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Synopsis

Within the framework of the hydrodynamic guiding­

center approximation, we have investigated such quantum

effects as the diffraction correction and the symmetry

effect on the classical version of the particle diffu­

sion coefficient ~ across a dc magnetic field through

the temperature-dependent pseudo-potentials. Analytic

results are explicitly given with recourse to the

order-of-magnitude estimate of a set of parameters

pertaining to a laser-driven plasma.

1. Introduction

with the advent of laser-driven plasmas, attention has been paid

to their transport properties, such as the thermal and the diffusion

coefficients. Recently, it was proposed [1] and experimentally mea­

sured that, in the underdense region of a pellet, noncolinear density

anq temperature gradients may develop Mega-gauss sized VnxVT magnetic

fields Bduring a time interval of several tens of picoseconds.
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In a laser-spot configuration currently discussed, VT is directed

radially inward to the axis of a laser beam, while Vn points axially

into the target face. An induced magnetic field thus turns out to be

troidal and varies over a characteristic scale size of the spot,

because the source is confined nearly within the width of a density

jump or an ionization layer. For instance, a composition jump may

produce Mega-gauss sized magnetic field localized in a region of a few

]lm in diameter.

From the practical theoretic point of view, the most important

transport coefficient, in relation with the above mentionned huge B

values, is the thermaL conductivity, across the magnetic lines of

force, which is expected to control a deleterious outward heat flow.

The thermal conductivity is known to be a many-body problem which is

far more involved than the particle diffusion coefficient DL itself.

We may, however, conjecture that in a large-field limit PL<A
D

, or

equivalently, n.>w ., the two lie on an almost equivalent footing.
'1- p'1-

Moreover, in case where n.<w ., ~ appears as an upper limit to the
'1- p'1-

heat conductivity. In fact, a few available pieces of numerical and

experimental data lend to support a heat flow intermediate between

a Bohm-like (~l/B) and a classical (~1/B2) one. We may thereby expect

to be capable of drawing many useful informations from this more

accessible quantity DL • Within the framework of the three-dimensional

(3D) guiding-center (Ge) plasma model, Montgomery et al [2,3] and

Vahala [4] have worked out the hydrodynamic transverse diffusion

across B as well as the velocity-space diffusion along B.
In this work, we address ourselves to an evaluation of such

quantum effects as the diffraction correction arising from the

delocalization of charges due to the uncertainty principle through the

inequality X > e 2/kBT (X is the thermal de Broglie wavelength ofee ee
electrons) and symmetry effects originating in the Fermi statistics

operating within the electron component. The former diffraction

effect will be non-negligible only for small distances comparable to

the Bohr radius[5]. Therefore, the hydrodynamic modes (convective

cells, for instance) which convey most of the particle transport

across B are not affected by these quantum effects. Albeit small in

the underdense region of a laser-driven plasma, they are expected to
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increase near the critical layer and beyond it. For CO2 laser with

wavelength of 10.6 ~m, the critical density is roughly of the order

of 1019jcm3. The latter domain could become important in relation

with recent speculations about the possibility that self-generated

intense magnetic field may penetrate, frozen, into the denser region

because of a high conductivity prevailing in that region[6].

Sec.2 is essentially a review of the hydrodynamic formalism of the

diffusion coefficient D~ for the 3D guiding center plasma discussed in

detail by Montgomery et al [2,3] and by Vahala[4] .. Upon evaluating

the autocorrelation function between the transverse components of

fluctuating electric fields, the electron-electron, electron-ion and

ion-ion structure factors intervene automatically, accounting for the

above mentionned two quantum effects. They are derived in Sec.3 and

are used subsequently in Sec.4 in order to evaluate the quantum­

corrected diffusion coefficient. The last section is devoted to

concluding remarks.

2. Survey of the Hydrodynamic Formalism

By virtue of the Green-Kubo formalism for the linear response

theory, the particle diffusion coefficient ~ across B reads as

(1 )

in terms of the equilibrium canonical average of the 2-point

autocorrelation function for fluctuating electric fields. Since

discussions in the case of the 3D [2,3,4] as well as the extended

v-dimensional [5] GC plasmas have already been detailed in References

quoted, we content ourselves, for the commodity of presentation, to

outline the derivation. Taking for granted the existence of the

discrete sum

where ;(1) is the orbit of the test ion at time 1 and ignoring the

correlation between the position of the test ion and those of the
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background plasma particles, we arrive at the statistically factorized

result

(2)

Eq. (2) implies a salient feature of the present GC approximation, in

that the above two averages can be expressed in terms of the 2-point

electric field correlations, so that we can write

and

( 3 )

(4 )

where ~ .. indicates the sum over all particles of the species i and
~,J

j. In the three-dimensional case, the present approach amounts to
+

modeling the spatial diffusion of the test ion across B through small

increments ~(t) and the velocity-space diffusion along Bvia the

equations of motion

+
d..:t.J.

dt
= c and d,V;, ==~ Ell (t) .

dt m.i
(5 )

Notice that the initial position ~(O) may be set equal to zero, while

the initial velocity of the test ion is assumed to obey the Maxwell­

Boltzmann distribution. Let us also remark that, upon evaluating

<exp{ik'~(T)}> with the aid of the cumulant expansion [4] , we need an

approximation which renders tractable an expression with ~/ o.
Concentrating ourselves on the low-frequency long-wavelength parts of

the electric field spectrum[5], we may therefore expect that the free

streaming of the particles along the magnetic lines of force would be

dominant in destroying the electric field correlation between two

different time points. Thus, if we ignore EJI ' we obtain

(6)

performing the summation over i and j in eq. (3), we obtain
/.

..,. -+- 2 2 k2. k2'/"t%/2<E1(t)· E.t.(oJ >= (I.,:") n.e {it _1. H1 (k) i " J
V tI"lo -k4-
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(7)

( 8a)

where Vi (=lkBTlm i ) is the ion thermal velocity. Two functions H1 (k)

and H2 (k) denote appropriate combinations of the electron-electron,

electron-ion and ion-ion structure factors given, respectively, as [7]

L,2 2 2
Z2 - r<,,'Ve 7: /2

Ht(k)=_-[e (l+Z -nSu(k)+fLSe~{R))
u+zl Z

k2 2 2/
+ t uVi. r 2. (1+Z _ nSii(~) + nSeiJ/1,I}]

and

(8b)

where the structure factor S .. (k) has been introduced through the
1,J

relation [5]

in terms of the pair correlation function g~j (k). In the next section,

we shall evaluate explicitly these structure factors, in which terms

accounting for quantum effects appear. The diffusion coefficient D1
is calculated through the mean dispersion of the test ion [2,3,4]

(10)

with R~OO) = ~/2. Rl (t) obeys the second-order ordinary differential

equation

(11)

..
1<W

+ Eb~
h, ~n:/:o

22 2 2 2where E b = (4TI) e c niB VkV" The velocity-space diffusion coefficient,

VII' is given by

(12)
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with A= l/(neA;) the plasma parameter. In the limit of a large

volume, the discrete sums can be transformed to integrals through the

relations

and (13 )

For numerical integrations, it is more convenient to introduce dimen­

sionless quantities by the transformations

(14 )and
z ('\ 2 'f)l/1. R

~1T (~) _./. ./.

Wpi. A AE

where p= (2TIA n/L)2. L(=V1/ 3 ) denotes an average size of the toroidal

magnetized region of a plasma spot and w . and ~. are the ion plasma
p1- 1-

and the ion cyclotron frequencies, respectively. Substitution of

eqs. (13) and (14) into eq. (11) yields the non-dimensional equation

where b =A(fI,(l/A)

g-rr3/ Z 1't/z
(16)

As for the above equation, several remarks should be given. (1) The

transformations (14) ensure a rapid decay in T of the second term of

the right-hand side (r.h.s.), since the coefficient of T
2 in the

exponent is of the order of or larger than unity. They are thus more

advantageous than those used by Vahala, which give very small coef­

ficients of T
2 . Our procedure serves thus to shorten considerably

computation time upon numerical solution of eq. (15). (2) Since

Vahala's instructive reasoning [4] of splitting into two parts of the

y-integration in the second term of the r.h.s. of eq. (15), according

as whether y>(Alnl/A)2 or not, only results in an overestimation of

the y-integrals, we do not follow his procedure. (3) The upper limit

1 or Q ,in the first term of the r.h.s. indicates that the original ~-

integration is cut either at kJ. , = kn (the so-called fluid limit) ormax
at k1 ' = k

B
T/e

2
(the kinetic limit). As will be shown later, themax
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distinction into two cases of the first term on the r.h.s. does not

affect a result seriously, so far as a»l, condition typical of

laser-driven plasmas.

Once H
2

(x}andH
1

(x,y} are known, eq.(15} can be solved numer­

ically with the initial conditions z (O) = i (O) = o. Dl. is finally

determined by i(oo} through the relation

67

(17)

3. Quantum-corrected Structure Factors

In order to properly take into account such quantum effects as

diffraction corrections and symmetry effects through the quantum­

corrected structure factors S (k), S .(k) and S .. (k}, we start fromee e~ ~~

the pseudo-potentials [8] (see Appendix A)

and

2 _rlK 1 2-
.u. (r) = ..!!:.... (f - e ) + k.sTen 2 ell.H--- (-L) ]

ee r 1Tl1l.2 X

zl _fl.r/"'/..
Uej,(f)= __ (L-€ ),

r
2 2-

LL .. (r) = Z e
n r

(18a)

(18b)

(18b)

where ~= X jl2TI. For instance, the first term in u (r) representsee ee
the diffraction effect, while the second term stands for the symmetry

one. Two other expressions are self-explanatory. Our next task is to

evaluate explicitly S (k), S .(k) and S .. (k}. To this end, we firstee e~ ~~

recall the definition of S .. (k) given by eq. (9). In the limit of
~J

small A values, the structure factor S .. (k) can be explained through
~J

the linearized pair correlation function

(19)

where w~j(r} is the normalized potential of average force which, in

the present application, is no other than a resummed pseudo-potential
ijv 2 (r). Thus we have
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ij -in-r ij -i1-r ij
.£ f dr 4. Ir) e ~ ~ 0 +..!-JdT 1J

2
If) e "" b"t 0 -1--1..11

2
IR)V (/2 K, V K, V .

(20)

_ ij
In other words, s .. (k)-v 2 (k). The resummation of the pseudo-

1-J

potentials (18) has now to be generalized to the case of a multi-

component plasma[9]. Given n species of charged particles, the

resummed pseudo-potential v~j(r) is written as

(21 )

(22 )

In terms of the Fourier transforms in matricial representation,

eq. (21) can be put into the form

....... ~ ....- ~ ~-1
Y(k,) = lJ(k)· [ 1 + U(k)·C J ,

where [f(k) and V(k) are, respectively, the matrix composed of the

Fourier transformed bare and resummed pseudo-potentials. C = nSC. 0 •• ,
1- 1-J

with C.(=N./LN.) the relative concentration of the i-th species and
1- 1- 1-

S = 1 /k BT as usual. When a two-component plasma (i, j = electron, ion)

is concerned, elementary but heavy algebra yields the structure

factors as [8]

(23a)

(23b)

(23c)

n= 3 5/2 3 2where K= kA D, n= v2Tr'X/A D, 1:;= ZTr (ln2) n
e

1.. and (1,' = (Tr/4)n In2. The

parameter n2 reflects the diffraction correction, while the symmetry

effect is characterized by the parameter n' (=4Trn -X 3 ).
e

4. Evaluation of ~(oo) and Results
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We now proceed on to evaluate H2 (k) and H1 (k) which appeared in

the differential equation (15). For this purpose, we first devide the

structure factors in the classical and the quantum parts and retain

terms up to the order of n2 in the latter. Substitution of the

resulting expressions into eqs. (8a) and (8b) then yields

(24a)

(25a)

and

(25b)

In order to render eq. (15) more tractable, we integrate it once

over T from 0 to 00, after having multiplied both sides by 2;dT= 2dz.

Integrating the resulting expression over x and deleting terms

proportional to exp{-(m./m )T 2y/P} because of the large mass ratio
1.- e

m./m »1, procedure of neglecting the free streaming of electrons
1.- e

along B, we obtain

• 2. 1 Q, co. -(2+ 'Drn2.yIp
[z{oo)] ~ ~+-1 dy /t'./)! dr ~('r) e (26a)

Zpl/2. p 0-

where

flY) =_1[z{ en. Q+Y -It+y) en. (Q,+y)(t+f+Y) }
fY '1+"1 (t+~+Y)(f+Y)
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2-
_~[_ en (J,+Y + (1-'1)&' (Q,+Y)ll+'P+y) _ 2(1+:/)(_1 1_)J

2(1+"[,) P+'1 ll+(2+y){f+y) l+Q+Y l+'f+Y

and

o/l1+'1) ( I 0 I )}J]-ll+2y- d{I+Y») e Et[IX (J +1 +YJ] - Et[Oi(J+Q,+YJ] (26b)

~ ... ..!..[ (l+Z) en, Q,(l+£) + -..!ti-z erl,. a{!+p) + ll+ZZ) (_l l_)}
a It+Q,JF I+Z llTt;l)f I+P 1+(Z

I' 2 2 _dP _oJrt 2 _It'p _~((.
--"'-f {1+ Z-2. _ 2Z+Z-Z }(_e e_)_ .2t +2:-2,. (_e. e_)

1+2:. HZ; z{l-+zi· r ~ w+zi l+f 1+Q,

with E1 (x) the exponential integral[lOJ. Since an analytic form of

ZiT) in eq. (26) is unknown, we shall rewrite eq. (26) symbolically as

• 2. o.J • ,\
[~loo)J ~ ~ + (OI- D) z{oo/ (28a)

(28b)
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Then, ;(oo) is formally given by

(29)

,71

Here we remark that Vahala's approximation is tantamount to neglecting

the last term y;{oo) on the r.h.s. of (28a) with respect to two other

terms. This implies that the term; (oo) -; (T) is expected to be

negligibly small except for very small T values. In view of the fact

that f{y) is a well sharped function for small y values, there is no

guaranty that his subtle approximation be satisfactory. We rather

claim, that, in certain circumstances such as a laser-driven plasma,

the neglected last term y;{oo) could be of the same order of magnitude

as a;{oo). With this proviso in mind, we now evaluate a analytically.

Since y/P>l, we can readily carry out the T-integration to give

co b ) 1"1T? LIz. co II. (L/ZI d'T ;.(],+ 'l: 7 J =1. (-.K..) £ _L(__b_) (..!) r (3'1.-1-1)
o 2 2'1 11.=0 n! z{i 'I Z

(3D)

As for the y-integrations, some are elementary and others complicated.

As an illustrative example, we perform in Appendix B the integral of

the type fpQdyE 1 [a I (P + y) ] /y, which appears on the third line of

eq. (26b) .

Since a general expression for a is lengthy and is likely to

obscure a physical content involved, we shall first give an order­

of-magnitude estimation of all parameters characterizing both the

classical and the quantum contributions. In connexion with a laser­

produced plasma, we choose a set of parameters [1] pertaining to a

glass microballoon target currently used in Nd laser experiments.
21 -3 6They are: n = 10 cm , T= 500 eV, L= 10 flm and B= 10 Gauss.e

-6 6Correspondingly, we have P=5.4542x10 , Q=1.6657 X 10,

A=1.9473 x 10- 2 , a=3.9898 x 10 6 , n=4.6969 x 10- 3 , r;=4.1904Z x 10- 6

and a' = 1.2010 x 10-
5

• These values suggest that we could make use of

the inequalities Q»l and P«l, valid at least in the example of our

present interest, in order to obtain compact expressions for a and 8.



72 Yoichiro FURUTANI, Claude DEUTSCH, Marie M. GOMBERT and Yoshinori ODA

Neglecting terms of the order of l/Q, P, etc, we finally obtain

and

(). ~ 1 [ (l+2) en. i,... a 1?

(32)

where- use has been made of the identity I;; = Zrr 3 (ln2) 5/2n 1;3 = Z (rr/2) 3/2 x
e

(ln2)5/2 n 3/A, which indicates that the symmetry effect is, in the

present application, Zn/A times the diffraction correction. An

interesting remark on the order of magnitude of two quantities a and

S illustrates well the B-dependence of ;(00). While a is independent

of B, S depends on it only through the parameter a. Thus, whenever

a»l, S provides a minor correction to a-y, yielding a very weak Bohm

dependence by virtue of eq. (29). In this case, ~ becomes substan­

tially of the classical type through eq. (17) and quantum effects can

be practically neglected. An interesting situation could come about

with increasing S (or with decreasing a), in which case the hybrid

classical and Bohm diffusion may be observable. A condition under

which two quantum effects become important will be discussed in the

next section.

5. Concluding Remarks

So far, we have discussed the diffraction and the symmetry

effects on the hybrid Bohm and classical diffusion coefficient, within

the framework of the hydrodynamic guiding center approximation.

In close connexion with a laser-driven plasma, we have chosen

a set of parameters typical of a glass microballoon target currently
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encountered in Nd laser experiments. with the use of nondimensional

parameters obtained therefrom, we have evaluated explicitly two quan­

tities a and S which give an indication to the order of magnitude of

a required DJ.. Our main results are enumerated thus.

(1) The symmetry effect characterized by the parameter zn 3/A is,
2in the present application, Zn/A times the diffraction parameter n

The importance of the former thus crucially depends on a magnitude of

the ratio n/A. If this is small, the diffraction correction predom­

inates the symmetry effect. Now, it is instructive to show in which

domain of the parameter space (see Fig.l) the diffraction effect

becomes important. For our set of parameters, we obtain n2 = 2. 2061 x

10- 5 and n/A= 0.24120, indicating that two quantum effects are very
2weak. Since the dependence on n e and T of n is explicitly given by

(33 )

with [n ] in units of 10
20

/cm 3 and T in eV, the condition n2 >1
e

requires T~0.74265[n ]1/2. Thus, when [n ] = 10, T~2.9433 eV, which
e e

shows that the quantum effects will become important when a tempera-

ture is sufficiently low. We notice with reserve, however, that a

favorable situation can be realized in a strongly magnetized semi­

conductor even at a room temperature, for which the quantum-corrected

part of q can really compete with the classical part.

(2) As was discussed in Sec.4, ~ is of the classical type so

far as a»l, since S is negligibly small compared with a-yo When S

increases, however, the hybrid classical and Bohm diffusion is

expected to occur.

To conclude, we note that the parameter S calculated in the text

can be modified to include finite gyro-radius effects [11] by multi­

plying them with the factor {l + (w ./n.) 2} -1, so that S'\, l/B when
p~ ~

n .>w . (Bohm behaviour) or S'\, constant when n .<w . (plateau regime).
~ p~ ~ p~

From the numerical point of view, we only need to inject n , T, B. e
and L values, in order to implement the present evaluation of q.
We hope that such an argument may arouse some interest of code makers.
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104'------------------~---..,....,

PARAMETER SPACE

102
'-- ---l~__;....__.......'__I"'__ ...... ;.... ~

1021

Fig. 1

Parameter space pertaining to a laser-driven plasma. lnT is

plotted versus ln ne ' with T in eV. It, -X and AD are the plasma

parameter, the thermal de Broglie wavelength and the Debye length,

respectively.
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Appendix A

Survey of the Two-body Correlation Function

(AI)

The effective pair potential u . . (r) is defined, as a function of
1.-J

radial distribution function (r.d.f.), g . . (r), by
1.-J

the two-particle

[B= (kBT)-l]

A u:i(r) '" _ t,., a..·Cr)
I'" ~J If» •

g • . (r) denotes the usual two-body correlation function, in aN-body1.-J .

system, for two specified particles i and j. Expressed in terms of

the one- and two-particle density matrices, it is given by
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where

e1(i:~~) .. (xl eXll(-~Htlly>

and P2. (!;"y':ii, it,~) .. (x,yl exp (-~H1)1 «,1;)

HI and H2 denote, respectively, the one- and two-particle Hamiltonians,

+ + . I . . 1+ +1 dx, y, ••• are the partlc es posltlons, l' = X - Y , an

<5 •• = 0 when i 'I j (distinguishable particles),
1..-J

(A3)

<5 •• = 1 when i = j (indistinguishable particles).
1..-J

For a system of identical particles, two cases are to be

envisaged:

a. Particles with parallel spin (it it).

b. Particles with antiparallel spin (it i~).

In the first case, the particles are completely indistinguish­

able, and <5
itit

= 1. In the second case, the particles are distin­

guishable by their spin orientation, and 0iti~=O.

In several specific problems such as these convected with the

thermodynamic functions of the dense multi-component plasmas, it is

required to know the mean effective pair potential of identical

particles with different spin orientations. This can be obtained

from g . . (1') through the definition:
1..-J

When particles i and j have charges of opposite sign, their

r.d.f. ca~ be considered as a sum of two terms:

d,. (f) = t1 (r) + a. (r)
~~ ~b 4s ' (AS)

where gb(r) and gs(r) stand, respectively, for the contribution to the

r.d.f. from the bound and the scattered states. In other cases, there
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are no bound states and g . . (r) is simply equal to g (r).
1.-J S

Appendix B .

Evaluation of the Integral : ;pQay Ej. [a' (P + y) ] /y

We wish to evaluate the integral

17

where

I<-
I=! !!1..ft [Ot'(P+y)]

p y ,

DO _t
f 1 [eY'( P+yJ] =/ dt~

0('( P+Y) t

(Bl)

(B2)

is the exponential integral. Substituting (B2) into (Bl) and per­

muting the order of integration, we first obtain

()t'(t;l+P) -t
1=/ dt JL fn(t-ot'P)-t",(o/P){ fjlzolP)-EL[O/(Q+P)]j + f",!&- E1 [OI'(Q+PJ] (B3)

uP t P

Evaluation of the first term on the r.h.s. requires some artifice.

If we write it as

oI(f,).+E) _t OI~ -(IL-t-oI£) o/l' O('(l -u.
! dt-L en.(t-rx'P)=! d,u, e enU~ e- I k...Lfnu.,
20,'£ t o/f.u.+ oc'I' or'P u

the above approximation is equivalent to retaining the first term in

the expansion

because of a'P«l. Now, the integration by parts yields
~ ,

Ow; -u. -,/P t 2 -ot'Q 2 _o/P "'~ -u, f]
/ du..Linu.=e [_([en.(c/Q)] e -Ce,.,.(ot'l.'J]e i+4J, titLe (&'14 •
olP.u.. Z "'OIP

(B4)

By the change of

0'(2

I du e-u' ( el1. u.f=
oll

variable v = u/a I P, the last integral is expressed as

_oIP 2 "" _ o'f" 2
e [&t!,{./P)] T 2ft (0/1)&.,(0/£) + (X'f! dff e (e.... ,,;, (BS)

J.

because of Q/P»l. In view of evaluating the integral of the type

.fiooave-llVUnv)n with n~2, we start from the identity
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(B6 )

where y(a,x) is the incomplete gamma function. Differentiating twice

both sides with respect to a and setting a= 1 in the resulting

expression, we obtain

"" Il-t

:0 1. (tq.t)z t 2l &. "'" +.L { 4(Z)+rz} _ 2£ H~)
r I" f.t n.=! n! n

where use has been made of the identities [10]

, J" I J2.'!' (X) =__ f r (-x.) r(x) - ( r l:t) }
r2(~)

(B7)

and ljJ(n) (1) = (_)n+1 n :l;(n+ 1) with n~l. y is Euler's constant.

Setting ~=a'P in (B7) and collecting the results obtained, we then

obtain

r:/lrz~r) -t '~ on 2

/ d-t L e",( t- ClI'F) = i { [ tr,.( rJQ,de-
OI

- f&{o/fJl e- + !lZ) + 1 + q . (B8)
2a'f t Z

By virtue of the power expansion of E1 (2a'P) in (B3), the final result

reads as

(B9)




