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Mutation is one of the important opera,tors in genetic algorithm. In traditional genetic
algorithm, mutation is activated stochastically. In this way it is unknown and cannot be
controlled for which individuals to be mutated. Therefore, it is unavoidable that some good
individuals are destroyed by mutation and then the evolutionary efficiency of the genetic
algorithm is dampened. Owing to this kind of destructivity of mutation, the operator of
mutation has to be limited within a very small probability, and the potentiality of mutation
is consequently limited. In this paper, we present an evolutionary chain-based mutation and a
control strategy of reasonable competition, in which the heuristic information provided by the
evaluation function is well utilized. This method avoids the blindness of stochastic mutation.
The performance improved in this method is shown by two examples, a fuzzy modeling for the
identification of a nonlinear function and a typical combinatorial optimization problem-the
traveling salesman problem.

1 INTRODUCTION

Widely used in a number of applications to find optima in very large search spaces[l,2,3,4,5], genetic algorithms
were first developed by Holland in 1975(6) as an attractive class of heuristic computation models inspired by the
Darwinian natural evolutionary theory. They simulate the evolution of natural populations according to the prin­
ciples of natural selection and "survival of the fittest", encode a potential solution to a specific problem on a
simple chromosome-like data structure and apply recombination operators to these structures so as to preserve
critical information. An implementation of a genetic algorithm begins with a population of (typically random)
chromosomes, evaluates these structures and allocates reproductive opportunities in such a way that those chro­
mosomes which represent better solutions to the target problem are given more chances to "reproduce" than those
chromosomes which are poorer solutions. A canonical genetic algorithm[7] (CGA) can be expressed. as follows:

Step 1. Initialization: generate initial population P of binary coded individuals at random, and set N := IPI
(the size of P);

Step 2. Evaluation: evaluate all individuals in P using fitness function, and let a temporary population pI := <p

(an empty set);

Step 3. Reproduction: copy individuals several times from P and generate a parent set Sp with the probability
which is proportional to the fitness by using a roulette wheel;

Step 4. Crossover: pick up two individuals from Sp according to a crossover probability Pc, mate the two par­
ents with one-point crossover, two-point crossover, or uniform crossover to form two offsprings, insert the
offsprings into pl,and repeat step 4 until all p~ents in Sp are picked up;
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Step 5. Mutation: alter each bit of offsprings in pi with a mutation probability Pm, then go to step 2 until the
termination criterion holds.

As genetic algorithms are typically concerned with solving complex optimization problems, the problem of genetic
algorithm's evolutionary efficiency has been attracting the attention of genetic algorithm community[81. Mutation,
as one of the main operators in genetic algorithms, is responsible for re-introducing inadvertently "lost" gene
values (alleles), providing some new starts for search, and preventing premature convergence of the algorithms.
It is an operator not to be ignored and a far more profound operator than has ever been recognized[91. However,
in traditional genetic algorithm, mutation is activated stochastically. In this way it is unknown and cannot be
controlled for which individuals in a population to be mutated, so it is unavoidable that some good individuals, i.
e. the individuals that are promising to generate good offsprings, are destroyed by the mutation operator and then
the evolutionary efficiency of the genetic algorithm is dampened. Owing to this kind of destructivity of mutation,
the operator of mutation has to be limited within a very small probability, and thepotentiality of mutation is
consequently limited. .

Moreover, as the evaluation function is the link between the genetic algorithm and the problem to be solved,
the evaluation function provides the heuristic information for evolutionary search. Therefore, how to use this kind
of heuristic information (in the present and past) is influential in the efficiency of evolutionary search.

In section 2 an evolutionary chain-based mutation is described, in which the heuristic information provided by
the evaluation function is well utilized for mutation, and the blindness of stochastic mutation and the disruptive
problem of mutation are avoided. In section 3, a control strategy of reasonable competition is proposed, which
brings the effects of crossover and mutation into full play. The genetic algorithm with this method is described
in section 4. In section 5, the improvement of evolutionary efficiency through of this method is shown by two
examples, a fuzzy modeling for the identification of a nonlinear function and a typical combinatorial optimization
problem-the traveling salesman problem.

2. EVOLUTIONARY CHAIN-BASED MUTATION

The evaluation function plays the same role in genetic algorithm that the environment plays in the natural
evolution. The evaluation function provides the heuristic information for evolutionary search, and how to use this
kind of heuristic information (present and past) is influential in the efficiency of evolutionary search. In genetic
algorithm, mutation is applied to each child of the current population after crossover. It randomly alters each
gene with a small probability. It results in some individuals being changed and some individuals keeping the same.
The operation is in effect equivalent to

1) determining some individuals from the current population with a new probability, and then
2) altering randomly some genes of each individual determined in 1).
We consider that the key of avoiding disruptive problem of mutation is how to determine the individuals to be

mutated. If we have a method of only mutating the unpromising (to generate good offsprings) individuals, then
the disruptive problem of mutation can be avoided.

One basis for predicting the future is to examine the past. Here we present a method of evolutionary chain­
based mutation, which utilizes the evaluation values on the evolutionary chain of an individual, as the heuristic
information, to examine the past and predict the future of the individual.

First let us define some terms. An individual is referred to as "the first generation individual", if it is in
the initial population or it is just generated by mutation. An individual x is referred to as an individual z's
"representative parent" or "father", if z is generated by crossing x over another individual y and x is better than
y, or if z is a copy of x from the last population, and the link from z to x is referred to as z's "father pointer".
An individual is referred to as "the i-th generation individual", if its father is the (i -1)-th generation individual,
where i > 1. An evolutionary chain of x is a link of x with the father pointer from x to the first generation
individual.

Evolutionary chain-based mutation means. determining an individual to be mutated according to the evolu­
tionary rate of its own evolutionary chain, which is described as follows:

Let x an m-th generation individual, M and IS are an integer and a real number, respectively. If m > M
and the following inequality holds, then x is considered unpromising to generate good offsprings, and it is to be
mutated.

(1)
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where f(Xi) is the evaluation of Xi, x-i is X-(i_l)'S father, Xo is X, M and c are constants depending on the problems
in hand.

The evolutionary chain of a promising individual is called a well evolving chain, and the one of an unpromising
individual is called a badly evolving chain. Figures 1 and 2 give some curves of well and badly evolving chains
respectively. In the above method, a promising individual's schema is preserved not to be destroyed. Contrarily,
an unpromising incl.ividual is mutated to generate a new start for search.

evaluation

generation

Fig.! Well evolving chains

evaluation

generation

Fig.2 Badly evolving chains

3 CONTROL STRATEGY OF REASONABLE COMPETITION

Crossover and mutation are two main operations in genetic algorithm. Crossover has the property of searching
in local areas. With the reiteration of crossover, some locally optimal solutions are found. Mutation provides some
new starts for the search. In traditional genetic algorithm, mutated individuals in every iteration are immediately
inserted into the current population. We think that too high frequency of inserting mutated individuals, as new
starts, may disturb the crossover to search locally optimal solutions. On the other hand, if a mutated individual is
immediately inserted into the current population, it may be soon eliminated in competition with the individuals
which have evolved for many generations. We know a new and transiently weak individual may be a promising
individual, and an old and transiently strong individual may not be a really promising individual.

In order to bring the effects of crossover and mutation into full play, we-propose a control strategy of reasonable
competition - competing only among the individuals which have the same length of evolutionary chain:

1) The mutated individuals are not immediately inserted into the current population P, but are inserted into
a set Sm, so that the crossover cannot be disturbed too frequently by mutation.

2) The competition (selection, and elimination) is independently done in· P or in Sm, where the lengths of
evolutionary chains of individuals in P are the same, and so are the ones in Sm'

3) The individuals in Sm are inserted in P only when they have evolved to the same generation as the ones in
P and they are promising by inequality (1).

For details, see the algorithm in the next section.

4 THE GENETIC ALGORITHM WITH EVOLUTIONARY
CHAIN-BASED MUTATION

According to the discussion in the last section we give the genetic algorithm with evolutionary chain-based
mutation (ECMGA) as follows:
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( Start Pr( S,n) )
l

Evaluation:
Evaluate everyone in S which
has not been evaluated;

Selection of parents:
Sp= 0;
pick up the excellent ones
from S, and put them into
the parent set Sp;

Crossover:
Sc= 0;
Pair couples in Sp, exchange
some genes of each couple and
put the children in Sc;

Evaluation:
Evaluate every one in Sc;

Elimination:
pick up the n best individuals
from Su Sc and make them a new
population S;

( Return(S)

No

No

Do procedure Pr (Sm' N);

when j>M delete unpromising
individuals fromS m ;
j=j+l;

No

E ~m~nat~on:

pick up the N best individuals

No

Do procedure Pr(P, N);
i=i+l;

from Pu Sm and make them a new
population P;
Sm=0;

Initialization:
Let P an initial population;
N=IPI(the size of p);
Sm= 0(a set of muted membes) ;
i=l(the order of generation);

Mutat~on:

change some genes of each un­
promising individual randomly,
and put the new one into Sm;

(a) The main flowchart of ECMGA (b) The procedure of no-mutation
Fig.3 The flowchart of ECMGA
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Step 1. Let P an initial population, 8m := <p a set for inserting mutated individuals, N := IPI the size of P, and
i := 1;

Step 2. Do no-mutation evolution (just selection, crossover and elimination) in P; set i := i + 1; when i > M,
mutate the unpromising individuals and insert them into 8m ;

Step 3. Do step 2 until the size of 8m : 18m l ~ N; set j := 1;

Step 4. Do no-mutation evolution in 8m ; set j := j + 1; when j > M, delete the unpromising individuals from
8m ;

Step 5. Do step 4 until j = i or 8m = <p; then pick up the N best individuals from P U8m and make them a new
population P;

Step 6. set 8m := <p and go to step 2 unless the end condition is satisfied.

The flowchart of this algorithm is shown in Fig.3.

5 EXAMPLES

In this section, we illustrate the evolutionary efficiencies of ECMGA with the following two examples:
1) Nonlinear system identification with genetic algorithm and fuzzy modeling.
2) A typical combinatorial optimization problem-the traveling salesman problem (TSP).

5.1 Identification of Nonlinear Systems

The techniques of nonlinear system identification are applied in many fields in order to predict the behaviors
of unknown systems given input-output data. The problem of nonlinear system identification is defined formally
in the following way.

Assume that the single valued output y, of an unknown system, behaves as a function of n input values, i.e.

(3)

INPUT OUTPUT
Xl(1) x2(1) ... xn(1) y(l)
xl(2) x2(2) ... xn(2) y(2)

... . ..
xl(K) x2(K) ... -xn(K) y(K)

(2) Table 1 The input and output of a nonlinear system

fi =j(x)

y=f(x)

where X=(XI,X2"",Xn) isa n-dimensional real
vector and f (x) is an unknown nonlinearfunction.
Given K observations of these input-output data
pairs (see Table 1), the system identification task
is to approximate the true function f with j.

Once this approximate function j has been estimated, a predicted output fi can be found for any input vector
x = (Xl, X2,'" ,xn), i.e.

This j is called the "complete form" of].
In our previous work, we proposed a method of fuzzy modeling by genetic algorithm with tree-structured

individuals, called FMGA, to identify nonlinear systems1101• The idea of this method is briefly as follows:
In order to identify a nonlinear system with the form (1), we do a fuzzy partition of the input area. For

example, a partition of 3-dimensional input is shown in FigA. The area near the boundaries are "fuzzy area". For
each fuzzy partition we can get a fuzzy model consisting of some fuzzy rules with the following form:

(4)

to estimate the output y ofthe system, where Ai E {~mall, large, arbitrary} is a fuzzy linguistic value (1 :s; i :s; n),
and the rules are mixed by using the membership functions. Suppose that we are to cope with the statement "Xj

is small", and the current domain for Xj is [P, q]. Then we give the membership function for "small" and "large"
as
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ifXj ::;'p+(q-p)/4
if p + (q - p)/4 ::;. Xj ::;. p + 3(q - p)/4
otherwise

(5)

Al (x·) - { ~x. _.ltlLarge 1 - i-P 1 2(q-p)

respectively. They are shown in Fig.5.

if Xj ::;. p + (q - p)/4
ifp+(q-p)/4::;' Xj ::;.p+3(q-p)/4
otherwise

(6)

F

Population initialization

q x·
J

large

3p+q p+q p+3q
-4- -2- --4-

p

small

Fig.4 A fuzzy partition

o

1

0.5

Fig.5 Fuzzy functions "small" and "large" Fig.6 The flowchart of FMGA
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In [10], the methods of how to get a fuzzy model from a fuzzy partition and how to get an output from a fuzzy
model are provided. The mechanism of genetic algorithm is used to generate and evolve fuzzy partitions. The
flowchart of the genetic algorithm FMGA used in[10] is shown in Fig.6.

Now we replace the genetic algorithm in FMGA with ECMGA described in the last section, we call this method
FMECMGA, and compare the evolutionary effects of the two methods, FMGA and FMECMGA. Let us take a
nonlinear function:

(7)

and randomly generated 200 sets of data {(x1(k), x2(k))lk = 1,2"", 200} in the input area. Then the evaluation
function on fuzzy partition P is defined as

g(p) = (?; (y(k) _ Y(k'P))2)-1 (8)

where y(k) and y(k,p) are respectively the output values offunction (7) and the fuzzy model corresponding to p.
Figure 7 shows the evaluations of best partitions in each generation by FMGA and FMECMGA. Table 2 shows

the parameters and results of FMGA and FMECMGA.

Table 2 Parameters and results
FMGA FMECMGA

population size 50 50
Pc 0.8 0.8
Pm 0.01
M 10
£ 0.2
generations 100 100
best evaluation 15.87 50.69

where Pc and Pm are respectively the proba­
bilities of crossover and mutation, M and £

are the parameters in inequality (1). The ini­
tial populations of FMGA and FMECMGA
were the same. 100 generations were gener­
ated both by FMGA and FMECMGA.

50
FMECMGA

10 20 30 40 50 60 70 80 90 100

generation

Fig.7 Comparison of FMECMGA to FMGA

The evaluation of best partition of FMGA was 15.69, which appeared at the 34th generation, and it seemed no
possibility to get a better partition. The evaluation of best partition of FMECMGA was 50.87, which appeared at
the 92th generation, and after the 18th generation, the evaluations of best partitions of FMECMGA were larger
than 15.69. In order to compare FMECMGA with FMGA, here the "generation" of FMECMGA means the time
of a no-mutation evolution having been done (see the algorithm described in the last section).

5.2 Traveling Salesman Problem

Let G = (V, E) be a complete graph with weights on the edges. A Hamiltonian cycle of G is a cycle that
visits each vertex of the graph exactly once. The traveling salesman problem (TSP) is the problem of finding a
Hamiltonian cycle with minimum weight. A Hamiltonian cycle, for an 8-city example of the TSP is illustrated in
Fig.8. The TSP is a typical NP-complete problem, easy to state, difficult to solve.

There are many studies on the encoding and crossover for the TSP (see [11]-[18]). In this paper we take the
methods proposed by Yamamura et al. for encoding and crossover (see [15]). The method can be briefly expressed
as follows.

1) encoding method:
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G

c

1 234 561 8
A D B E H F G C

A cycle is represented as the sequence of cities, i.e.,
the i-th alphabet represents the city which will be visited
on the i-th position in the order. For example, the cycle
in Fig.8 is represented as follows:

2) crossover method:
For an n-city problem, find two subpaths which contain
the same cities, and lengths are greater than 1 and less B
than (n - 1) from a pair of parent cycles, then exchange

b h ch'ld D 1 Fig.8 8-city example of TSP and a cyclethese two su pat s to get two 1 reno ror examp e,
suppose that two parent cycles PI and P2 are.
PI: ( A B QlLE. F G H ) P2: ( A G 12..E....Q F B H )
We can find that two subpaths QlLE. and 12..E....Q of PI and P2 respectively contain the same cities, exchange

these two subpaths, and get two children:
01 : ( A B 12..E....Q F G H ) O2 : ( A G QlLE. F B H )
Such a pair of subpaths are referred to as a pair of inheritable genes for the pair of parents. A pair of parents

may have many such genes. For example, the above pair of parents PI and P2 have the inheritable genes as follows:
PI'S: (A H ) ( DE) ( H A B ) ( G H A ) ( C DE) ( BAH G ) ( C D E F )

( BCD E F ) (CD E F G ) ( F G H A B ) ( BCD E FG ) ( F G H ABC)
P2 's: (A H ) ( DE) ( B H A ) ( G A H ) ( DEC ) ( G A H B ) ( DEC F )

(DECFB)(GDECF)(FBHAG)(GDECFB)(CFBHAG)
and the reverse of them are also the inheritable ones.
The methods of encoding and crossover have the following advantages as expressed in (15):
1. the completeness of encoding;
2. the soundness of encoding;
3. the non-redundancy of encoding;

·4. the character preservation of crossover.
We applied ECMGA to 100-city, 200-city, 300-city, 400-city, and 500-city problems. The cities were generated

in the area 0 ~ x, y ~ 1 uniformly at random. The sizes of populations were 100, 100, 100, 150, and 200
respectively. The parameters M and e in inequality (1) were M = 10,e = (maxdistance - mindistance)/2M,
where maxdistance = max{distance(i,j)ll ~ i,j ~ n}, mindistance = min{distance(i,j)ll ~ i,j ~ n,i =F il,
i and j represented the cities, and n was the number of cities. The best cycles for these problems are shown in
Figs 9-13. They were obtained at the 894-th, 2154-th, 1l050-th, 7585-th, and 6946-th loops respectively, and the
distances of these cycles were 8.27, 11.37, 14.67, 16.79, and 19.09 respectively.

CGA (see section 1) seems no ability to solve the problem when the number of cities is large. Figure 14 gives
the best result of CGA for the 100-city problem. It was got at the 2084-th loop, and the shortest distance is
31.9144. The probabilities of crossover and mutation in CGA here were 0.8 and 0.001 respectively. The algorithm
was run for 2584 loops in total. Figure 15 is the comparison of ECMGA to CGA on the evolution efficiency of
the 100-city problem.

0.5 0.6 0.7 0.8 0.9

Fig.9 The best cycle by ECMGA for the TSP with
100 cities

Fig.10 The best cycle by ECMGA for the TSP
with 200 cities
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Fig.ll The best cycle by ECMGA for the TSP
with 300 cities

Fig.13 The best cycle by ECMGA for the TSP
with 500 cities

Fig.12 The best cycle by ECMGA for the TSP
with 400 cities

Fig.14 The best cycle CGA for the TSP with
100 cities

SOr-----,----r----.,.---,-----r-----,

6 CONCLUSION
45

The genetic algorithm with evolutionary chain-based
mutation is proposed, in which the importance of heuris­
tie information provided by the evaluation function is
emphasized. In this way the blindness of stochastic mu­
tation is avoided. It becomes possible that the evolu­
tionary process can be controlled under human's intelli­
gence, knowledge and strategy, such as the control rules
like inequality (1) in section 2. Two examples, nonlinear
system identification problem and the traveling sales­
man problem, are given to show the good performance
of this method.

30

25

ECMGA

50'----5...LOO---,00'--0---'--'-50-0---2ooo-'---2--'50-0---,-,'3000

loop

Fig.1S The evolutions of ECMGA and CGA for
the TSP with 100 cities
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