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Synopsis

Renumbering algorithms commonly in use for the band

solver are generally applicable for any kind of linear

equations, and, therefore, we may say that they cann't

effectively utilize the characteristics of the finite

element mesh. In this paper we investigate the

characteristics of the finite element mesh systems, and

introduce them into Taniguchi-Shiraishi Algorithm which

already introduced some properties of FEM mesh systems.

And through several numerical experiments it is proved

that this improved algorithm is one of the fastest one.

1. Introduction

By the application of Finite Element Method we oftenly encounter

to solve a large sparse set of linear equations

A x = b (1 )

, and as its solver Band Matrix Method is most commonly used. But,

since the efficiency of the solver (i.e. the execution time and memory)

wholly depends on how we can decrease the half bandwidth of A in eq.(l),

a number of renumbering algorithms have been proposed in the last

decade[1,2,3,4]. But, we may say that all of them are proposed for

general purpose but not only for the finite element models.

On the other hand, the conditions required for the renumbering

algorithm are 1). less execution time and 2). better result. Then, it

is hopeful that the introduction of the characteristics of the finite
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element mesh systems may improve above two conditions, even if the new

algorithm can be applied only for the finite element mesh.

For the general purpose renumbering algorithms only the connect­

ivity relationship between vertices in a graph obtained from A matrix

is used, and, then, for the finite element mesh what kind of addition­

al informations are allowed to use? Since FEM is applied only for

the problem with boundaries and the vertices on the boundaries are

placed by the analyst, himself, they are easily distinguished from the

residuals. That is, the matter that the vertices in the graph may be

divided into two groups is the first information. Second information

is that the finite element mesh system is rather systematic and simple

comparing to the graph obtained from general linear equations, because

the mesh patterns used in FEM have the restrictions of numerical and

discretization errors.

Among these two additional informations the first one is already

introduced in the renumbering method by Taniguchi and Shiraishi[Sl,

and they proposed a quite different starategy for minimizing the band­

width. Then, in this paper the second information is introduced in

their algorithm and its improvement is tried. The result of this

improvement is that the execution time decreases to about one half of

original one and that the obtained half bandwidth is as good as the

original one gives.

2. Taniguchi-Shiraishi Algorithm

The half bandwidth, HBW, of A matrix in eq.(l) is expressed as

HBW
n

max (j - i)
i=l

(2)

, where j is the column number of the last non-zero element in the i­

th row. If we use a graph obtained from A matrix, then

HBW = max ! j - i
v. E adj. v.

J 1

(3 )

, where v. and v. are vertices labeled "i" and "j", respectively, and
1 J

the relation of v. E adj. v. indicates that v. is a member of vertices
J 1 J

adjacent to vi'

In order to minimize HBW, row and column permutations are neccessary

for eq.(2), and vertex-renumbering for eq.(3). That is, the minimi­

zation requires numerous repetitions of above procedures.
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But, according to [6], the minimum value of HBW is decided by one of

the characteristics of the graph, itself.

Here, we define a term called "Level Structure" for the explanation

of the property which determines min. HBW [4]. A level structure of

a graph G(X,E) is a partition

of the node set X such that

adj. (Li ) C Li - l U Li+l' o < i < £

( 4 )

( 5)

( 6)

The number £ is called the length of the level structure, and the

width w(L) of the level structure is defined by

Then,

w = max {I L. IIL. E L}
1 1

HBW ex W

( 7)

( 8)

That is, since the width of the level structure determines the half

bandwidth, how to minimize the width is almost equivalent to the

minimization of HBW.

Cuthill-McKee algorithm which is the most popular method is as

following: At first, select vertices which satisfy a condition required

by the user, and construct as many level structures from each selected

vertex as the number of selected vertices, and choose one level

structure which gives the smallest width among them.

On the other hand, well-known Gibbs-Poole-Stockmeyer algorithm is

as following: At first, find out two vertices which locate at both ends

of the longitudinal axis of the graph, and construct two level structures

from them, and reconstruct only one level structure by using them as

its width is minimized.

Let's consider above two methods on a finite element model of a

two-dimensional continuum like a plate. Since the condition of the

starting vertex in Cuthill-McKee algorithm intends to find out appro­

priate vertices on the boundary, we may say that C-M Algorithm,too,

constru8ts level structures from end of graph as G-P-S algorithm'does.

But, successive construction of Li from Li - l or Li +l oftenly enlarges

the width of the obtained level structure. Therefore, G-P-S algorithm

has the step to reconstruct level structure. Anyhow, both of them

aim to find out the width of the graph by successive construction of

level structure from the end of the longitudinal axis of the graph.
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since it is evident from eq.(8) that the half bandwidth is deter­

mined by the width, we may directly search the width if possible.

Assume the level structure of a finite element graph obtained as

L {LO' Ll , L2 , ... , LR,L

Then, most of Li in L include, at least, two boundary vertices which

are vertices located on the boundary. Therefore, from the definition

of the width,. the width of the level structure ~_ncludes the maximum

number of vertices among which, at least, two are the boundary vertices.

Let g(O) be the boundary vertices, and let's construct the level

structure from g(O) as following;

g = {g(O), g(l), g(2), , g (r), g (r+1) =IO} ( 9)

From a vertex in g(r) ,namely u l ' we reconstruct new level structure

g '= {g' (0) =ul' 9' (1), g' (2), ... , g' (r I ) } (10)

Step 8

t
5+1 s+r+l

Step 1

SH

Step 2 Step 9-Step 10

+ 8 •

cD·au
u3 Bq 5 s+r

Step 3 - Step 5 Step 12 -13

L(1 )

gil) g(o) Let L(2)

'I"~""~""'
~~

Fig.l Taniguchi-Shiraishi Algorithm

Construct a level struc­

ture from g(O) as shown

in eq. (9) .

Step 1.

ALGORITHM

, where g' (r') is the first set of vertices which includes more than

two boundary vertices, namely u 2 and u
3

• Then, the shortest path

connecting u 2 ' u l and u
3

in this ordering may locates at the widest

portion of the graph, that is, it may coincide the width of the level

structure which governs the minimum half bandwidth.

Above idea for searching the

width of a level structure is direct-

ly introduced in the renumbering

method by Taniguchi and Shiraishi

as following. As the input data

we prepare not only the connect­

ivity between vertices but also

additional data, that is, the number

of boundary vertices g(O) which are

numerically ordered clockwisely

from an arbitrarily selected vertex

, labeled "1", and the imaginary

connectivity for vertices in other

boundaries. This algorithm is

in Fig.1.
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Step 3.

Step 2.

Step 6.

Step 5.

Reconstruct a level structure from u
l

which is selected

among the vertices in g(r).

Divide all boundary vertices in g' (r') into connected sub­

graphs,si' where i > 1, in general.

Search two connected subgraphs, namely Sand S , for which
p q

!b-b ' ! has the maximum value, where band b ' are the number

of a vertex belonging to Sand S , respectively.
p q

Select middle vertices, namely u 2 and u 3 ' from Sp and Sq'

respectively.

Search the shortest path connecting u
2

and u
3

through u
l

.

We call this shortest path Lc.

Remove all imaginary connectivity for boundaries.

For both sides of Lc, construct level structures from LCi

{L' (n '), L' (n I -1), '" , L' (1), Lc, L (1), L (2), ... , L (m ') }

9. Renumbering for vertices in Lc.

10 and 11. Renumbering for all vertices in one side of Lc.

12 and 13. Renumbering for residual vertices.

Step 4.

Step 7.

Step 8.

Step

Step

Step

This algorithm has following merits comparing to other algorithms:

1). This method doesn't require the process to find out the starting

vertex which should locate on one end of the longitudinal axis of the

graph. 2). The portion of the graph which decides the half bandwidth

is, at first, searched in this algorithm, though others search it in­

directly by the construction of level structure from a starting vertex.

3. Improvement of Taniguchi-Shiraishi Algorithm

3-1. On Searching Level Structure

As obvious from the algorithm given in the previous section, it

mainly consists of the procedure of constructing level structure.

Therefore, if the procedure to get level structure is improved, then

it is expected that the execution-time is largely saved. For this

improvement, we introduce the characteristics of the finite element

mesh system mentioned in Section 1.

Typical finite element mesh system of 2-dimensional continuous

media consists of 1) triangular or 2) square configuration element.

Assume that the successive i levels are already obtained from LO
(see Fig.2 and 3), and we aim to search the next level, namely Li +l .

In T-S algorithm, all members for Li +l are found out by using the
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surely searched.

namely u , is 1)
a

the former case,

connectivity relations of each vertex in L
i

. But, in the case of Fig.

2, all vertices in Li +l may be found out by using about a half of the

number of vertices in L. which are denoted by o. Therefore, for get-
1

ting the level structure we require only the connectivity of ~LILil

vertices though the original method requires LIL. I vertices. If the
1

mesh system consists of only square element as shown in Fig.3, this

new method requires only about one third of the original method.

Above two examples are the discussion for regular finite element

systems, but the FE mesh system we encounter is generally irregular.

Therefore, we have to consider the procedure of constructing the level

structure for general triangular and also quadrilateral finite element

mesh system, but we treat only the former case in this paper.

Assume that successive i levels of the level structure are already

obtained. Therefore, we find all the member for L
i

+
l

from L
i

.

From the example of regular triangular mesh system, it is obvious

that every second vertex in Li are, at least, neccessary for searching

all member of Li +l . Hereafter, we call this procedure as ESVS (the

abbrebiation of ~very Second Vertex ~earching Method) . Since this

procedure is invalid for irregular mesh system, we modify it so as to

search all member of Li + l .

Assume that u & Li and v ~ Li +l , then v ~ adj.u from the definition

of the level structure. If ESVS is applied for L., any vertex in L.,
1 1

used for searching Li +l or 2) not used for it. In

all vertices in Li +l which are adjacent to u a can be

Therefore, we may investigate only for the latter

case.

Fig.2 Triangular Finite Element Mesh

~~---n::..-_-*--_----.:*---~:r----?lE-L.
1

~l--~----JI-----3"-----:.---.---~ L i +1

Fig.3 Quadrilateral Finite Element Mesh
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Case 1

Since the mesh system consists of only triangle elements, then

at least two vertices, namely w's, which are adjacent to u and v
a S

must exist and they must locate in L. and/or L.
l

. If u is the
1 1+ a

boundary vertex, then there must be only one w. Therefore, we have

to consider following two cases. (See Fig.4)

1). w E L.
1

2). wcLi +l
Case 1) If w=ua _ l or ua+ l ' then w

V s is surely searched from w. If

w is ua _2 or ua +2 ' then ua _ l has no

connection with L. l' For this
1+

case it is obvious that these

u
a

vertices should not be counted for

u
a

Fig.4 Two Cases

Case 2

ing

2. The

searching every second vertex in Li.

Case 2) The simplest case of this

type is illustrated in Fig.4,too.

v S- l and v S+l may be searched from

ua _ l or ua +l ' but V s is not searched

as far as u is not used. Froma
this example we may conclude that

if the number of vertices not yet

ordered in Li +l and adjacent to ua in Li is larger than two, we have

to use the vertex, namely ua ' for searching Li +l .

Let's call the number of residual vertices from ua as R-deg.ua .

Then, above considerations are summarized as followings:

1. The vertex in L. whose R-deg = 0 may not only be used for search­
1

Li +l but also not be counted for ESVS.

vertex in L. whose R-deg ~ 2 must be selected for ESVS.
1

The treatment of a vertex in L. whose R-deg = 1 is not yet
1

discussed. But, as far as we take ESVS procedure, whether this type

of vertices are selected for ESVS wholly depends on whether its number

is odd or even. Are all vertices for Li +1 surely searched by above

procedure? From above considerations;

1). V
s

must be connected to only one vertex, namely ua ' in Li ,

2). therefore, u must have more than three connectivities betweena
vertices in Li +l , and

3). all vertices except V
s

must be searched before vs' and, there-

fore, R-deg of ua = 1.

Fig.S illustrates graph~satisfying above three conditions. Then,

we conclude that some vertices for Li +l may not be searched by above

procedure based on ESVS.
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Case 2

Case 1

Fig.5 Exceptional Cases

In order to find out V s subject­

ing above conditions, it is obvious

that the strategy of ESVS must be

modified.

Let's denote the number of

vertices in L. and L. 1 which is
1 1+

adjacent to u by Deg.u. Then,
a a

the vertex v mentioned above is

adjacent to u which satisf~esa
Deg.u ~ 5 and R-deg.u = 1.a a

Above discussions about the

midification of ESVS result in as

followings:

1). ESVS may be used as the main

strategy for setting level

structure.

2). The vertices {u} of R-deg.u

=0 should not be counted for

ESVS.

3). The vertices {u} of R-deg.uj 2 must be additionally included in

1 must be

ESVS.

4). The vertices {u} satisfying Deg.u) 5 and R-deg.u

additionally included in ESVS.

From these results we can propose new algorithm for setting level

structure as following. Note that this algorithm is applicable 'only

for the triangular finite element mesh system.

Here, we consider the stage of finding Li +l = {vl ' v 2 ' ... , vk .

... , vS} from Li = {ul ' u 2 ' ••• , u j ' ... , uaL Then, this algorithm

is repeated untill all vertices ( or neccessary vertices ) in a graph

are searched. We set X=2 and Y=5 for triangular mesh system. '

New Algorithm for Constructing Level Structure

Step l. j=l. Find out {vi v E adj. u
j

}.

Step 2. c=O.

Step 3. j=j+l. If j=a, find out {v I v G adj. u.} and go to Step 10.
J

Otherwise, go to Step 4.

Step 4. Calculate Deg.u j and R-deg.u j .

Step 5. If R-deg. u
j
=0, go to Step 3. Otherwise, go to Step 6.

Step 6. c=c+l. If c=X, find out {v v E: adj.u.} and go to Step 2.
J

Otherwise, go to Step 7.
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Step 8.

Step 9.

Step 10.
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If R-deg.u. ~X, find out {v I v E:- adj.u.} and go to Step 2.
] ]

Otherwise, go to Step 8.

If Deg. u j ~ Y, go to Step 9. Otherwise, go to· Step 3.

Find out {v I v E adj.u.} and go to ~tep 2.
]

Li +l is obtained.
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3-2 Improvement of Residual Steps of the Original Algorithm

u l is arbitrarily selected in Step 2, but it should be selected

among vertices with maximum degree, because the excentricity of the

location of Lc should be excluded.

The procedure to get u 2 and u 3 inStep 4 and 5 is complicated,

and it requires a lot of judgement if there exist a lot of subgraphs.

We replace it by the comparison between middle vertices of every two

subgraphs.

Now, we should discuss on the input-data for interior boundary

vertices. It is obvious that the location of interior boundary

prevents the construction of level structure in Step 1 and 2. Thus,

imaginary connectivity relations are given for vertices in each

interior boundary. If there exist 0 interior boundaries and each
o

contains E vertices, then at least E[E. (E.+l)/2] imaginary connections
1 1

must be added to the actual connectivity relations. We replace it by

following procedure. For each interior boundary, give an imaginary

vertex which is connected to ~ll vertices in the boundary, because

this procedure requires only E2E i additional input data.

The steps from 8 to 13 are replaced by following procedure.

After the setting of Lc all member in Lc are renumbered from "1", and

all vertices in one side of Lc are successively renumbered as each

level is obtained. After the last level of the side is obtained,

the numbering is reversed, and successive renumbering is proceeded

for the other side.

4. New Renumbering Algorithm

The input data are 1). the number of vertices N, 2). the number

of outer boundary vertices NLE, 3) the interior boundary vertices,

and 4) . the connectivity relations between all vertices. Furthermore,

we give imaginary vertex for each interior boundary and also give

the imaginary connectivity between the imaginary vertex and all vertices

on the boundary.
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Algorithm

Step 8.

Step 3.

Step 7.

Step 4.

Construct level structure from the outer boundary.

Search a vertex in the last level which has the maximum degree

among them, and denote it u
l

.

Construct level structure from u
l

till the boundary vertices

are included for the first time.

Divide all boundary vertices in the last level into connected

subgraphs. If there exists only one subgraph, obtain one

more level.

Search the middle vertex for each subgraph, and we obtain

a set of middle vertices {b.}.
J

Find out two vertices, namely band b , which minimizex y
Ix-yl-NLE/21, and denote them u 2 and u

3
' 'respectively.

Search the shortest path, Lc, connecting uz, u
l

and u
3

' and

give labels for them from "1".

Search the first level set for one side of Lc, and give them

the successive labels. Repeat the level setting and labeling

procedure till all vertices on one side of the graph are

labeled.

Step 9. Give the reverse renumbering to all vertices in the levels

Step 6.

Step 1.

Step 2.

Step 5.

obtained above.

Step 10. Above two steps are repeated for the residuals of the graph,

and the renumbering is completed.

Note that the new algorithm for constructing level structure

given in Section 3-1 is used in Step 1, 3, 8, 9 and 10 of above

algorithm.

For the evaluation of this algorithm, the author compared its

results with those by Cuthill-McKee algorithm which is most commonly

in use. This algorithm requires the starting vertex which satisfies

following relation on the degree,D,

D < D. + ~ D
" m~n m max

(11)

, where D. and 0 are the minimum and the maximum degrees in the
m~n max

graph, respectively, and "n" and "m" are the two parameters which

the user can determine. For our numerical experiments we take

1) .n=O, and 2). n=l and m=2, and they are called Method 1 and Method 2

, respectively. Among them, Method 1 is the fastest case for Cuthill

-McKee algorithm, because the starting vertex must satisfy the minimum

degree. Furthermore, the author modified Cuthill-McKee algorithm by

adding the procedure of finding the starting vertex which is proposed
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We call this modified method as Method 3.
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As the test examples r.hree graphs presenting finite element mesh

are selected, and the results are summarized in Table 1. And, the

obtained renumbering results are shown in Fig's 6, 7 and 8.

From these numerical experiments following results are obtained:

1). The execution time required by the new algorithm is almost a

linear function of the number of vertices, and it requires

only as long execution time as Method 3 requires.

2). The half bandwidth obtained by the new algorithm is the minimum

or near minimum value among them.

Since Method 3 is a modified method of Cuthill-McKee algorithm in order

to avoid the repetition of setting level structures, it may be thought

as one of the fastest algorithms. Therefore, this new algorithm

proposed in this paper is also one of them.

New Method Method Method
Algorithm 1 2 3

Ex.1 HBW 9 9 10 10
T(sec) 0.011 0.350 0.020 0.008

Ex.2 HBW 12 13 18 16
T(sec) 0.024 3.709 0.030 0.025

Ex.3 HBW 22 21 24 25
T(sec) 0.050 44.832 0.180 0.060

Table 1. Comparison of Results

Fig.6 Example 1

(42 vertices)

12
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Fig.7 Example 2 (99 Vertices)

Fig.8 Example 3 (l93 Vertices)
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5. Concluding Remarks
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From the numerical experiments of the new renumbering algorithm

in Section 4 it becomes obvious that the execution time depends almost

on how long execution time the procedure of setting level structure

requires. Therefore, it is expected that for quadrilateral finite

element mesh system we can design a new renumbering algorithm by

modifying Taniguchi-Shiraishi algorithm which requires about one third

of the execution time by original one. But, since the idea presented

in this paper is invalid for the system like 5-point difference method,

more saving of the execution time for it is impossible.
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