repulsion and double counting of the electron-electron interaction
in Ebs. Here rij is the separation of atoms i and j. ¢(rij) is modeled to be short-ranged and
dependent exponentially on distance:

(9)
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Eo is a constant that merely shifts the zero of the energy.
In molecular-dynamics simulations, one needs to calculate the interatomic forces exerted on

each atom by
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F = _ 8Epot = _ (8EbS + 8Erep ) ,
, 8r 8r 8r

(10)

where - at:" is an electronic contribution to the atomic force calculated through the Hellmann­

Feynman theorem (Appendix B), and _a~;ep is the repulsive force between atoms given by

8Erep = -r:l~E 8Erep _ -r:l'#..E 8Erep = -r:l~E (11)
8 fJ rep, 8 - fJ rep, '8 fJ rep'

X r y r z r

2.2 Tight-Binding Parameters for Si and Ge

In Table 1, we list all the TB parameters for Si and Ge in the present study. These parameters
are obtained by modifying Menon-Subbaswamy's parameters [2-6J. The modifications are done
so that the position of the lowest conduction band, lattice constants at the equilibrium volume,
the total energy and elastic constants agree approximately with experimental data. The energy
bands of bulk crystal of Si and Ge are shown in Fig. 1. These band structures show better form
of conduction band than the original [4J, although they have larger band gap than experimental
band structures.

The bonding parameters between Si and Ge are assumed to be the average values of Si-Si
and Ge-Ge Hamiltonian matrix elements.

Table 1: Tight-binding parameters of Si and Ge.

Si Ge
CS leV] -13.55 -14.38
cp [eVJ -6.52 -6.360

V ssu [eVJ -3.20 -2.214
v spu [eVJ 2.52 2.355
vppu [eVJ 3.80 3.097
Vpp7l' reV] -1.07 -0.998
do [AJ 2.35 2.44
a [A-IJ 1.62 1.604
(j [A-2J 2.5 1.8

Ko 1.7 1.5
{3 [A-I] 8.9424 6.5956
dI [AJ 2.255 2.42'

cPo [eVJ 0.41 0.22
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Figure 1: Band structure of the diamond-structured semiconductors; (a) silicon, (b) germanium.

3 RESULTS AND DISCUSSION

3.1 Relaxed Structures of Sh-xGex
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Figure 2: Time evolution of (a) potential energy, (b) kinetic energy and (c) total energy in
the relaxation processes using TBMD method. Starting at a temperature 500 K, the system is
annealed for first 1000 MD steps. After 1000 steps, the system is quenched by removing kinetic
energy every 50 step.
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Figure 3: (a) The ball-and-stick model including 64 atoms in the unit cell together with some
atomsne~ boundary of the neighbor cell. The composition of Ge content x is 0.25. (b) The
enlarged view of a Ge atom and nearest neighbor Si atoms from (a).

We calculated the relaxed structures by minimizing the total energy of various configurations
using steepest descent method. The steepest descent calculation was performed after an annealing
process for 1000 MD steps with starting temperature at 500 K. This process is shown in Fig. 2.

Figure 3(a) shows an example of a configuration of the system with x=0.25. There are 64
atoms in the unit cell, (48 atoms of Si and 16 atoms of Ge). In the initial configuration, all atoms
are located at the diamond lattice sites with bond length 2.3725 A which is calculated by the
average between Si-Si (2.35 A) and Ge-Ge (2.44 A) bond length with ratio x of Ge-Ge.

After relaxation, bond lengths between a Ge atom and its neighboring atoms A, B, C, Din
Fig. 3(b), for example, are 2.387 A, 2.387 A, 2.382 Aand 2.386 A, respectively. In average, each
Si-Ge bond length stretches about 0.6 %, and Ge-Ge bond length stretches about 1.7 %. On the
contrary, Si-Si bond length shortens about 0.5 %. Because the bulk Si crystal is stable with bond
length 2.35 A and Ge crystal with 2.44 A, Si-Si bond length tends to shorten and Ge-Ge bond
length tends to stretch to reach for a stable configuration. In the case of Si-Ge bond length, it
stretches when Si content is more than Ge content (x < 0.5) and shortens when Si content is
less than Ge content (x > 0.5).

3.2 Elastic Properties

In this section, we discuss the mechanical properties of Sh-xGex alloys from the results on
the TB calculations of elastic constants (bulk modulus B, elastic constants Cn , C12 and C44 ).

For these calculations, we use a unit cell with only eight atoms. We have confirmed that the
results with 64 atoms cell gave essentially the same values of elastic constants. The number of
k-points sampled in these calculations is 216 on a dense, regular mesh points in the Brillouin
zone.

Figure 4 shows, the total energy as a function of strain for bulk Ge (x=1) as an example.
From these energy-strain curves, the equilibrium lattice constants and the elastic constants are
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Figure 4: Calculated total energy as a func­
tion (a) of volume ratio, (b) of strain for
tetragonal distortion, and (c) of strain for or­
thorhombic distortion for Ge.
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obtained for each configuration. We present the dependence of elastic constants upon Ge content
x in Fig. 5. We plot the averaged values calculated over various configurations at a given x ..

Figure 5 shows that the Si crystal is harder than the Ge crystal, and thealloy becomes softer as
the Ge content x increases. At each x, the moduli are calculated for several initial configurations,
and the lines in Fig. 5 are drawn on the averaged points over these configurations. We thus
obtain monotonic variation of the moduli as a functions of x.

Table 2 lists comparisons between the elastic constants obtained by the present model and
those obtained by experiments [10]. In addition, we compare our results with the experimental
data [11] and theoretical data [12] of shear modulus for Si/Ge superlattices. The comparison
shows an agreement of the monotonic dependence of the elastic constants on x. Theoretical
values of the elastic constants of Sio.5Geo.5 zinc blende alloy in Ref. [13] agree also with our
results.

We show the equilibrium lattice constant as a function of x in Fig. 6. First-principle calcula­
tions [13] and experimental data [14] on the lattice constant compare favorably with our results.
From the above comparisons of Si, Ge and Sio.5Geo.5 zinc-blende alloy and the tendency of elastic
property in the superlattice, we suppose the present TB model gives reasonable results in the
elastic properties of SiGe alloys.
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Figure 5: Dependence of elastic constants upon Ge content Xi (a) bulk modulus B, (b) Cn, (c)
C12, (d) C44. (Lines are only to guide the eye.)

Table 2: Comparison of elastic constants between the present calculation and experimental data
[10]. (Unit is GPa.)

calculation
Si Ge

experiment
Si Ge

97.5 77.7
163.0 125.2
64.7 54.0
70.0 54.8

98.8 77.2
166.0 128.5
63.9 48.3
79.6 68.0
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Figure 6: Dependence of equilibrium lattice constant upon Ge content x.

4 CONCLUSION

We have presented the tight-binding molecular dynamics method including nonorthogonality
of the atomic orbitals. We have calculated the electronic structure, equilibrium volume and
elastic properties of Sh-xGex alloys, and analyzed change of bond length and bond angles in the
relaxed configurations.

The elastic constants (B, Cn, C12 and C«) of Sil-xGex alloys decrease smoothly from Si
(x=O) to Ge (x=l) with the increase of Ge content x. These results are compared favorably with
other works.

The TBMD study on elastic properties and electronic structures of SiGe superlattices is in
progress.
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Appendix A. Tight-Binding Method

In tight-binding method, the wave function'¢nk(r) of valence electrons is approximated by
superposition of atomic-like localized orbitals function 4>~(r):

(12)

(13)

where lti is a position vector of ith atom, a is an orbital index, k is a wave number and n is a
band index. The function 4>~(r) is represented by Bloch's summation of a wave function c,oio:(r)
of the orbital a in one atom:

4>~(r -lti) = ~~eik'(Ro+L)c,oio:(r -lti - L),

where N is the number of the unit cell in the system and L represents the translational vector.
From Eq. (12), (13) and Schrodinger equation

(14)

the following equation is obtained:

~(J4>f(r - Rj)H4>~(r -lti)d3r)cio: = Enk~cio:J4>f(r - Rj)4>~(r -lti)d3r. (15)
,0: ,0:

In Eq. (15), orthogonal matrix element Ho:/3 and nonorthogonal matrix element So:/3 are defined
respectively by

H:/3(lti - Rj) - J4>f(r - Rj)H4>~(r - Ri)d3r

= I:eik.(R,:....R;-L) Jc,oj/3*(r - Rj)Hc,oio:(r -lti - L)d3r, (16)
L

S:/3(lti- R j) = J4>k/3*(r-Rj)4>kO:(r-lti)d3r

= I:eik.(R,-R;-L) Jc,oj/3*(r - Rj)c,oio:(r -lti - L)d3r. (17)
L

Here, orbitals on the same atom are assumed to be orthogonal to one another, but orbitals on
different atoms are not necessarily orthogonal.

Thus these equations are reduced to the generalized eigenvalue problem:

(18)

where H is an orthogonal Hamiltonian matrix, S is a nonorthogonal overlap matrix, En is an
eigenvalue and en is an eigenvector.

Using Slater-Koster formulation [15], the orthogonal energy elements between each orbitals
(s-s, S-Pk, Pk-S, Pk-Pk, Pk-Pk' , k and k' = x, y, z) are obtained as follows:

(19)

(20)

(21)
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Epocpoc(r) = Vppu(r) (~r + Vpp7r(r) {1- (;)2},
Ep'llp'll = (x ++ V), Ep"p" = (x ++ z),

xy xy
Epocp'll(r) = Vppu(r)-- - Vpp7r(r)--,

rr rr
Ep'llp" = (x H y, Y ++ z), Ep"poc = (x ++ z, Y ++ x).

The Hamiltonian matrix H is written by

(22)

(23)
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(24)Hk "iko(r-L)E (1 1 rp 2)
iOl.j{3 = ~e iOl.j{3 + K -.L2 •

L

The nonorthogonal energy elements TiOl.j{3 are also obtained. by replacing V>,>,/~(r) with T>,>,/~(r)

in the above formulae. The overlap matrix S is written by

S~j{3 = 2: eiko
(r-L)TiOl.j{3.

L

Appendix B. The Hellmann-Feynman Theorem

(25)

We derive the Hellmann-Feynman theorem [2] for the present formulation: In matrix form
Eq. (18) becomes

where en is a column vector. Taking the Hermitian conjugate,

ent(H - EnS) = 0,

where H and S are Hermitian. Differentiating Eq. (26) with respect to r, we obtain

Multiplying on the left with ent and using Eq. (27), we have

From these equations we finally obtain

The en is normalized so that

It is thus necessary to have analytical form of Wand !ff!. From Eq. (1), we have

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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From Eq. (19)""'(23), a~':j,B is given by

8Ess(r)
8x

8Esp",(r)
8x

8Esp'll(r)
8x

8Ep",p",(r)
8x

8Ep'IIP'II(r)
8x

8Epz;pz;(r)
8x

8Ep",p'll(r)
8x

8Epz;p",(r)
8x

8Ep'llpz;(r)
8x

= 8Vssu(r) (33)
8x

= 8Vspu(r) x + Vspu(r) (~ _ x
2

) , (34)
8x r r r3

8Vspu(r) Y TT ()xy aEspz;(r) _ ( ) (35)
- 8 - Vspu r 3' a - y f-+ Z ,x r r x

aVppu(r) x
2

aVpp1I"(r) (1 _x
2

) (V. () _ V. ())2x(r
2

- x
2
) (36)

= a 2+ a 2 + ppu r
pp1I"r 4 'X r x r r

aVppu(r) y2 + aVpp1I"(r) (1 _y2) _ (If, u(r) _ v.: (r))2xy2 ,- ax r2 ax r 2 PP pp7r r 4

(yf-+Z), (37)

= (8V~:(r) _ aV~(r)) ~~ + (Vppu(r) _ Vpp1I"(r)) (1- 2r~2) ~,

- (y f-+ z), (38)

(
aVppu(r) _ aVpp1I"(r)) yz _ (V. (r) _ v.: (r))2xyz. (39)- ax 8x r 2 ppu 'J1P7f r4

From Eq. (2), we obtain

81'>">"'J.£(r) = 2 {I aV>'>"J.£(r) + V>,>,, (r)~ (_1_)} ,
ax e>. + e>., K(r) ax J.£ ax K(r)

where

a ( 1 ) x 1
ax K(r) = -2u(r - do)-;:- K(r) .

From Eq. (24), the derivative of H can be calculated as

(40)

(41)

aHfaj{3
-

ax

~eiko(r-L}{ ( a~;j{3 + ikxEiO:;(3) (1 + K~r) - T2 2) + EiO:;{3 :x (1 + K~r) - T22) },

(42)

where

!- (1 + _1__ T22) = ~ (_1_) _T2 (aTssu(r) _ 2v'38Tspu(r) _ 3aTppu(r)) .
8x K(r) ax K(r). 2 ax ax ax (43)

And from Eq. (25), ~ can be calculated as

8Sfa;{3 _ ~ iko(r-L} (aTi O:j {3 + Ok 'P, , )

8 - L..J e a 2 x.LlO:J{3 .
x L x

(44)
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Appendix C. Elastic Constants

The elastic constants Cij can be calculated from the Taylor expansion of the total energy of
the system, E(V; c), with respect to a small strain c of the lattice (V is the volume of the system)
[16][17]. The Taylor expansion of the total energy at an equilibrium volume, 110, can be written
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as

(45)

where O[cr] indicates that the neglected terms in the polynomial expansion are third and a higher
order of ci. There are 21 independent elastic constants Cij in Eq. (45). Symmetry reduces this
number to three (Cn , 012 and C44) for the cubic lattices.

The TBMD method is employed to determine E (V, c) for various strains. The elastic con­
stants are then obtained from the curvatures of the total energy-strain curves. Bulk modulus is
obtained by

(46)

In this case, the strain matrix elements are cxx = Cyy. = czz and cyz = czx = Cxy = O. Calculated
total energy as a fllllction of volume ratio V/l1o is shown in Fig. 4(a) for Ge (content x is 1) as
an example. Next in the case of Cn , the energy function of cxx is plotted in Fig. 4(b). Here the
strain matrix elements are cyy = €zz = cyz = czx = cxy = O. Pure-shear modulus C44 is obtained
from the energy curve as a function of czx shown in Fig. 4(c). Here the strain matrix elements

are cxx = cyy = czz = Cyz = cxy = O.
For cubic systems, the bulk modulus B is related to the elastic constants by

B = Cn + 2C12 .

3

In the present study we obtain C12 from Eq. (47) by calculating B and Cn.

(47)




