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SYNOPSIS

Tensile strength and elongation of cast magnesium rein­

forced with titanium fiber were measured by tensile test. The

pull-out test of a titanium rod partially embedded in a magne­

sium matrix was performed to evaluate interfacial bonding

strength between magnesium and titanium. It was found that

when the fiber volume fraction was changed from 1% to 14%,

the tensile strength was improved with increase of volume

fraction, while the improvement of elongation tended to be

restrained beyond the volume fraction of 10%. The interfacial

strength was revealed to be strong, and this was substantiated

by the scanning electron microscopy showing an excellent

wettability between the titanium fiber and the magnesium

matrix.

1. INTRODUCTION

Magnesium that is the lightest of all practically used metals has two thirds

the specific weight of aluminum, and has a high specific strength. Further, the

former exceeds the latter both in tensile strength and in elongation, which is

of great value in practical use. Magnesium, on the other side, is chemically so

active as to be more corrosive and also mechanically strange in its deformation

mode. It is expected that these deficiency will be overcome and magnesium will

be used in much wider fields. Thus, there have been many reports concerned

* Department of Mechanical Engineering



2 Hiroyuki OKADA, Moritaka HIDA. Akira SAKAKIBARA and Yoshito TAKEMOTO

with magnesium base alloys with additions of such elements as rare ear·ths,

manganese, zirconium, and so on.<l,2) In parallel to those, improvement of the

mechanical properties of magnesium by reinforcement have been attempted.(3,4)

Magnesium which has a low specific weight has come into notice as matrix

material of composites. Several works concerned with FRMs of magnesium, espe­

cially those reinforced with ceramic fiber such as C<5), SiC(6), and Al 203,(7) are

reported. But it should be noticed that the composites reinforced with ceramic

fiber are poor in plastic workability. Composites reinforced with metal fibers,

on the other h~nd, are supposed to be excellent on this point, of view. Wetta­

bility between the fiber and the matrix is essential on the fabrication of FRM.

Besides, it is desirable that no reaction occurs at the interface between the

fiber and the matrix. If the reaction products make the interface brittle, they

are likely to prevent the stress from transferring from the matrix to the

fibers. Some fibers need to be coated for protection against reactions with the

matrix.

Taking these affairs in to account, the presen t authors chose titanium as

fiber materials. It is expected Ti/Mg composite has a good specific strength,

for titanium fiber does not lose much the lightness of magnesium and has an

enough strength. The most important point is that its reactivity to magnesium

is low at the fabrication temperature (973K, Tmp of magnesium being 923K), and

that titanium does not produce intermetallic compounds with magnesium and dis­

solves into magnesium up to about lwt%. Moreover, titanium is not attacked by

oxygen in magnesium, judging from the standard free energy of oxidation at

that temperature. It is believed, therefore, that the choice of titanium fiber

as a reinforcing material for magnesium is adequate if their wettability is good.

In the investigations of FRMs, there are comparatively many reports on the

composites reinforced by short preformed fibers. (8,9) But in this paper the

mechanical characteristics of a composite reinforced with unidirectionally ori­

ented continuous filaments are investigated by the tensile test, and its bonding

strength and interfacial property are evaluated by the pull-out test and

observations with the scanning electron microscope.

2. EXPERIMENTAL PROCEDURES

2.1 Materials and Fabrication

Commercially pure magnesium (99.95%, UBE KOUSAN) was used as a matrix of

composite. Low carbon steel (S25C) was employed as a material of the crucible

because of its non-reactivity with magnesium, which fact is very important for

the industrial utility. The crucible was made separable into two pieces in
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order for the product to be taken out easily. Magnesium in the crucible was

melted in a vertical furnace at 973K, a bundle of Ti fibers (99.6%, epO.2mm) was

immersed into the molten magnesium, and then magnesium was solidified in the

same crucible. These processes were performed in an argon atmosphere in order

to avoid oxidation. Fiber volume fraction, Vf , was varied by changing the

amount of fiber. SiC fiber (epO.14mm) was also used to be compared with the

titanium fiber. Cast magnesium in which a titanium rod (99.5%, ep3mm) was im­

mersed instead of fibers was fabricated in the same way.

The produc ts thus fabricated were cYlindrical she11 s (ep 25mmx70mm), each

containing fibers or a rod in its center. The ones which contained fibers were

worked into specimens for the tensile test, the gauge length of which was 15mm

long with 3mmx4mm rectangular cross section. Vf was evaluated from the frac­

tion of area of the fibers measured in the cross section of specimen since the

fibers were unidirectional and continuous. The Vf was 1% to 14% for titanium

fiber, and 10% for SiC fiber. A specimen of pure magnesium cut out of the

product was also prepared for the tensile test.

The cylindrical shell containing a rod was also worked into the specimen

for the pull-out test as illustrated in Fig.I. A rod with a radius 1.5mm was

located at the center of a coaxial

cylindrical shell of magnesium matrix

with an outer radius 12mm. One end of

a titanium rod was embedded in magne­

sium matrix and the other end to be

gripped was protruded' from the matrix.

A portion of the rod was narrowed to

0.5mm in radius. The depth, z, desig­

nated in Fig.1, was changed.

Depth, Z
2.2 Tensile Test

Tensile test was carried out with

Shimadzu autograph, IS-5000, for the

specimens of Ti/Mg composi te and SiC/Mg

composite at the displacement rate of

0.5mm per minute at room temperature,

the tensile axis being parallel to

fibers. The pure magnesium specimen

above described, the ti tanium rod, and

the ti tanium fiber were also tested.

2.3 Pull-out Test

Ii rod

I1g matrix

o
LQ

Fig.1 A schematic diagram of a cylind­

rical shell for pull-out test.
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Fig.2 Stress-strain curves of Ti rod

and Ti fiber. (a) Ti fiber,
(b) Ti rod annealed in Ar,
(c) Ti rod annealed in vacuum

Pull-out test of titanium rod from magnesium matrix was attempted at a con­

stant displacement rate of 0.5mm per minute with the titanium rod and the

magnesium matrix gripped. The depth, z, then was 16, 7, 5, and 3mm.

2.4 Observation of the Fracture Surface and the Interface

Fracture surfaces of the specimens for both the Ti/Mg and the SiC/Mg

composite were observed by scanning electron microscope (SEM, HITACHI S-450).

Cross sections parallel to the direction of fibers were observed by a scanning

electron microscope to characterize the interface after the deformation. Sur­

faces of the Ti fibers, the ones as-received and the ones taken out from the

composite by dissolving magnesium matrix with 30% nitric acid, were also ob­

served. Surface of the as-received SiC fiber was also examined.

3. RESULTS AND DISCUSSION

3.1 Pull-out Test

Pull-out test was carried out to

evaluate the interfacial strength

between the magnesium matrix and the

titanium rod. The titanium rod was not

pulled out from the magnesium matrix

and fractured at the exposed part for

all specimens prepared, which resul t

suggests the strong interfacial bonding

strength. Since pull-out of the titani­

um rod did not occur even for the

depth of 3mm, the lower limit of the

in terfacial shear stress was eval ua ted

using Eq.(1).

(1Ti=2.sXlrTi (1)

where (1 Ti and rTi are the tensile

strength and the radius of titanium rod,

respectively, • s is the interfacial

shear stress, and X is the length of

interface along the rod (equal to the

depth z in Fig.!). Using measured (1 Ti

value 41kgf/mm2, the value of • s was

evaluated to be 10.3kgf/mm2, fairly

large compared with that of steel wirel
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epoxy resin composite, 1kgflmmZ.(lQ) The value of 10.3kgf/mmZ was applied to the

interface between the titanium fiber and the magnesium matrix because tensile

strength of the fiber annealed at 973K in Ar was the same as that of the rod

(Fig.Z). As a consequence, the critical length of the titanium fiber (ct» O.Zmm) was

calcula ted from Eq.(Z).

lc = O'Tirf/or s (Z)

where lc is the critical length and r f is the radius of the fiber. The titanium

fibers in the composites prepared were found to be long enough compared with

the critical length, 0.3mm, calculated by Eq.(Z).

3.Z Tensile Test

Tensile strength of the Ti/Mg composites was improved with increase of Vf

as shown in Fig.3. The elongation, on the other hand, increased at first with

Vf , but decreased beyond the Vf of 10%. With increase of Vf , more shrinkage

cavities tend to be introduced in the magnesium matrix when high pressure is

not applied, and may cause a decrease of elongation. Fig. 4 shows that the
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experimental values of tensile strength were larger than the values calculated

by the rule of mixture, Eq.(3).

CT * = (l - Vf) CT m + Vf CT f (3)

where CT * is the tensile strength of composite, and the subscripts f and m

denote the fiber and the matrix.

SiC fibers, on the other hand, were pulled out from the magnesium matrix in

tensile test, probably due to the poor wettability between the fiber and the

matrix.

It is well known that the tensile strength of composites reinforced with

fiber is lower than that evaluated from the rule of mixture not only in the

case of ceramic fiber such as SiC whose strength scatters, but also in the case

of metal fiber. The tensile strength observed in the present study, however,

was rather larger than that of the rule, which suggested formation of some

strong products formed by interfacial reaction.
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ti tanium fiber embedded in the magnesi-

surface wedge effect.

SiC fiber, (b). Interfacial bonding

strength with the titanium fiber is,

therefore, expected to be much better

than that with the SiC fiber owing to

3.3 Microscopic Observation

Scanning electron micrographs of the interface and the fracture surface of

Ti/Mg composite (V f14?,) and SiC/Mg (V flO%) are shown in Fig.5. Fibers were not

distributed uniformly over the cross section. Around the fibers SiC/Mg compos­

ite showed brittle fracture surface while Ti/Mg composite did not, probably

because wettability between SiC and magnesium was poor. The Ti/Mg composite of

4.9%Vf , having a good· elongation, showed more ductile fracture surface than the

one of 14%Vf' For the specimen of 14%Vf' fibers distributed inhomogeneously in

the cross section and Vf was no t less than 40% in some region, which fact may

cause generation of shrinkage cavities and stress concentration followed by a

decrease of elongation.

Scanning electron micrographs of

the surface of Ti and SiC fiber are

shown in Fig.5. Surface of the as­

received Ti fiber, (a), was fairly rough

compared with that of the as-received

um matrix was covered partially with a Fig.4 Tensile strength vs. Vf plot of

porous layer some dozen ~m in thick- Ti/Ng composi teo Straight I ine is

ness, which was expected to cause evaluated by the rule of mixture.
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Fig.S Scanning Electron micrographs of fracture surface.

(a) Ti/Mg composite, (b) SiC composite.

Fig.6 Scanning electron micrographs of surface of fiber.

(a) as-received Ti fiber, (b) as-received SiC fiber,

(c) exposed surface of Ti fiber in the neighborhood of fracture surface.

strong interfacial bonding, and a few fine cracks running across the tensile

axis was observed in the neighborhood of the fracture surface (Fig.6c).

The interface between fiber and matrix was observed in the cross section

parallel to the direction of fiber (Fig.7). In the Ti/Mg composite the matrIx

was sticked firmly to the ti tanium fiber. while in the SiC/Mg composi te the

wettability between fiber and matrix was found to be poor.

5. CONCLUSION

(1) Wettability between the titanium fiber and the magnesium matrix was fairly

good. The interfacial bonding strength estimated by the pUll-out test was
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Fig.7 Scanning electron micrographs of the interface.

(a) Ti/Mg composite. (b) SiC composite.

larger than 10.3kgf!mm2, much larger than that of steel wire/ epoxy resin

composi teo

(2) Tensile strength was improved with increase of fiber volume fraction Vf. but

elongation decreased beyond 10% of Vf .

(3) The Ti/Mg composi te showed higher stress levels than that expected from the

rule of mixture.

(4) Existence of chemical reaction band some dozen /.Lm in thickness was found

by the scanning electron microscopy.
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