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Synopsis

In this paper the minimum fill-in problem which

arises at the application of the sparse matrix method

for linear sparse systems is discussed from the graph

theoretic viewpoint and the author gives some results

which can be directly introduced in the design of, so

called, the optimal elimination ordering algorithm

which gives the minimum fill-inC the number of zeros

in coefficient matrix which become non-zero during the

elimination process). Through this investigation only

graphs are treated instead of the coefficient matrices

for linear systems, and the elimination process for a

matrix is equivalated to the vert x eliminations for the

graph. Then, the results by the theoretical investi

gation are summarized as following:

1. Optimal elimination for each subgraph which is sub

divided appropriately from whole graph leads to the

global optimum.

2. In each subgraph there are only two kind of elimina-

tions.

Furthermore, some numerical experiments show the char

acteristics of the subset of vertices, which subdivide

a 8ubgraph from the residual.
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1. Introduction

Takeo TANIGUCHI

The neccessity to solve linear equations

Mx=b (1)

, where M is a n x n sparse~ symmetric positive definite matrix, arises

frequently in structural analysis, and we have a number of efficient

solvers which utilize the characteristics of M matrix. The most ef

ficient solver for eq.(l) by elimination is called the sparse matrix

method which uses only the non-zero entries in M.

On the other hand it is well known that the elimination process for

eq.(l) produces additional non-zero entries in M, that is, some zeros

in M become non-zero during eliminations. For example, by use of the

i-th row any (j,k) element in M, mjk , is altered to mj~'

(i < j < k) (2 )

Even if mjk = 0 in M, mj~ in the modified matrix,M*, becomes non-zero,

when mij ~ 0 and mik~ O. Such a new non-zero entry in M* is called

"Fill-in". Furthermore, the number of these entries depends on the

ordering of eliminations for M. Thus, the utilization of the sparse

matrix method requires the optimal elimination ordering which gives

the minimum number of fill-in.

With M as in eq.(l) we can associate an undirected graph,G{X,E}, in

which X and E denote the sets of vertices and edges in G, respectively,

and the elimination process for M is equivalently transformed to the

elimination of vertices in G. l ) Then, eq.(2) is equivalent to follow

ing expression: Suppose three distinct vertices, i, j and k, in G,

where j and k are adjacent to i but they(j and k) are not adjacent

each other ( these relations are denoted by j,k = adj.i and j ¢ adj.k).

The elimination of i-vertex before the other gives the relation of

j E adj.k in G* which is the graph after i-vertex elimination. As

the relation, x 6 adj.y, shows the existence of an edge between two

vertices, x and y, a fill-in in M shows an additional new edge for G*

and, thus, G{X,E} is modified to G*{X,E'} , where E C E', and the

modification is restrictied to the subset of vertices which are adja

cent to i-vertex.

We say a matrix M sparse when many of its entries mij are zero.
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Above graph-theoretic interpreta~ion of "fill-in" was given by D.J.

Rose whose aim is not for the design of Fill-in Minimization Algorithm

but for the mathematical interest.(2) Through the fundamental study

of the optimal elimination ordering from the graph-theoretic viewpoint

the author intends to give valuable results which may be easily intro

duced in the design of Fill-in Minimization Algorithm.

2. Vertex Elimination Process

Suppose a Graph G{X,E} for M(nxn), where X is a finite set of Ixi
n elements called vertices, and

E <;; {{x,y} I x,y EX, x Iy}

is a set of lEI vertex pair called edges, which is equal to the number

of non-zeros in the upper triangular matrix of M.

For M which represents one independent structural system we can

give a connected graph, in which for each pair of distinct vertices,

x,y ~ X, there is a chain of edges from x to y.

According to eq.(l) or its graph-theoretic interpretation in Sec.l

the elimination of a vertex, x 6 X, may produce some additional edges

in the sUbgraph, G {XI}, where XI C X and XI = adj.x. The influence
s

of x-vertex elimination is restricted only in G , and we denote the
s

subgraph by FVa which is the abbreviation of Frontal Vertex Group and

which locates at the front of the eliminated vertices.

The number of vertices in FVG is determined by the number of verti

ces which are adjacent to the eliminated vertex,x. Furthermore, the

subgraph, FVG, constructs a complete graph, in which every pair of

vertices is adjacent, and the number of edges is equal to

ladj.xl(ladj.xl -1)/2

, where ladj.xl is the number of vertices adjacent to x. If we de

note the set of these additional edges by F, then the modified graph,

G*, is equal to G*{X, E U F}.

Suppose a modified graph, G*, which is obtained after some stages

of vertex elimination in accordance with an arbitrary elimination or

dering for G. At this stage there may exist several independent

FVGls in G*, and all the vertices in the graph are divided into two

sets, one of which is the set of eliminated vertices and another is

non-eliminated including, of course, the vertices in FVGls.

If the subgraph, G~, consisting of the latter set of vertices and
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also all edges connecting them is removed from G*, there remain, in

general, a number of connected subgraphs, denoted by G
E

. Let's de

note G
N

for the subgraph which is obtained by removing subgraphs, FVG~

, from G~. Now, we begin to investigate the influence of one vertex

elimination to G*.

The vertex, x, being eliminated at this stage must belong to one

of followings as shown in Fig. 1.

1. x E: GN, x t- FVG

2. X E. FVG, adj.x E: GN

3. x E FVG, adj.x C. FVG

4. XE FVG's, adj.x ¢. GN

5. XE FVG's, adj.x E GN

Type 1.

Elimination of x E G
N

makes the

subgraph consisting of all vertices

adjacent to x complete, and they

construct a new FVG. Thus, fill

in, F, is obtained by eq.(3).

FVG(2)

Fig. 1 A Stage of Elimination

Process on G

F = ladj .xl-< ladj .xl -1)/2 - IEol (3)

, where ladj.xl is the number of vertices adjacent to the eliminated

vertex, x, and IEol is the number of edges in FVG nG.

Type 2.

This type of vertex elimination does only change the entries of the

FVG. That is, adj.x become new entries of FVG instead of x just

eliminated.

FVG{X'}
elimination of x

> FVG*{(X'-x) U adj.x}

Fill-in appearing at the elimination is divided into two parts

for the completeness of the new entries, y ~ adj.x and y ~ FVG, and

for the completeness between {y E adj.x} and {X' - x}. Then, the

summation of these two cases gives F, which denotes the number of fill

in of Type 2-vertex eliminat~on.

F (4)

, where Iyl and lx' - xl are the number of vertices in {y} and {X'-x},
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respectively, and IEll and IE21 are the number of edges in {y}at the

previous stage and the edges connecting two subsets, {y} and {X'-x},

respectively.

Type 3.
The x-vertex elimination does only decrease the number of vertices

in FVG by one and no ther influence appears. As the vertex, x, is a

member of FVG and adj.x C X', no fill-in occures at the elimination.

£i' = U ( 5)

Type 4.

Typical case of this type is the vertex, x, locating on two FVG's,

FVG(l) and FVG(2). Thus, the vertex elimination produces new one FVG

by joining FVG(l) and FVG(2). Any vertex, y E FVG(I) n FVG(2), are

adjacent to all vertices in FVG(l) U FVG(2), and only the set of ver

tices, {z I z E FVG(l) U FVG(2) - FVG(l) n FVG(2)}, decides the value

of fill-in.

F = IFVG(l) - FVG(l) nFVG(2) 1·IFVG(2) - FVG(l) nFVG(2) I (6)

When we eliminate such a vertex, x, as

n
x E n FVG (i) for n > 2,

i=l
(7)

the elimination requires more fill-in than F in eq.(6). The fact

that the influence of any vertex elimination is restricted to the sub

set of vertices which are adjacent to the vertex and that our aim of

this investigation is the minimization of fill-in lead to the conclu

sion that we should not eliminate this type of vertex, x, as shown in

eq. (n.
Type 5.

By the x-vertex elimination all vertices adjacent to x construct

a complete graph, that is, all the FVG's in which the vertex, x, be

longs are joined, and they form new FVG, and it includes such vertices

as {YGadj.x, y¢ FVG's}, too.

Comparing the vertex elimination of Type 5 with Type 4, it is evi

dent that the former gives more fill-in than the latter. Therefore,

Type 5 need not be considered for our purpose.

As far as our concern is the process of the optimal vertex elimi

nation for the minimum fill-in, we may consider only four types of

vertex eliminations for any graph, namely Type 1,2,3 and 4.
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3. Vertex Elimination for Minimum Fill-in

This section aims to clarify the general characteristics of modifi

ed graph appearing at every stage of optimal vertex elimination pro

cess.

In the preceding section we obtained that all the vertices in G are

eliminated by use of, at most, five types of vertex eliminations

during arbitrary ordering, and also that only four types among them

may appear when the elimination ordering is optimal. They are Type

1, 2, 3 and 4.

As· far as we treat a connected graph G{X} with IXI ~ 2, Type 1 is

insufficient for eliminations of all vertices in G, and x E FVG which

appear after Type 1 eliminations must be treated by the other Types.

If more than two vertices in G are eliminated by Type 1, then G*

has, evidently, as many FVG's as the number of eliminated vertices

treated by Type 1, and the process requires Type 4-elimination. But

we can eliminate all the vertices in G by use of only Type 1 and Type

2, when Type I-vertex elimination is applied for only one vertex.

Above consideration leads to the conclusion that the maximum number of

independent FVG's are decided by the number of the vertices which are

eliminated by Type 1.

Here we have to prove that there appear several independent FVG's

at a stage of optimal elimination process, that is, the process re

quires, in general, Type 1, 2 and 4-vertex eliminations.

If Type 1 and 2 are sufficient for any G to give minimum fill-in,

the process requires only one FVG and the vertex which should succes

sively eliminated must be always selected among x E FVG at the stage.

Suppose a stage of optimal elimination fo~ G in which there exists

only one FVG. If there is a vertex x ( x e G
N

, adj.x 6 FVG, and

adj.x n {GN-x}=¢ ), then the optimal process requires the elimination

of x before the eliminations of y E FVG. That is, we find the second

FVG. Therefore, we can conclude that the optimal process requires,

in general, several independent FVG's as shown in Fig.l.

Every FVG(i) divides the subgraph GE(i), which consists of only

eliminated vertices, in G*, and the vertex eliminations of the sub

graph gives no influence to the other region. Therefore, all verti

ces in the subgraph may be successively eliminated. That is, if a

FVG at a stage of the optimal process is obtained, the optimization

of vertex elimination for the subdivided area leads to the global

optimum.
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These results allow us to image the optimal elimination process.

The first vertex elimination on G{X} is, of course, Type 1 which pro

duces one FVG. If vertices for successive eliminations are always

selected among x E FVG at every stage, GE is a connected subgraph and

only one FVG exists in G*. These successive eliminations belong to

Type 2. After some steps the process does not select a vertex x ~

FVG for successive elimination but y ¢ FVG. That is, the elimination

of x E FVG does not lead to optimum. Then, the FVG stops its growth

and we denote it by FVG(l).

The selection of a vertex, y ¢ FVG(l), produces another FVG(2), and

some Type 2 vertex elimination steps for vertices in FVG(2) yield to

FVG(l) n FVG(2) i ~ (8)

Any vertex x E FVG (1) n FVG (2) is selected for the next elimination

, and two FVG's are joined into one FVG. Successive eliminations are

for these vertices, x E FVG(l) nFVG(2) and adj.x f. G
N

, and through the

steps we have no fill-in, because they belong to Type 3.

Through the elimination process the growth of FVG and JOlnlng of

FVG's are repeated, and at the last state of the process where GN = ~,

the eliminations are only for x E FVG's. From this stage we apply

only Type 3-elimination.

4. Further Considerations on Frontal Vertex Group

The most important factor through the optimal vertex elimination

process is the characteristics of Erontal yertex Qroup, especially of

the FVG at the stage when it stops its growth, and also when it was

produced by joining two FVG's.

For the investigation of the characteristics of FVG's we refer to

eq's(3), (4), and (6). These equations suggest that the number of

vertices in the newly obtained FVG is the most effective factor for

the evaluation of fill-in. That is, in order to minimize fill-in

through the elimination process !FVG! should be always kept as small

as possible.

For each vertex in G we can obtain the minimum FVG independently

from the other region, but as the elimination process modifies the

graph at every stage and also some other factors, for example, EO in

eq.(3) give influence to the value of fill-in, it seems to be very

difficult to decide the FVG which stoped its growth.



246 Takeo TANIGUCHI

Fig. 2 show the results of some numerical experiments which are

done in order to obtain effective factors for the determination of the

maximum FVG's through the optimal elimination process. The term, the

maximum FVG, means the FVG which stoped its growth during the process.

EaCh thick line connecting vertices which are shown by. in the fig

uresindicates the location of one FVG, and every sub graph divided by

FVG is eliminated in accordance with the label of the area. All the

vertices in each sUbgraph are eliminated by use of Type I and 2, and

the vertices on FVG's are by Type 3 and 4.

1
(a)

3

Fig. 2 FVG's on Graphs by Numerical Experiments
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The optimal elimination process of Fig.2-a, for example, is as fol

lowing: After the eliminations of all the vertices in Area 1 and 2,

vertices of FVG's locating between these areas are eliminated and

residual vertices on these two FVG's form a new FVG. The same pro

cedure is repeated for Area 3 and 4, and vertices on FVG which divides

Area 5 from Area 3 and 4 must be eliminated. This is only, one of

optimal processes and we can easily find another optimal process.

For example, after the eliminations of Area 1 aDd 2, we may treat ver

tices in Area 5. But, before the elimination of Area 5 two FVG's

locating between Area 1 and 2 must be joined into one FVG and the deal

of this new FVG precedes that of Area 5. Futhermore, the elimination

process for Area 5 must stop at the location of FVG which subdivides

Area 5 from Area 3 and 4.
Any FVG obtained in these numerical experiments has following prop

erty.

IFVGI , IMinimal x,y separator I
, where x E G

E
and y E G

N
. And Minimal separator is a separator,

which separates any graph into two connected subgraphs and no, subset

of which is also a separator of the graPh.(2)

Furthermore, these numerical experiments suggest that the maximum

of IFVGI appearing during the vertex elimination process satisfies

eq. (10).

Max.IFVGI ~Max. of Min.{Minimal x,y separator} (10)

where x,y E X in G and x 1 adj.y.

Eq.(10) shows the location of the FVG which appears at the last

stage of elimination process. Furthermore, from these numerical

results we can recognize that one FVG stops its growt~when the FVG

includes a chain of vertices which subdivides the graph and which

locates at the place where "the width" of the graph changes. Eq.(9)

is the general expression of this fact.

5. Concluding Remarks

Through this investigation for the minimum fill-in proble, follow

ing results were obtained:

1. Optimization of the vertex elimination process for subgraphs

obtained by the appropriate subdivision of whole graph,G, Jeads
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to the optimization for G.

2. For the tool of the subdivision of G "the width of G" seems to

be useful.

3. Through the optimal vertex elimination process any vertex is

eliminated by use of one of four types of eliminations. Two

types of them deal the vertices in each subgraph, and the other

are used for vertices in the separators(i.e. FVG's) of G.

Above results may surely make the design of the algorithm of opti

mal vertex elimination ordering ease, and the results obtained by the

algorithm will be quite different from the orderings by Minimum Defi

ciency Algorithm(3) which is thought as the best now.
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