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The loading and residual stresses measured by using X-ray stress measurment
depend on diffraction plane. In order to make clear its cause, the several
models on elastic and plastic deformations are developed and the theoretical
values are compared with measured ones. It was found that the dependencies
of measured stress on the diffraction plane can be explaned by accepting
Reuss’s model for elastic deformation and Taylor’s model for plastic defor-
mation.

about the causes of the dependency of stress

on the diffraction plane, and the mechanisms
It is well known that the measurment of of elastic and plastic deformations.

stress in polycrystalline metals by using X-ray

is a unique and effective method of nonde-

structive stress measurment in both micro and  The chemical compositions and the mechani-

macro region. So it is applied in wide fields cal properties in annealed state of the metals

§ 1. Introduction

§ 2. Experimentals

of material engineering studies. used as specimens are tabled in table 1.
The stress measured by its method, however,

depends on the kind of diffraction planeD. In Table 1 Chemical compositions and mechanical

this connection, there are some problems properties of Carbon steel, Aluminum

regarding the character of X-ray stress measur- and Copper.

ment, for example, the generation of the lattice
strain obtained from the peak shift of certain

Chemical compositions

. . . . C Si Mn P S
dlﬁ: raction line is closely .rclated to th.e crystal ., seel 0.12 030 076 0.02 0.0
grain size, the deformation mechanism, the )

tal isot d oth licated Cu S Fe Mg Zn
;ryts az) anisotropy and other complt Aluminum 0.11  0.12  0.55 Tr  Tr
acter®. Fe Sb As Bi S

In generally, the stresses are calculated from

. - C 0.0 0.03 .02 0.02 .
the change of lattice spacing by Hook’s law as opper 3 0 0.03

follow ; Mechanical properties
0.0.2) oc Elongation  Hgs
1oy . v (kg/mm?) (kg/mm?) (%)
o= % o5’y — {0, +a,) Carbon steel  27.0 41.5 32
Aluminum 5.6 10.3 35.0 28
This equation can be developed with follow-  Copper 6.0 31.5 42.0 32
ing two assumptions, that is, each crystal in
polycrystailine metalisisotropy, and polycrystal- s e~ 55¢
line metal is homogeneous. However, it is _—\Z I
well known that the all kinds of crystals are A R——
elastic and plastic unisotropic bodies®, It ~ - T j\
seems that the strain measured on certain /
plane of certain oriented grain is affected by 3
anisotropy. 82
In this paper, it is the purpose to discuss Fig. 1 The shape of specimen
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After being machined to the shape as shown
in Fig. 1, the specimens were polished by emery
paper, and fully annealed in a vacuum at 620
°C for 2hr. (carbon steel), 300°C for 2hr.
(aluminum) and 400°C for 2hr. (copper).

The specimens were loaded by using a tensile
testing machine which was furnished with X-ray
stress measurement and the lattice strains were
measued directly.  The details of equipment
are same as those previously repoted.¥ The
conditions of X-ray diffraction are shown in
table 2.

Table 2 Conditions of X-ray diffraction technique

Target Cu, Co, Cr and Fe
Divergence angle 0.25 degree
Radiation area 2X5 mm?

Tube voltage 30 KV

Tube current 10 mA

Full scale 200 cps

Time constant 10 sec

Goniometer speed 1/4 deg/min

Chart speep 20 mm/min

§ 3. The Lattice Strain and Stress on X-
ray Stress Measurment

In a grain in the specimen, let the co-ordi-
nate O-x, y, z be in crystal axis and let Z
direction (l3 m3 ng), D direction (a b c¢), Y
direction (I3 ms ng) and X direction (}; m; ny)
be respectively in normal of specimen surface,
in normal of diffraction plane, intersection of
the specimen surface and the diffraction plane
and in direction perpendicular Y and Z (when
D and Z are parallel direction, Y is any di-
rection on the surface).

In the cubic lattice, Hook’s low is expressed
in completely terms as a linear relationship
between the six strain components and six
stress components, as® ;

e, =80, +8(0y+0,)
&, =381,0, +8)5(0, -+ c.)
e, =80, +8(0,+a,) 1
Tyz =14 Ty
Tzz:S44 Tox
TWZSM Ty

where Sy, S12 and Sy are the elastic com-
pliances. Describing the stress components gy,
oy 0z, Trz, Tzx and rzy in the co-ordinate

O-X, Y, Z as Tily 022, 033 T23 T3l and Ty Ic-
spectively, the stress components in equations
(1) are expressed as ;

G,= ZZ liljo'ij
a,=233 mmae;;
6, =22 nno;;
Ty= 2.2, mn;o;;
Taw= 2.2 nil]o-ij
Toy= 200, limjo‘ij
i,j=1,2,3

(2)

The normal stress in the diffraction plane are :

ep=a’e,+ b, +c%, + beyy, +cay,,.+ aby

®)

Substituting equations (1) and (2) into equation
(3), ep are rearranged as ;

3 3 1
€p :E Z(Su'_‘Sm ""-Q‘S«) Mij"ij”‘Su("'u

i
1 " 2
+ 0yt 0y) +7 w(oy sin @ "+ 033C08°¢

+ 1743 COS ¢ $in @)

M,=all4b,mm;+c*nn, €3}
where ¢ is an angle between D and Z di-
rection. When the specimen is rolling sheat, the
Z direction is parallel to normal of rolling
plane, and let R direction (/g mp ng) be in rolling
direction. 'The [y, my and ny are expressed
as;

ly =1, cos 3-+l,sin 3
my=m;, cos B+m,sinf
ny =n, COS B--n,sin B

©)

where B is an angle between T and X di-
rection. :

Let p be the volume fraction of crystals
whose orientation indicated by (/y mp ng) and
(Is m3 n3) are parallel to rolling direction and
nolmal direction of the rolling plane respective-
ly. In the metal deformed by the another
working, p can be determined by same way.

The lattice strain measured by using X-ray
stress measurment is ;

— e 3 8 1
€p= S {2 2. (Sll’_Slz’—?SM)Mijo.ij

0 Li=1j=1
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1
+ 80y + o+ 05) + 5 (o COs*
+ 0 5in® ¢ + 075 COS @ Sin 90)}

Xpde / S:‘pda (6)

where @ is an angle between Y direction and
certen fixed direction on diffraction plane.
And the dispersion of strain measured from
broadening on the X.ray diffraction line is as
follow ;

0%(ep)= S Z Z Su—38— —12—'5‘44)M 7,
imlj=
+S{0y 0+ 035) +§S44(‘711 cos? ¢

+ 0y, sin’ ¢ + 05 COS ¢ Sin @)

——eD} Pda/ S:iPa’a

It appears in equations (6) and (7) that the
relationship between o;; and orientation and
the value of p must be know to obtaine the
average stresses or loading stresses by X-ray
stress measurment. And p can be determined
by the measuring texture, but the relationship
between o,; and orientation is still not clear in
spite of many works. Therefore following
models are discussed.

)

§ 3.1. The Models of Elastic Defor-
mation

(I) The Uniform Local
Mode]))

The model of uniform local stress is an assu-
mption which means that the stresses in each
grain equal to loading stresses and the strains
in each grain differ each other but its aver-
age values are equal to strains in bulk. They
can be described as follow ;

o @)
e, —e.0? (9)

Stress (Rruss’s

where oy; are stresses in a grain, oy and e; are
average stresses and strains and o;? and e
are loading stresses and strains in bulk. Substi-
tuting ¢y in to equations (6) and (7), ep» and
0%ep) are as ;

E—D=Zs 23:(511""

iwmljml

1 R
Sm““’i‘ 44) Ml] Gy

+S12(0'n+0'22+”33) + S44("11 sin’ 4

404 COS® @ -+ 05 COS ¢ Sin @) (10)

223_23‘1(*911'— —é‘ 44)(/17:?—

i=1j=1

""M2 )‘711

62(5 D) Sia—

)

where
o

S M, Pl
1]

M, = -
S Pde

(2) The Uniform Local Strains (Voigt’s and
Nagashima’s Model)7.®
Voigt’s model can be described corrCSponded

with Reuss’s model as follow ;
N

£, =€,=¢; }
g,=0

(12)

where ¢; are strain components in each grain.
Using the coordinate in equations (1), the
stress components are expressed as ;

3 3
Gy= El lg {(Cu - Cm 2044) ikt C 2BijBkl

+ C44(Bikle+BilBjk)}€kl (13)

where
M,
B,

ey =&(1=7)
= 574 5)

a=lLLL+mmmm, +-nnnn,
=, +mm,+nn,

From equation (13), the average stresses are
calculated as follow ;

_— 3 _
Ty = ZJ L= {(011—012’— 2044) Mijkl + CI2BL_',BI¢Z

+CulBuBy+BuBy) o (1)
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S S"Mﬁk, Pduds
Mijkl= s 02,

g g Pdads

S J0

( f L )ds s represented integral in all

combination of I3, mz and n3 in the stereo tri-
angle.)

Six similar equations about stress components
a_i; are contained in equations (14), and the
strain components &; can be obtained by
solving equation (14). Therefore the stress com-
ponents o;; in each grain can be calculated by
substituting the solutions of equations (14) into
equations (13), also ep and 82(ep) can be ob-
tained by substituting «;;into equations (6) and
7.

However, in the surface layer, Voigt’s model
must be modified by concidering the balance
of stresses as suggested by Nagashima et al..

The equations (11) and (12) are rewritten as ;

0'332‘713:‘723:0

(15)

o b o b o __ b }
€33=E33, €137 Eyy, Ep=E€gy

and other components are same with equations
(11) and (12). In this case, the stress and strain
components are also calculated by substituting
the solutions of equations (14) ard (15) into
equation (13).

Fig.2 and table 3 show some examples of
ep and 62 (ep) in surface layers.

§ 3.2. The experimental results of
elastic deformation

Fig. 2 shows the lattice strain in a unit of
stress (ep/o) which calculated by Reuss’s and
Voigt’s models. For Reuss’s model, ep/o and
sin2e are linear relationship in full range, but
for uniform local strain model, the deviation
liner relationship is considerable at small
range of sin%p. Fig. 3 shows also ep/o calcu-
lated by Reuss’s model in the specimen being
no texture and very strong (100)-[100] texture.
It is clear in fig. 3 that ep/s and sin?p are
linear relationship for no texture but not for
texture without (100) and (111) diffraction
plane. The (100) and (111) diffraction planes
are not generally affected by textures. In
order to consider experimentaly the models of

elastic deformation, there-

constant stress
constantstrain

o 77

fore, the using (100) and
(111) diffraction planesis a
favorable method. Fig. 4
shows measuring value in
annealed copper, and these
resultsmean that the mecha-
nism of elastic deformation
is very close on Reuss’s
model.

The brodening of X-ray
diffraction lines is expressed
by Hall1b

-

fcosd _ 1 | 2esinf
A 7 A

1 1

where Bis the observedinte-
gral line breadth, §is the
instrumental integral line
breadth, 2 is X-ray wave-
length, @ is Bragg angle, 3 is

0 0l 02 03 04 05

Sin'é

Fig.2 Theoretical results of &p/c versus sin?¢ in copper.

06 0.7

the size of particle and ¢ is
the local strain. In the
elastic deformation, since
» does not change, eq. (16)
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constant stress

€o/T (X10™ mm/kg)

1 1 - 1 [ 1

0 Ol 0.2 0.3 0.4 0.5 0.6 0.7
Sin*¢

Fig. 3 'Theoretical results of &€p/c versus sin% in copper,

solid lines; no texture, dotted line; (1C0)-[100] texture.

The solid and dotted lines of (100) and (I11) overlap
each other.

- 4 ‘
—— Constant Stress
----Constant Strain
O CuHKa (400)
® FeKa(222)-

'
N

|
N

(x10™° mm2/kg )
1
@)

!
0 0.25 0.50
sin®
Fig.4 Correlation of theoretical and experimental result
in copper.

can be rewritten as

ez(ﬂ—ﬁOQ) cot @ 17)

where BO:WTf;Sa——+Bl’ BO is

inlegral line breadth of an-
nealed specimen. Therefore
the dispersion of strain can
be get by measuring 8 and
Bo. Table 3 shows dispersions
of local strain which
are calculated by Reuss’s
model and uniform local
strain model and measured.
This result also points out
that the mechanism of
elastic deformation is close
on Reuss’s model.

Table 4 shows the elastic
constant for X-ray stress
measurment. The second
column shows the measured
equivalents of (1+)/E, the
third shows the values
calculated by Reuss’s model
inno texture and the fouth
shows mechanical values
of (l+y)/E which use
usualy. It is appear that the
main facter of dependen-
cy of stress on diffraction
plane is the term of the
elastic unisotropy.

§ 4. The Residual Stress
in the Plastic Defor-
mation

The residual stresses are
induced by following two
causes as fig. 5.

1) The stress in each grain
is different in loading state.

2) The change of stress in
each grain is different
during unloading process.

The latter cause induces
a little difference of stress,
because this process are e-
lastic deformation. Therefor,
the residual stress are equal
to deviation from average
stress in loading state.
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Table 3 Calculated values and measured values Stress strain curve

of the dispersion of lattice strain for .
Alll)xminum and steel. (MeChCJmCOI )
Aluminum Steel
(X10~(mm?/kg) (X 10-5mm?/kg)
T LT . TR ?Jress ?frain ot
—~| 8381 % 5y 23| 53 5 8 rve ot eqgc
e E“é ;én"é § T; Eé §°'§ § é grain in surfrc;ce Ei
100[ 0.00 [ 0.00 | 0.03 |0.00| 0.00 | 0.03 LEj
110} 0.67 | 0.27 0.64 | 1.06 | 0.52 1.12 Emech _-Emech
111} 0.00 | 0.00 — — — —_
210 0.43 | 0.14 0.41 — — —
211/ 0.22 0.12 | 06.25 |0.35| 0.23 | 0.28 v
221/ 0.41 | 0.17 - — - — )
300 —| — | — lo0.38] 0.14 | 0.3 L
311/ 0.18 | 0.08 0.14 — — —
331/ 0.54 | 0.22 — —_ — —
(o)}
T €)ix
(€
Table 4 Experimental results in carbon steel, { €n)i-rte{€"])j
aluminium and copper
B T e
hkl = %.‘P ?%vg E_g.g = ‘% EE}E éj?_g Fig. 5' Illusfrating the chzjmge of stress in each
E\i: E>2< ;.Lé)Si( é E)E( \i; Eégi; g‘[;g grain during the reloading.
oy e 3 gty g
(8100 | 7.23 | 8.58 0.84 | 1.19 g g g i Py g
211) 5.21 5.71 6.09 0.90 0.86 _i_njr;c) o (18)
(220) 4,97 5.71 0.86 0.81
Al where (p,¢ ¢/ rx".) and (ps* ¢* r) are the normal
422) | 18.90 | 18.45 102 1ol directior} of slip plane and slip dircctiqn
@20) | 19.35 | 19.50 0.99 102 of kt.h slip system. Sach§1°' propose.d that in
o | 19.45 | 21.30 | 19.85 0.92 1.03 tensile deformation, there is only tensile stress,
@2 | 17.89 | 17.50 102 0.95 othe? stress component§ are  zero, and the
@i | 19.00 | 19.50 0.97 Lo maximum ¢ equal critical . resolved .shear
©20) | 18.98 | 18.45 0.99 0.97 stress.' I'n orde'r tf’ be rea}xzed for this as-
, sumption in multiaxial stress, it must be meaned
Cu that the stress components in each grain are
(420) | 13.80 | 13.95 0.98 1.28  proportional to applied stress components.
(400) | 20.35 | 20.88 0.97 1.93  Therefore ;
22 | 640 | 650] 23! 098! 0.5 ; ,
@11 | 14.30 | 13.95 1.02 | 1.33 Ty = Ou/ o 39
(220) 8.05 8.50 0.95 0.79 eq. (18) is rearranged as ;

e

§ 4.1. The Models of Plastic Deformation %= 33
(LD Cpt+mgs-enad)l p5mgs

(1) The Model That Each Grain Deforms i=1j=1
Independently of Its Neighbors Lo
al ol 20
The shear stress acting as a given slip system i) o-_lé} maz : @

is related to the applied stress as ;
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Therefore ep and 8% (ep) are calculated by
substituting eq. (20) into eqs. (6) and (7).

(2) Uniform Local Plastic Strain®

The strain components in plastic deformation
are expressed as follow ;

.
=g Dot mgi ) m g

+nyr) -+ gy -+ megy -+ nr)(py

+m; i+ nrh) T 21)
where m is number of slip system, 770 when
th=r; or 7*=0 when r, > t*, ¥ is shear strain
in kth slip system. Taylor® proposed that the
polycrystal is deformed uniformly plastic strain
in each grain. In this assumption in order to
satisfy the eq. (18) and (21), some slip system
must become active. The energy expended
during a small strain of unit volume in a grain
is given by

E=Y" <t dy*

k=1

(22)

where 7. and dr® refer to resolved shear stress
and increment of shear strain on the kth slip
system, respectively. This energy must equal
the work done by the external stresses in
producing strains ;

m

3
> 2 Gy * 51‘j:Z chdr*

iml j=1 k=1

(23)

The stress components are computed by finding
the combination of slip system that gives

m
the minimum value of 3 r/* dr# and satisfied
k=l

eqs. (18) and (21) under following condition.
I) in the inside of specimen

J— b
€€y
2) on the surface

b b b
En==¢y €99 Eyy €12~ €y

Oy =Ty = 053 =0

This problem is same type of dual problem of
linear programing, therefor it can be resolved
by using simplex method.

§ 4.2. The Experimental Results of Plas-

tic Deformation

Fig. 6 and 7 show the values of 4/c. and
=3/7¢ calculated by Sacks’s model and Taylor’s
model in the grains which have the typical
orientation, when the specimen is applied
tensile stress in X direction.  The residual
stress in each grain can be calculated by
substrating the average of stress in all grains
from the values shown fig. 6 and 7. The aver-
age values of residual stress calculated and
measured by using X-ray on the typical planes
as (100), (110) and (111) plane are shown in
table 3. In Taylor’s model, since the residual
stresses in the surface layer and in the inside

3
<

T

0 20

40

The angle from fixed direction

Fig.6 Theoretical flow stress in Sacks’s model. Fixed
directions are [001] for (100) and (110) and [011] for

111).
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Surface parallel to (100)

Tensile direction { Angle from (010))

K 45 20 35 180°
O A 1 — 1 -
5
2l S
(a)
Surface paratlel to (110)
6_.
4
) Oi
2 4
e y Oz
~ 0O |/‘ S N S
b 45l_/| 90T\j 135 180°
W Tensile direction
-2 {Angle from (1T0))
_4 1

— Inside and Surface
(b)

Surface parallel to (111)

r~o - 2 - ~o -
| TS e t { s GG | 1~ 0
1 W [\}___4/(_— i
“/ ] [ o [ j | &!\
o B , L__Jd 90 Lt [
N 45 135 180°
Tensile direction ( Angle from {iT0))
_2 g
Inside
------- Surface
(c)

Fig.7 Theoretical flox stress in Taylor’s model.
(a) ; on (100) plane.
(b) ; on (110) plane.
(c) ; on (111) plane.
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are different, those in the surface layer are
shown in table 5 for easy coparison with
measured stress. It appear in table 5 that the

Table 5 The residual stress calculated and
measured

| w100 | 110 ]717w

o1/7s —-0.08 0.22 | -0.01
Sabks’s model
o2/ 7¢ 0.00 0.00 0.00
o1/7e —-1.18 0.02 0.24
tayler’s model —_—
oy/7e ~1.77 0.15 0.12
measured oi/re | —1.49 0.00 | —0.39
residual stress
n copper 69/7c ~1.40 | —0.33 0.79

measured residual stresses on each diffraction
plane are close on calculated values by Tayler’s
model.  And in this model, the avelage of
stress in all grains in the surface layer is usually
less than that in the inside, this result agrde
qualitatively with the fact that compressive

stress is generated in plastic elongated speci-
men.
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