
Memoirs of the Faculty of Engineering,Okayama University,Vol.28, No,!, pp.27-38, November 1993

Ground State of Coupled Quantum Wires

Hiroo TOTSUJP , Hiroyuki TACHIBANA\

Hidenori FUJIMURA\ and Shigetoshi NARA1

(Received Semtember 30 . 1993)

SYNOPSIS

The ground states of interacting electrons in coupled quantum wires are analyzed

on the basis of the density functional theory. The exchange-correlation potential is

calculated from 'exact' results given by the Green's function Monte Carlo method in

two and three dimensions. It is shown that the critical density signifying the change

from symmetrical to asymmetrical ground state is weakly dependent on the details

of the exchange-correlation potential, These critical values are compared with the

result of the three-dimensional analysis for a single wire.

1. INTRODUCTION

When electronic levels in quantum wires or wells are occupied by many electrons,

the interaction between electrons plays an important role in determining energy eigen­

values and distribution of electrons among them. The many body interaction between

electrons may be accounted for by the repulsive electrostatic (Hartree) interaction and

the attractive exchange-correlation interaction.

In symmetric or nearly symmetric structures composed of two quantum wires or

wells, the symmetric distribution of electrons has the lowest electrostatic energy if
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the interactions between electrons are neglected. The Hartree energy per electron

is proportional to the density of electrons. Additional electric fields between two

wires or wells accompany asymmetric distributions and the total energy is increased

by positive contributions from these additional Hartree fields which are also roughly

proportional to the spacing between wires or wells. Symmetric distributions are thus

further stabilized when we take the Hartree interaction into account.

The exchange-correlation interaction is attractive and its value per electron is

proportional to the inverse of the mean distance between electrons. This part of the

total energy generally decreases when the distribution becomes asymmetric due to

nonlinear dependence on the density. When two quantum wells or wires are placed

closely enough and the increase of the Hartree energy due to asymmetry is small, it

may be possible that the decrease of the exchange-correlation energy overcomes the

increase of the electrostatic energy. We then have electrons populating in either of

the wires or wells, even if the structure is almost symmetric.

This kind of possibility has been first pointed out by Ruden and Wu[l, 2]. They

have analyzed the stability of symmetrical distribution of electrons in two parallel

two- or one-dimensional electron systems taking the Hartree energy and the first

order exchange energy into account. In their analyses, two systems are regarded as

independent except for interaction through the Hartree field and interference of wave

functions or tunneling between two domains has been ignored.

The usefulness of this kind of phenomena may partly depend on how fast the

electronic distribution can be reversed. From this point of view, the coupling between

two wells or wires needs to be strong enough. Obviously, however, strong coupling

may have an effect which favors symmetric ground state. We thus have to make some

compromise between these two effects in opposite directions based on computations

which seriously take into account the interference of wave functions in each domain.

Calculations with full account of the coupling of wave functions have been done by

the present authors[3].
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In previous results, the mean distance between electrons is larger than the distance

between two wells or wires when localized states become stable. We therefore cannot

a priori rule out the possibility of the appearance of structures in the electronic

distribution in the direction(s) along wires or parallel to layers and three-dimensional

analyses are necessary at least in principle.

In this paper, we propose a structure composed of two quantum wells (or ribbon­

like wires) laterally coupled through a narrow constriction with the cross section

shown in Fig.! and show that we have asymmetric ground state localized in either

of wells under appropriate conditions. The localized distribution may be easily re­

versed by applying the electrostatic bias in the direction connecting two wells. We

assume that our coupled wells containing electrons are surrounded first by neutral

layers and then highly doped domains with high electron densities, and the overall

charge neutrality is maintained by positive charges appearing on inner surfaces of the

high density domains. These structures may be realized, for example, by modifying

the concentration x of Al in AlxGal_xAs and the doping profile of donors. The con­

centration profile, x = 0 in the well and 0 < x < 0.45 otherwise, provides a potential

barrier Va around the wells by the conduction band offset and the doping of donors

only in outer domains will leave non-doped neutral layers around wells.
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Fig.I. Cross section of coupled quantum wires.

II. FORMULATION
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We apply the effective mass approximation with the effective mass m* = O.067me

(me being the electronic mass) for electrons in our system. The main purpose of this

paper is to analyze the many-body effects of electrons and we expect those effects

beyond the approximation may have small influence on main conclusions. We first

assume that the distribution in the direction along wires is uniform and perform

computations in two dimensions. We then ascertain the validity of this assumption

by three-dimensional computations for a single well.

In order to describe many-body effects, we adopt the density functional theory

in the local density approximation which is now one of standard procedures in these

analyses. The exchange-correlation part of the interaction potential can be obtained

from the results of numerical experiments. These 'exact' results based on the Green's

function Monte Carlo method are now available for ground states of electrons in

three and two dimensions due to Ceperley and Alder[4] and Tanatar and Ceperley[5],

respectively. Three-dimensional values have been parametrized by Vosko et al.[6] The

exchange-correlation potential Vxc(r) is calculated by

11: ( ) _ 8Exc [n(r)]
xc r - 8n(r) ,

where Exc[n(r)] is given, in the local density approximation, by

Exc[n(r)] = Jdrn(r)cxc(n(r))

(2.1)

(2.2)

with the exchange-correlation energy per electron in homogeneous system cxc.[6, 5]

We denote these potentials by V(2d) and V(3d)xc xc .

Following Kohn and Sham[7], the electronic levels {Ei } are determined by

(2.3)

and the density of electrons n(r) is calculated by filling electrons into these eigenstates

up to the Fermi level as

n(r) = L ItI'i(rW· (2.4)
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The potential Vext(r) denotes the conduction band offset between the well and the

surrounding neutral layer: v;,xt = 0 in the well and v;,xt = va otherwise. In solving

(2.3) the boundary condition 'l/Ji(r) = 0 is imposed at inner surfaces of the high density

domain. Actually, wave functions of bound states in wells completely decay before

we apply this condition.

The electrostatic potential Veer) is given by

TT·C ) = 2 JnCr') - n+(r')d '
ve rei I r,r - r'

(2.5)

where n+(r) is the density of positive charges which neutralizes negative electronic

charges in our wells. In our analysis we calculate Vc(r) with n+(r) = 0 adopting

the boundary condition Veer) = 0 at the inner surfaces of the high density domain

treating the latter as conductive (metallic).

Starting from some trial wave functions, we solve above equations self-consistently.

As a numerical method, we apply the finite element method to compute the solution

of the Schrodinger equation (2.3) and the Poisson equation (2.5) and self-consistency

is attained by iteration.

III. ANALYSES IN TWO DIMENSIONS WITH ViE AND ViE
We have analyzed electronic states in our system in the cases of both two- and

three-dimensional exchange-correlation potentials. The results are summarized in

Figs.21'V 5.

For the two-dimensional case, the total energy per electron is plotted as a function

of linear density of electrons in Fig.2. The values for symmetric ground state and the

asymmetric ground states are equal at the critical density. For higher densities the

symmetric ground state has lower energy and the asymmetric ground state is a local

minimum in configuration space. For lower densities, the asymmetric ground state

has lower energy and the symmetric ground state is a local minimum. The ground

state thus changes from the symmetric state for high densities to asymmetric state

for lower densities as shown in Fig.3.
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The contribution of the Hartree part and the exchange-correlation part are shown

in FigAa and 4b. We see that the former is proportional to the density and the latter,

to n 1
/

2
• The behavior of the Hartree part is in accordance with our expectation. The

dependence of the exchange correlation energy on the density reflects that we have

adopted the two-dimensional values.

Three-dimensional results are shown in Figs.5 and 6. We observe similar depen­

dencies of energies on the density except for the exchange-correlation part which is

proportional to n1/3 in this case.
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Fig.2. Total energy per electron vs. density.

Fig.3. Distribution of electrons in symmetric and asymmetric ground states. Both

are uniform in z.
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FigAa. Hartree and exchange-correlation part of electronic energy vs. density.
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FigAb. The same as FigAa in linear scale. Compare absolute values of differences in

Hartree and exchange-correlation energy for symmetric and asymmetric states.
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Fig.5. Total energy per electron vs. density.
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Fig.6a and 6b. Hartree and exchange-correlation part of electronic energy vs.

density.
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The critical densities in the case of three- and two- dimensional exchange­

correlation potentials are 2.5 . 104cm-1 and 2.1 . 104cm-1 , respectively. We note

that these results are very close. We therefore expect that details of the exchange­

correlation energy do not have serious effect on the critical density. It should be also

noted that the mean distance between electrons at the critical density is much larger

than the thickness of our wells, 100A. The application of two-dimensional result thus

turns out to be more appropriate.

The mean distance between electrons is also much larger than the width of our

ribbons, 2 . 103A. To apply the two-dimensional results of the exchange-correlation

potential therefore is not justified in the strict sense. We have, however, no 'exact'

results for one-dimensional case and the results with two- and three-dimensional po­

tentials are almost the same. We may thus adopt the two-dimensional values for the

potential to obtain semi-quantitative results.

IV. ANALYSES IN THREE DIMENSIONS WITH viE AND ViE
In order to ascertain the correctness of our assumption that the electronic density

in the z-direction is uniform, we solve the Kohn-Sham equation in three dimensions.

We confine electrons in a ribbon of length L z in z-direction and impose the periodic

boundary condition along the z-axis. The cross section of the ribbon is shown in

Fig.7. We may expect that whether z-dependent structures in the electronic density

appear or not does not depend on details of the geometry of the cross section of the

wIre.
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Fig. 7. Cross section of quantum wire for three-dimensional analysis.
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Value of parameters in three-dimensional analysis are summarized in Table l.

The distribution with structure in z is shown in Fig.S. We see that, in the domain

of the linear density where the transition between symmetrical and asymmetrical

ground states occurs, the uniform electronic density is obtained in three dimensional

computations. We may therefore confirm the validity of two-dimensional analyses.

We have also performed similar analysis with three-dimensional exchange­

correlation potential. The critical density obtained by the analysis in two dimensions

is also larger than that obtained in three dimensions.

Table 1. Parameters in Three-Dimensional Analysis

number of electrons length (Lz)[A] linear density (2/Lz)[cm-1 ] uniform/structure

2 104 2.104 uniform

2 1.5.104 1.3.104 uniform

2 2.104 1.104 structure

V. CONCLUDING REMARKS

In these analyses, we have confined ourselves within the ground state. The Fermi

energy of electrons with respect to the degree of freedom in z-direetion may be esti­

mated by

(5.1)

which is O.022meV or 0.26K at the critical density. Thus the temperature needs

to be in this domain. The difference in energies per electron in symmetrical and

asymmetrical states easily exceeds this value when the density is off the critical value

by 10% as is shown in Fig.2.

This kind of phenomena may be regarded as the appearance of the Wigner lattice

in restricted geometries. The value of the parameter r s (in two dimensions) at the
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critical density is around 16. This is smaller than the critical value for Wigner crys­

tallization in two dimensions 37 ± 5 predicted by the numerical experiments[5] the

results of which we have adopted as exchange-correlation potential. The difference

may be due to the effect of geometry of our system.

Based on these results, we may expect the behavior of the electronic distribution

in coupled quantum wires as follows: With the decrease of the linear density n, we

have, symmetric distribution uniform in z when n > nc2, asymmetric distribution

uniform in z when n c2 > n > nc3, and, asymmetric distribution structured in z when

nc3 > n.

In conclusion, we have shown that electrons in the ground sate of coupled symmet­

rical quantum wires can be localized in either of wires when the linear density is lower

than some critical value. Mainly responsible for this phenomenon is the exchange in­

teraction between electrons which overcomes the increase of the Hartree energy due

to localization at sufficiently low densities. Though the temperature needs to be

low enough, this is the first result for realistic systems which confirms the previous

expectation of this kind of phenomena in idealized cases.

Fig.8. Ground state of electrons in quantum wire with structure in z direction.
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