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The loading and residual stresses meilsured by using X-ray stress measurment
depend on diffraction plane. In order to make clear its cause, the several
models on elastic and plastic deformations are developed and the theoretical
values are compared with measured ones. It was found that the dependencies
of measured stress on the diffraction plane can be explaned by accepting
Reuss's model for elastic deformation and Taylor's model for plastic defor­
mation.

§ 1. Introduction

It is well known that the measurment of
stress in polycrystalline metals by using X-ray
is a unique and effective method of nonde­
structive stress measurment in both micro and
macro region. So it is applied in wide fields
of material engineering studies.

The stress measured by its method, however,
depends on the kind of diffraction planeD. In
this connection, there are some problems
regarding the character of X-ray stress measur­
ment, for example, the generation of the lattice
strain obtained from the peak shift of certain
diffraction line is closely related to the crystal
grain size, the deformation mechanism, the
crystal anisotropy and other complicated
facter2).

In generally, the stresses are calculated from
the change of lattice spacing by Hook's law as
follow;

This equation can be developed with follow­
ing two assumptions, that is, each crystal in
polycrystalline metal is isotropy, and polycrystal­
line metal is homogeneous. However, it is
well known that the all kinds of crystals are
elastic and plastic unisotropic bodies3 ), It
seems that the strain measured on certain
plane of certain oriented grain is affected by
anisotropy.

In this paper, it is the purpose to discuss
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about the causes of the dependency of stress
on the diffraction plane, and the mechanisms
of elastic and plastic deformations.

§ 2. Experhnentals

The chemical compositions and the mechani­
cal properties in annealed state of the metals
used as specimens are tabled in table 1.

Table I Chemical compositions and mechanical
properties of Carbon steel, Aluminum

and Copper.

Chemical compositions

C Si Mn P S

Carbon steel 0.12 0.30 0.76 0.02 0.01

Cu Si Fe Mg Zn

Aluminum 0.11 0.12 0.55 Tr Tr

Fe Sb As Bi S

Copper 0.03 0.03 0.02 0.02 0.03

Mechanical properties

lr,O.2) lrc Elongation HRB

(kg/mm2) (kg/mm2) (%)

Carbon steel 27.0 41.5 32

Aluminum 5.6 10.3 35.0 28

Copper 6.0 31.5 42.0 32

.. 1'2.8-3.0 5.5'
/:]

Fig. I The shape of specimen
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o-x, Y, Z as 1711, 1722, t7aa, '23, ,al and '12 reo
spectively, the stress components in equations
(1) are expressed as ;

Mter being machined to the shape as shown
in Fig. 1, the specimens were polished by emery
paper, and fully annealed in a vacuum at 620
°e for 2hr. (carbon steel), 300 0 e for 2hr.
(aluminum) and 400 0 e for 2hr. (copper).

The specimens were loaded by using a tensile
testing machine which was furnished with X-ray
stress measurement and the lattice strains were
measued directly. The details of equipment
are same as those previously repoted. 4) The
conditions of X-ray diffraction are shown in
table 2.

O'x=:E:E 1i1jO'ij
O'y=:E:E mimjO'ij
O'.=:E:E ninpii
'yz=:E:E minjO'ij
'zx=:E:E n;lPij
'xy= :E:E 1imjO'ij

i,j=1,2,3

(2)

Table 2 Conditions of X-ray diffraction technique The normal stress in the diffraction plane are:

Target

Divergence angle

Radiation area

Tube voltage

Tube current

Full scale

Time constant

Goniometer speed

Chart speep

Cu, Co, Cr and Fe

0.25 degree

2X5 mm2

30 KV

10 rnA

200 cps

10 sec

1/4 deg/min

20 mm/min

eD = a2ex+ b2
Ey+C2

Ez+ bcryZ +carzx+ abrxy
(3)

Substituting equations (1) and (2) into equation
(3), eD are rearranged as ;

3 3 1
ED =:E :E(Sll-S12 --2S44) M i/Tij+S12(O'll

i-Ij-I

§ 3. The Lattice Strain and Stress on X­
ray Stress MeasurIllent

In a grain in the specimen, let the co-ordi­
nate O.x, y, z be in crystal axis and let Z
direction (h rna na), D direction (a b c), Y
direction 02 m2 n2) and X direction 01 ml nl)
be respectively in normal of specimen surface,
in normal of diffraction plane, intersection of
the specimen surface and the diffraction plane
and in direction perpendicular Y and Z (when
D and Z are parallel direction, Y is any di­
rection on the surface).

In the cubic lattice, Hook's low is expressed
in completely terms as a linear relationship
between the six strain components and six
stress components, as5!;

(5)

ex =SllO'x +S12(O'Y +O'z)
ey=SllO'Y +SllO'z+ O'x)
eZ=SllO'Z +SllO'x+ O'y)
rYZ=S44 Tv.

rZX=S44 'zx
rxy=S44 'xy

(1)

+ '13 cos cp sin cp)

(4)

where ({J is an angle between D and Z di.
rection. When the specimen is rolling sheat, the
Z direction is parallel to normal of rolling
plane, and let R direction (to mo no) be in rolling
direction. The [0, mo and no are expressed
as;

10 =[1 cos (1+12sin (1
mo= m1 cos (1 +m2sin(1
no = ni cos (1 +n2sin (1

where {j is an angle between T and X di­
rection.

Let p be the volume fraction of crystals
whose orientation indicated by (to mo no) and
(ta ma na) are parallel to rolling direction and
nolmal direction of the rolling plane respective­
ly. In the metal deformed by the another
working, p can be determined by same way.

The lattice strain measured by using X-ray
stress measurment is ;

where Sl1, SI2 and S44 are the elastic com­
pliances. Describing the stress components t7x,

t7y, t7z, 'YZ, ,zx and 'Xy in the co-ordinate
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+ S12(0'11 + 0'22 + 0'33) + ~ S4i0'11 cos2If'

+ 0'33 sin21f' + 0'13 COS If' sin If') }

- 3 3 1-­
eD=:E :E (Sll-Sj2--2SH)Mij O'ij

i_Ij_l

- - - 1 -
+S12(O'll +0'22+0'33) + yS44 (0'11 sin21f'

(6)

where a is an angle between Y direction and
certen fixed direction on diffraction plane.
And the dispersion of strain measured from
broadening on the X-ray diffraction line is as
follow;

+~3 cos2If' +;;:3 cos If' sin If')

3 3 1-
(J2(e D) = ~t-t (Sll-SI2-yS44) (Mi}

where

(10)

(11)

where eij are strain components in each grain.
Using the coordinate in equations (1), the
stress components are expressed as ;

(2) The Uniform Local Strains (Voigt's and
Nagashima's Model)7,8! .

Voigt's model can be described corresponded
with Reuss's model as follow;

(12)}eij=eij=eijb

O'ij=O'i/

(7)

(J2(e D) = ~:1t{E~ (Sl1-S12-{s44)MilTij

+Sj2(O'l1 +0'22+0'33) + ~ S44(0'11 CoS21f'

+ 0'33 sin21f' + 0'13 COs If' sin If')

It appears in equations (6) and (7) that the
relationship between aij and orientation and
the value of p must be know to obtaine the
average stresses or loading stresses by X-ray
stress measurment. And p can be determined
by the measuring texture, but the relationship
between aij and orientation is still not clear in
spite of many works. Therefore following
models are discussed.

§ 3.1. The Models of Elastic Defor­
Jtlation

where aij are stresses in a grain, ;;j and ~ are
average stresses and strains and oil and ei/
are loading stresses and strains in bulk. Substi-

tuting Oij in to equations (6) and (7), ~ and
a2(eD) are as ;

O'ij = t t {(CIl - C12 - 2C44)Mijkl +CI2BijB,,1
k~l!~1

+ C44(Bik B j! +BaBjk )}ekl (13)

where

M ijk! = lJl"ll + mimjmkml+ ninjnknl

Bij = lJj + mimj + ninj

eij =ei(i=j)

= ; r ij (i~j)

From equation (13), the average stresses are
calculated as follow;

(8)

(9)

(1) The Uniform Local Stress (Rruss's
Model)6!

The model of uniform local stress is an assu­
mption which means that the stresses in each
grain equal to loading stresses and the strains
in each grain differ each other but its aver­
age values are equal to strains in bulk. They
can be described as follow;
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Fig.2 Theoretical results of ED/U versus sin2~ in copper.

where i3 is the observedinte­
gral line breadth, 81 is the
instrumental integral line
breadth, .J. is X-ray wave­
length, 0 is Bragg angle, 1J is
the size of particle and e is
the local strain. In the
elastic deformation, since
1J does not change, eq. (16)

Fig. 2 shows the lattice strain in a unit of
stress (eD/a) which calculated by Reuss's and
Voigt's models. For Reuss's model, e-;/(7 and
sin2qJ are linear relationship in full range, but
for uniform local strain model, the deviation
liner relationship is considerable at small
range of sin2qJ. Fig. 3 shows also ;;/(7 calcu­
lated by Reuss's model in the specimen being
no texture and very strong (100)-[100J texture.
I t is clear in fig. 3 that eD/a and sin2qJ are
linear relationship for no texture but not for
texture without (100) and (111) diffraction
plane. The (100) and (111) diffraction planes
are not generally affected by textures. In
order to consider experimentaly the models of

elastic deformation, there­
fore, the using (100) and
(111 ) diffraction planes is a
favorable method. Fig. 4
shows measuring value in
annealed copper, and these
results mean that the mecha­
nism of elastic deformation
is very close on Reuss's
model.

The brodening of X-ray
diffraction lines is expressed
by Hall 11) ;

(icos(J =~+ 2e sin (J
J. 7J J.

+(i1cos(J (16)
J.

and other components are same with equations
(II) and (12). In this case, the stress and strain
components are also calculated by substituting
the solutions of equations (14) and (15) into
equation (13).

Fig.2 and table 3 show some examples of
;; and 02 (eD) in surface layers.

§ 3.2. The experimental results of
elastic deformation

0.6 0.7

(15)}

constant stress
canstantstrain

Q2 0.3 0.4 Q5

Sin"<P
0.1

Is ~ ~M ijkl Pdads

trPdads

o

8

10

M ijkl =

11'33 = 11'13 = 11'23 = 0

e33=e~3' eI3=e~3' e23=e~

-6

Of-------,::>-""s,,-.?"7-,r:------------1

~
\B- 2

'<:t

I 2Q
x

where

(Js ( ) ds is represented integral in all

combination of la, rns and na in the stereo tri­
angle.)
_Six similar equations about stress components

(7ij are contained in equations (14), and the
strain components e--;; can be obtained by
solving equation (14). Therefore the stress com­
ponents aij in each grain can be calculated by
substituting the solutions of equations (14) into
equations (13), also;; and 02 (eD) can be ob­
tained by substituting au into equations (6) and
(7).

However, in the surface layer, Voigt's model
must be modified by concidering the balance
of stresses as suggested by Nagashima et al. .

The equations (11) and (12) are rewritten as ;
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can be rewritten as

(17)e = (P - Po) cot (j

2

where So= ), 0 +S" So is
r; cos

inlegral line breadth of an­
nealed specimen. Therefore
the dispersion of strain can
be get by measuring Sand
130. Table 3 shows dispersions
of local strain which
are calculated by Reuss's
model and uniform local
strain model and measured.
This result also points out
that the mechanism of
elastic deformation is close
on Reuss's model.

Table 4 shows the elastic
constant for X-ray stress
measurment. The second
column shows the measured
equivalents of (1 +y)/E, the
third shows the values
calculated by Reuss's model
in no texture and the fouth
shows mechanical values
of (1+y)/E which use
usualy. It is appear that the
main facter of dependen­
cy of stress on diffraction
plane is the term of the
elastic unisotropy.

§ 4. The Residual Stress
in the Plastic Defor­
Illation

The residual stresses are
induced by following two
causes as fig. 5.

1) The stress in each grain
is different in loading state.
2) The change of stress in

each grain is different
during unloading process.

The latter cause induces
a little difference of stress,
because this process are e­
lastic deformation. Therefor,
the residual stress are equal
to deviation from average
stress in loading state.

0.7

0.50

(100)

0.60.5

0.25

sin
2

'"

constant stress

0.20.1o

-4

Fig. 4 Correlation of theoretical and experimental result
in copper.

-- Constant Stress

- - - - Constant Strain
o Cu Ka (400)
• FeKa(22~)-- / (III)

al " (100)

Fig.3 Theoretical results of enla versus sin2<p in copper,
solid lines; no texture, dotted line; (00)-[100J texture.
The solid and dotted lines of (100) and (11l) overlap
each other.
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Table 4 Experimental results in carbon steel,
aluminium and copper

Table 3 Calculated values and measured values
of the dispersion of lattice strain for

Aluminum and steel.

(18)

(19)

CTt

Ei

Ej
EmechEmech

Stress strain
CUrve of each
grain in surface

Stress strain Curve
(Mechanical)

bibl1'iJ = l1'ij' 11'1l 11'11

Fig. 5 Illustrating the change of stress in each
grain during the reloading.

3 3

r k = L:. L:. (liP~ +mi q~ + nirn(ljp~+ mjq~
i-I j=l

eq. (18) is rearranged as ;

where (Plk q1k rlk) and (P2k q2k rl) are the normal
direction of slip plane and slip direction
of kth slip system. Sachs1o , proposed that in
tensile deformation, there is only tensile stress,
other stress components are zero, and the
maximum "k equal critical resolved shear
stress. In order to be realized for this as­

sumption in multiaxial stress, it must be meaned
that the stress components in each grain are
proportional to applied stress components.
Therefore;

0.28

0.36

0.03
1.12

0.23

0.14

0.00
0.52

Steel
(X 1O-5mm2/kg)

0.38

0.00
1.06

0.35
0.41
0.25

0.03
0.64

0.14

0.00
0.27
0.00
0.14
0.12
0.17

0.08
0.22

Aluminum
(X lO-cmm2/kg)

100 0.00
110 0.67
111 0.00
210 0.43
211 0.22
221 0.41
310 ­
311 0.18
331 0.54

I ~~bO ~~]JI ~~]J ~I -,,0-> ."i
~ " I f3I:il'-S I:il 2: S ,,"'~ S """I:il~I:il1l,,,",-

hkl >:. iil S ~ ro S I~; S ............ 3 ......... - ............ 5-ct........... ;
I ~ Cl:S U( ';;'3'? ['?..c::'? '? ~ '? GI'? iilj'?..c::
1+ as +28 + ~8 + a+(;i,+ ~I+ a:l
1:::- 2S. :::-f3x :::-Sx 2.- I::" (,) I::. S I::' 8

~ ~

Steel

(310) 7.23 8.58 0.84 1.19
(21 I) 5.21 5.71 6.09 0.90 0.86
(220) 4.97 5.71 0.86 0.81

Al

(422) 18.90 18.45 1.02 1.01
(420) 19.35 19.50 0.99 1.02
(400) 19.45 21.30 19.85 0.92 1.03
(222) 17.89 17.50 1.02 0.95
(31 I) 19.00 19.50 0.97 1.01
(220) 18.28 18.45 0.99 0.97,

Cu \

(420) 13.80 13.95 0.98 1.28
(400) 20.35 20.88 0.97 1.93
(222) 6.40 6.50 9.30 0.98 0.59
(31 I) 14.30

I
13.95 1.02 1.33

(220) 8.05 8.50 0.95 0.79

+nJr~)l1'ii}
0"11 ",..ax

§ 4.1. The Models of Plastic DeforIuation

(1) The Model That Each Grain Deforms
Independently of Its Neighbors

The shear stress acting as a given slip system
is related to the applied stress as ;

l1'ij= {E~(liPi+miqi+nirD(lj~;+mJq~
. l1'i~

11'1~ (20)
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Therefore ED and ;:;2 (ED) are calculated by
substituting eq. (20) into eqs. (6) and (7).

(2) Uniform Local Plastic Strain9l

The strain components in plastic deformation
are expressed as follow;

The stress components are computed by finding
the combination of slip system that gives

the minimum value of ~ '!"/ dr," and satisfied
k=1

eqs. (8) and (21) under following condition.
1) in the inside of specimen

_ 1 ~ {(I pt t t)(l" k
Eij -2 k~ t 1 +mjql +njr1 jP2 +mjq2

+njrn+(IIP~ +miq~ +n,r;)(ljpi

+mjq~+njrDr k (21)

where '!"l' and dr" refer to resolved shear stress
and increment of shear strain on the kth slip
system, respectively. This energy must equal
the work done by the external stresses in
producing strains;

where m is number of slip system, r">O when
,!"k=,!"c or r"=O when '!"c > '!"", r k is shear strain
in kth slip system. Taylor 9 proposed that the
polycrystal is deformed uniformly plastic strain
in each grain. In this assumption in order to
satisfy the eq. (8) and (21), some slip system
must become active. The energy expended
during a small strain of unit volume in a grain
is given by

This problem is same type of dual problem of
linear programing, therefor it can be resolved
by using simplex method.

2) on the surface

ell =ES E2~=e2~

033=013=033=0

§ 4.2. The ExperiInental Results of Plas­
tic Deforlllation

Fig. 6 and 7 show the values of GI/'!"c and
G2/':c calculated by Sacks's model and Taylor's
model in the grains which have the typical
orientation, when the specimen is applied
tensile stress in X direction. The residual
stress in each grain can be calculated by
substrating the average of stress in all grains
from the values shown fig. 6 and 7. The aver­
age values of residual stress calculated and
measured by using X-rayon the typical planes
as (00), (10) and Oil) plane are shown in
table 3. In Taylor's model, since the residual
stresses in the surface layer and in the inside

(23)

(22)
m

E= L; T~ dr"
k=1

33m

L; L; 0ij' €ij=L; T~di'''
i-I j-l k~1

~To

2.4

2,2

(f0 OJ

1.8

o 20 40

The angle from fixed direction

60 80·

Fig.6 Theoretical flow stress in Sacks's model. Fixed
directions are COOl] for (l00) and (110) and [OllJ for
llI).
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Surface parallel to (100)

Tensile direction (Angle from (010))
45 90 135 1800

(al

Surface parallel to (I 10)
6

4

2

~
Oi

b O

-2

-4

180
0

Tensile direction
(Angle from (ITO))

4

-2

- Inside and Surface

(b)

Surface parallel to (, II)

Inside

Surface
(c)

Fig. 7 Theoretical flox stress in Taylor's model.
(a) ; on (100) plane.
(b) ; on ClIO) plane.
(c) ; on ClIl) plane.
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are different, those in the surface layer are
shown in table 5 for easy caparison with
measured stress. It appear in table 5 that the

Table 5 The residual stress calculated and
measured

hkl I 100 I llO I III

/JI!'rc -0.08 0.22 -0.01
Sabks's model

/J2/Tc 0.00 0.00 0.00

/JI/Tc -1.18 0.02 0.24
tayler's model

at/Tc -1.77 0.15 0.12

measured ailTC -1.49 0.00 -0.39
residual stress
in copper a2/7"c -1.40 -0.33 0.79

measured residual stresses on each diffraction
plane are close on calculated values by Tayler's
model. And in this model, the avelage of
stress in all grains in the surface layer is usually
less than that in the inside, this result agrde
qualitatively with the fact that compressive

stress is generated in plastic elongated speci­
men.
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