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Molecular Dynamics of Yukawa System (Dust Plasma)
with Deformable Periodic Boundary Conditions: Formulation
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(Received October 2 , 1995)

Molecular dynamics of the Yukawa system, the system of parti­
cles interacting via the Yukawa or the screened Coulomb potential, are
formulated for various statistical ensembles and external conditions.
The Yukawa potential smoothly interpolates the long-range Coulomb
and the short-range interactions by adjusting a single parameter, the
screening length. In order to reduce the effect of boundaries, the pe­
riodic boundary conditions are imposed and the deformations of the
fundamental vectors of periodicity are taken into account. Ewald-type
expressions for interaction energy, force, and kinematic pressure are
given explicitly.

1 Introduction

The statistical mechanics of particles interacting via the Yukawa potential has long been
studied as models of simple but non trivial system.[l] The potential has two parameters,
the charge and the screening length, and the latter gives a well-defined range of force: The
long-range (Coulomb) and the short-range forces can be interpolated by changing it. The
simplicity of its expression allows us to take advantage of mathematical transformations in
evaluating various statistical quantities.

As real systems where interactions are given by the Yukawa potential, we have classical
and quantum plasmas and charge stabilized colloidal suspensions. Recent addition to this
class is the dust plasma, the system of macroscopic charged particles suspended in plasmas,
which appears in plasma processes of semiconductor engineering. [2, 3] In order to transfer
minute patterns of integrated circuit onto the surface of substrates, we employ the method
of lithography and we have dust plasmas in etching process in reactive plasmas excited by
radio-frequency electromagnetic waves. One can take images of particles (dust) in these dust
plasmas easily by optical method and formation of lattices has been observed recently.
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Molecular dynamics is a powerful method to analyze dynamic and also static properties
of particle systems to microscopic scales. The finiteness of the simulated system, however, is
still the main difficulty in interpreting the results and the statistical ensemble and boundary
conditions have to be carefully examined.

The purpose of this paper is to describe some mathematical expressions which are in­
dispensable for analyses of Yukawa system by molecular dynamics. They are obtained by
straightforward but tedious manipulations and will. be useful for related numerical analy­
ses. We first review application of various statistical ensembles and then derive expressions
specified to Yukawa system.

As external conditions, we consider both (1) the case of bulk system with constant volume
or under constant pressure and (2) that of the system confined in one direction with constant
volume or under constant pressure in remaining two directions. In the first case, we impose
periodic boundary conditions in three directions and in the second, in two directions. In
order to reduce the effect of boundary conditions on dynamics of the system, we include the
deformation of fundamental vectors of periodicity in our formulation.[4, 5]

2 Formulation of Molecular Dynamics for Microcanonical Ensem­
ble

We here summarize molecular dynamics for the microcanonicalensemble. In what follows,
the dot denotes the time derivative

d
- dt'

In order to impose the periodic boundary conditions, we express the coordinates of a particle
as

r= h·x (2.2)

in the case of periodic boundary conditions in three dimensions. Here h is a tensor composed
of fundamental (column) vectors a, b, c;

h=(a,b,c). (2.3)

For Yukawa system with two-dimensional periodicity {P} in the xy plane, we define h as
2 x 2 tensor and express the coordinate

or

as

r = (R,z)

r = R+zz

R=h·X.

(2.4)

(2.5)

(2.6)

2.1 Dynamics with fixed periodic boundaries

We first consider the simplest case where the vectors representing the periodicity are fixed.
The Lagrangian is given by the standard form as

N m .
.c({ri, ri}) =E-;fri . ri - U({ri}), (2.7)
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where U ({ri}) is the potential energy, and we have naturally
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Equations of motion are given by

or

The momentum is defined by

and the Hamiltonian is given by

~ (~~) - ~~ = 0,

d2 {)

mi dt2ri = - {)ri U.

(2.8)

(2.9)

(2.10)

(2.11)

1
1i = ~ 2m. Pi · Pi + U({ri})'

I I

We have the conservation of total energy in the form

2.2 Dynamics with deformable periodic boundaries

2.2.1 Periodicity in three dimensions

(2.12)

(2.13)

A method to take the deformation of fundamental vectors of periodicity is to rewrite the
Lagrangian into the form

where

({ '} .) ~ mi·t . ({}) W [·t·J£ Xi,Xi ,h, h = G12Xi' G· Xi - U h, Xi + 2Tr h ·h ,

G = ht . h.

(2.14)

(2.15)

The positive parameter W corresponds to the mass of the frame of coordinates. The value of
W is arbitrary in principle but to be optimized in practice. In this case, velocities are defined

by
(2.16)

The equations of motion are given by

and

or

and

d ( {)£ ) {)£ _ 0
dt {)h

a
/3 - {)ha /3 - ,

d d {)
m·-G· -x· = --U

I dt dt I {)Xi

(2.17)

(2.18)

(2.19)

(2.20)
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Tensors n and (J are given respectively by

n = ~{t mi (h· Xi) (h. Xi) - ~ t L (rij - p) (rij - p)8v (Irij - PI)} + no,
va i=I 2 i,j=l P Irij - pi 81r ij - pi

if.j

no = _ N L,pp8v(p)2va p p 8p ,
and

(J = va (htt 1
•

Here va is the volume of the unit cell and v(r) is the interaction potential.
The momenta are defined by

and

f-L = Wh,

and the Hamiltonian is given by

The conservation of Hamiltonian is written as

2.2.2 Periodicity in two dimensions

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

In this case, h, G, and (J are 2 x 2 tensors defined similarly to the case of three-dimensional
periodicity. The Lagrangian is given by

. . N m" . N m· W
.c({Xi, Zi, Xi, zil, h, h) = L -2IX~ . G . Xi + L -2

1 ZiZi - U(h, {Xi, Zi}) + -Tr [ht . h]. (2.28)
i=l i=l 2

Velocities in two dimensions are defined by

(2.29)

Equations of motion are given by

and

or

!i ( 8.c ) _ 8.c - 0
dt 8ha !3 8ha !3 - ,

d d 8
m·-G· -X· = -'--U

1 dt dt 1 8Xi '

(2.30)

(2.31)

(2.32)

(2.33)
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and

and
, N PP &

no = - 2VQ liD P &pv(P).

(2.34)

(2.35)

(2.37)

3 Dynamics with Deformable Periodic Boundaries under External
Pressure

The external pressure Pext(t) is taken into account by adding

- Pext(t) det h (3.1)

to the Lagrangian. Here det h is the volume of our unit cell. The Lagrangian is then written
as

and

or

£({Xi, xd, h, h, t) =E~iX~ . G. Xi - U(h, {xd) + ~Tr [ht . h]- Pext(t) det h.

Equations of motion are given by

d (&£) &£-0
dt &Xi - &Xi -

d ( &£ ) &£ _ 0
dt &ha{3 - &ha{3 - ,

d d &
m·-G· -x· = --U

2 dt dt 2 &Xi

(3.2)

(3.3)

(3.4)

(3.5)

and

and
J.L = TVh,

In this case, the conservation of Hamiltonian is written as
d d
dt'H. = det h dtPext(t).

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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4 Dynamics at Constant Temperature with Deformable Periodic
Boundaries under External Pressure

or

In order to simulate the canonical ensemble, we define the virtual time t' by

t= I'd:' (4.1)

(5.1)

dt'
dt = - (4.2)

s
and consider the dynamics of a virtual system[6, 7] whose Lagrangian £' is given by

£'({x'. x"} h' h' s' s' t') = ~ mj s'2x'~ . G' . x'· + W s,2Tr [h't . h']z, z, , , " .!-t 2 % % 2
%=1

+ ~ ;,2 _ U(h', {xa) - Pext(t') det h' - gkBTlns'. (4.3)

Here Q is the mass related to the heat reservoir. Though the value of Q does not affect the
results so far as one follows the dynamics for a sufficiently long time, it needs to be optimized
for practical purposes. According to whether the time average is taken over the virtual time
or the real time, we set the parameter 9 to be equal to 3N + 9 + 1 or 3N + 9, N being the
number of particles in the unit cell.

5 Ewald-Type Formulae for Yukawa Lattice Sum

In this section, we summarize some Ewald-type expressions for lattice sums [8] in the
Yukawa system. In order to take the deformaton of fundamental vectors, we calculate the
pressure tensor in addition to interaction energy and force.

5.1 Interaction energy

5.1.1 Periodicity in three dimensions

We rewrite the Yukawa potential into

~2 exp( -Kr) , J;q2 (foG +1Goo
) dpexp (_r2p2 - 4

K
;2) ,

and Fourier-transform the long-range part of the lattice sum:

1
I: I Iexp (-Kip - rl)
p p-r

2 (fG foo) ( 2 2 K
2

)= ~ Vi Jo +JG dpexp -Ip-rl p - 4p2

=~ 21p1_ rl {exP(K/p - r/)erfc (G/p - rl + 2~)

+ exp (- Kip - rl) erfc (Glp - rl - 2~) } + ~ ~ g2~K2 exp ( - g24~2K2 + ig . r) . (5.2)
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Here {g} is the reciprocal lattice. The interaction energy between a particle and its own
image or the Madelung energy of lattice {p} is given by
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4>~ = lim [:L I 1 Iexp(-Klp - rl) - !eXP(-Kr)]e r-+O p p - r r

=~/2~ {exp (Kp) erfc (Gp + 2~) + exp (-Kp) erfc (Gp - 2~)}

+~ f g2~K2 exp (~924~;2) + Kerfc C~) -~Gexp (-4~2) .

The interaction energy U is thus given by

U 1 N 1 N
2" = - :L:L exp( -Klrij - pI) + -4>0
e 2 iopj P Irij - pi 2

= -2
1

E:L 21 1 I {exp (Klrij - pI) erfc (Glrij - pi + KG)
iopj P rij - P 2

+exp (-Klrij - pI) erfc (Glrij - pi - 2~) }

1 41r ( g2 + K
2) N .+2Vi :L 2 2exp - 4G2 :Lexp(zg· rij)

o g 9 + K i,j

+~ ~ I 2~ {exp (Kp) erfc (Gp + 2~) + exp (- Kp) erfc (Gp - 2~) }

+~ [Kerfc (2~) - ~G exp ( - 4~2 ) ] .

5.1.2 Periodicity in two dimensions

For Yukawa system with two-dimensional periodicity {P}, we have

1
~ IP - rl exp(-KIP - rl)

=~ 21p
1
_ rl {exP(KIP - rl)erfc (GIP - rl + 2~)

+ exp (-KIP - rl) erfc (GIP - rl - 2~) }

+Sl :L _/: 2exp(iK oR)
-OKVJ<+K

(
. . ";'-l\.""""2'+-K-""2

x exp(y'J<2 + K2lzl)erfc( 2G + Glzl)

. y'J<2 + K2 )
+ exp(_y'J<2 + K2lzl)erfc( 2G - Glzl) 0

(5.3)

(5.4)

(5.5)

Here {K} is the two-dimensional reciprocal lattice and So is the area of the unit cell in two
dimensions. The interaction energy between a particle and its own image or the Madelung
energy of two-dimensional lattice {P} is given by

4>0. 1 1
- = lim{:L exp (-KIP - rl) - - exp(-Kr)}
e2 r-+O p IP - rl r
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= ~/2~ {exP(KP)erfc (GP+ ic) + eXp(-KP)erfc (GP - 2~)}

+ ;0 f JK~7r+ K2erfc (JK;; K

2
)+ Kerfc (2~) - ~G exp ( - 4~2) .

The interaction energy U is given by

U IN 1 N
2" = -2 L L I PI exp( -l1;l r ij - PI) + -2</>0
e i:/=i p rij-

= ~ ~~ 21P ~ rijl {exp (11;1P - rijl) erfc (GIP - rijl + 2~)

+ exp (-KIP - rijl) erfc (GIP - rijl- 2~)}
1 7r .

+250 t.1 f JK2 + 11;2 exp(zK . R ij )

X (exp(J1(2 + K21Zijl)erfc (JK;; K
2

+ GIZijl)

+ exp(_J1(2 + K21zijl)erfc (JK;; K
2

- G\Ziil))

+~ ~/2~ {exP(KP)erfc (GP + 2~) + exp( -KP)erfc (GP - 2~)}

+N [K erfc (..!5:-) - .l:-G exp (_~)]
2 2G Vi 4G2'

5.2 Force

5.2.1 Periodicity in three dimensions

We first note that
8 t 8

-U=h ·-U.
8Xi 8ri

The second factor is calculated as

_~U = L L (ri - rj - p)
8ri e2

j(::j;i) p Irij - pl3

x [~(1 - I1;l r ij - pI) exp (11;l r ij - pI) erfc (G1rij - pl + 2~)

+~ (1 + Klrij - pI) exp (-I1;!rij - pI) erfc (Glrij - pl- 2~)

+~Glrij - pi exp ( -G
2lr ij - pl2 - 4~2)]

- 2~0;= g2~11;2igexp (_g24~211;2) [~exP(ig. r ij)] .

5.2.2 Periodicity in two dimensions

(5.6)

(5.7)

(5.8)

(5.9)

For Yukawa system with two-dimensional periodicity {P = h· N}, we have

8 t 8
8X

i
U = h • 8R

i
U, (5.10)



Molecular Dynamics of Yukawa System ( Dust Plasma) 83

and

a u
- 8Ri e2

au E E Zij

j(::j:i) P Irij - PI3

x [~(1 - I>:lrij - PI) exp (1):lrij - PI) erfc (Glrij - PI + 2~)

+~ (1 + I>:lrij - PI) exp (-l>:lrij - PI) erfc (Glrij - PI- 2~)

2 (2 2 1>:2 )]+y'7rGIrij - PI exp -G Irij - PI - 4G2

- 8
1 E 7r t sign(Zij) exp(iK . R ij)
o K j

(
VI<2 + 1>:2

X exp(VI<2 + 1>:2 IZij I)erfc( 2G + GIZijl)

VI<2 + 1>:2 )
- exp(-VI<2 + 1>:2lzijl)erfc( 2G - GIZijl) .

(5.11)

(5.12)

5.3 Pressure Tensors

5.3.1 Periodicity in three dimensions

We here give Ewald-type expressions for tensors related to the deformation of unit cell:

(r-p)(r-p){ a 1 }
~ Ir - pi air - pllr _ pi exp (-l>:lr - pI)

(r- p )(r- p ){l (I>:)= - ~ Ir _ pl3 2" (1 - I>:lr - pI) exp (1):1r - pI) erfc Glr - pi + 2G

+~ (1 + I>:lr - pI) exp (-l>:lr - pI) erfc (Glr - pl- 2~)

2 (2 12 1>:2 )}+-Glr - ple:x.'P -G Ir - p --y'7r' 4G2
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2: pp .{~~ exp( -I\;p)}
#0 P 8pp

= - p~o ~r; {~(l-l\;p)exP(l\;p)erfc (Gp+ 2~)

+~ (1 + I\;p) exp (-I\;p) erfc (Gp - 2~) + ~Gpexp (_G2p2 - 4~2)}

+~o ~gg(92 :1r1\;2)2 (924~21\;2 + 1) exp (_924;;2) .
1 41r ( 9

2
+1\;2)

-I Vi 2: 2 2 exp - G2 .o g 9 +1\; 4

The tensor n is thus given by

N

von = 2: mi (h . Xi) (h . Xi)
i=l

_~ E2: (rij - p)(rij - p) 8v (Irij - pI) + VOno
2 i,j=l P Irij - pi 81r ij - pi

i::pj

(5.13)

(5.14)

(5.15)
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5.3.2 Periodicity in two dimensions

For Yukawa system with two-dimensional periodicity {P} we have

(r - P) (r - P) {a 1 }
~ Ir - PI air - Pllr _ PI exp(-Klr - PI)

(r - P)(r - P) {I (K)
= - ~ Ir _ PI3 2(1- Klr - PI) exp(Klr - Pl)erfc Glr - PI + 2G

+~ (1 + Klr - PI) exp (-Klr - PI) erfc (Glr - PI- 2~)

+~Glr - PI exp (-G2Ir _ PI2-~)}Vi' 4G2

1 1 00 81r (g2 + K
2

) (g2 + K
2

. )
+ So ~ 21r Loo dgzgg (g2 + K2)2 4G2 + 1 exp - 4G2 + zg . r

1 1 100 41r ( g2 + K
2

. )
-I-

S
L -2· dgz 2 2exp - G2 + zg . r ,

o K 1r -00 9 + K 4

where

and
gg = KK + Kgzz +gzzK +g;zz.

The equation of motion for h is related to the 2 x 2 part of the above tensors:

(R - P)(R - P) {a 1 }
~ Ir - PI air - Pllr _ PI exp(-Klr - PI)

= - ~ (R -1:2~3- P) {~(1- Klr - PI) exp(Klr - PI) erfc (G1r - PI + 2~)

+~ (1 + Klr - PI) exp (-Klr - PI) erfc (G1r - PI- 2~)

2 (2 2 K
2

)}+-Glr-Plexp -G Ir-PI --Vi 4G2

1 . 1 100 81r (g2 + K
2

) (g2 + K
2

. )
+ So ~ 21r -00 dgzKK (g2 + K2)2 4G2 + 1 exp - 4G2 + zg . r

. 1 1 100 41r ( g2 + K
2

. )
-ISO~21r _oodgZg2+K2exp - 4G2 +zg·r .

The integrations with. respect to gz give

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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and

(5.21 )

The tensor related to the Madelung energy is similarly calculated as

PP 0 11;0 p oP P exp( -K,P)

= - L: P~{~(l - K,P) exp(K,P)erfc (GP + K,G)
P;iO P 2 2

+~(1 + K,P) exp(-K,P)erfc (GP - 2~)

2 (2 2 K,2 )}+ .,fiGPexp -G P - 4G2

1 1 joo 811' (g2 +K,2 ) (g2 +K,2)
+So ~ 211' -00 dgzKK (g2 + K,2)2 4G2 + 1 exp - 4G2

1 1 joo 411' ( g2 + K,2)-I-L:- dg expSo K 211' -00 z g2 + K,2 4G2 . .

6 Conclusion

(5.22)

We have summarized mathematical expressions which are necessary for molecular dynam­
ics of Yukawa system with deformable periodic boundary conditions in three or two dimen­
sions. As statistical ensemble, both microcanonical and canonical ensembles are considered
with constant volume or under constant pressure. Simulations of bulk system[9] and those of
finite system in external p~tential are in progress.
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