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SYNOPSIS

Critical temperatures of two-dimensional microstructures with superconduct-
ing proximity effect in the dirty limit are evaluated for various geometrical con-
structions. As a numerical method, the finite element method is applied. Guide-
lines in estimating critical temperatures are given for the case where the decay of
superconducting order parameter is either sufficiently slow or fast in comparison
with the scale length of the structure.

I. INTRODUCTION

The critical parameters of microstructures including superconductors are key quan-
tities in their applications to electronic devices.! They are related to the geometry of
the structure as well as the bulk properties of constituent materials. Their depen-
dency on the size and other characteristics is also of interest from theoretical point
of view.

Among important cases of realistic applications, there may be the one where the
behavior of the superconducting order parameter is described by a relatively simple
equation in the dirty limit.?3

The analyses of critical parameters of such microstructures so far have been done
mainly in one-dimensional cases.* The purpose of this paper is to extend them to the
two-dimensional cases where geometrical effects may play a more important role due
to increased freedom of shape of the structure.

This is the third of a series of papers on related subjects: Preceding papers will be
cited as I* and II.> In I, the superconducting proximity effect has been revisited and
generalized to inhomogeneous media, and in II, a numerical method has been formu-
lated. We here confine ourselves within the critical temperature without magnetic
field. The critical magnetic field will be discussed in a forthcoming paper.

*Department of Electrical and Electronic Engineering
'Present address, Matsushita Electric Industrial Co., Ltd.
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II. METHOD OF ANALYSIS

We follow the method described in II and will not reproduce the formulation. We
also use the same notations unless defined otherwise here.

At the temperature T', the characteristic length £ of the diffusion process with the
diffusion coefficient Dy is given by

£= ( "Dy )‘1/2 (2.1)

27T]CBT

For a structure with the scale of length Ly, the ratio /Ly determines the behavior of
the order parameter. We use the parameter n defined by

= 2n(€/Lo)? (2.2)

to express the effect of this ratio.
The diffusion coefficient Dy is related to the mean free path ! as

Dy = lup/3, (23)

where vp is the Fermi velocity. Thus the parameter 7 is expressed by the mean free
path as

_ lL’UF(h/]CBT)
"3 Le

Though the mean free path ! is much smaller than the system size Ly, the ratio
vp(h/kpT)/Lo can be larger than unity and the resultant ratio n may take values
up to, say, 0.5: For example, when Ly ~ 1075¢cm, | ~ 107%cm, vp ~ 108cm/s, and
T ~ 10K, vp(h/kgT)/Lo ~ 103 and n ~ 0.3. Note that the parameter 7 is smaller,
but not always much smaller, than unity. '

For a bulk superconductor with the density of states Ny and the effective interaction
(attraction) between electrons Vj, the critical temperature 7**'*) given by the BCS

(2.4)

theory is
TR = 1,130 p exp(—1/VoNo), (2.5)

where Op is the Debye temperature. We consider microstructures composed of this
superconductor and other materials such as normal metals and superconductors with
lower critical temperatures.

When we normalize the temperature T' by T{(*/*) a5

t = T/THR), (2.6)

the equation which determines the critical parameters is written as®
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det | Cpw: |= 0, (2.7)
with |
Cont = 5nn’ )
~VoNodn [ drv(x)?¢u(x)o(x)u(r) / | / drv(r)gn(r)’ / dr'v(r')pa (r')’])7, (2.8)
€n+0p

1 1 1 ne,
A, = A +ln( )+1( i )+¢(§)_¢(§+E)' (2.9)

Here ¢,(r) is the eigenfunction of an operator L with the eigenvalue E, as

[L - E,]¢n(r) =0, (2.10)

. h
__ " g 2.1
b=~ 57 DONEY, (2.11)
D(r) being the diffusion tensor, and N(r), the local density of states.
In eq.(2.8) the effective interaction between electrons V(r), the eigenvalue E,, and

N(r) are normalized as

<
—~

H
~—

Il

V(r)/Vs, (2.12)
v(r)=N(r)/No, - (2.13)

=E,/ (BD°) . (2.14)

The parameter 8p is defined by
8p = kp©p/(hDo/L}) (2.15)

and its typical value may be of the order of 10%: For example, ©p ~ 3 - 10*K,
Lo ~ 1075¢cm, | ~ 107 8cm, and vp ~ 108cm/s give 6p ~ 120.

From eq.(2.9) we see that the properties of microstructures related to the super-
conducting proximity effect are determined by the parameter 7 and the geometrical
characteristics of the structure, as well as the obvious parameters such as V;, Ny, and
@D-
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II1. QUASLONE-DIMENSIONAL STRUCTURES

For a cylinder composed of layers stacked in the direction perpendicular to the
cross section, the critical temperature is exactly the same as the one for the one-
dimensional system with corresponding structure. The order parameter given for the
one-dimensional system becomes the solution for the cylinder when its value outside
the cylinder is defined to be zero. The boundary condition at the surface is that the
normal derivative vanishes. It is clear that one-dimensional solutions limited within
the cylinder satisfy the condition at the surface along the side, as well as on the top
or bottom, of the cylinder. We note that the above statement holds for any shape of
the cross section of the cylinder.

There have been considerable amount of investigations on the one-dimensional
structures* and the possibility of controlling superconducting channel based on the
proximity effect has also been discussed.®

In this case, the critical temperature is determined by the ratio of the super part
in the system and is decreased with its decrease.

As is expected naturally, the critical temperature is also reduced with the increase
of the parameter 7: Larger value of 7 enables the Cooper pairs to penetrate to the
normal (or weakly superconducting) part and has the effect of lowering the critical
temperature, since the effective interaction between electrons is not (or only weakly)
attractive in the latter part.

An example of the dependence of the critical temperature on the ratio of the super
part and the parameter 7 is shown in Fig.la. In this example, the structure is a
bilayer composed of super and normal metals, with effective interactions V; and 0,
respectively, and the density of states and the diffusion coefficient is assumed to
be uniform in the whole system. We see that the critical temperature changes as
expected.

In all the results presented in this paper, we specify the value of n by 70 at the bulk
critical temperature T(t+%);

no = n(T = T&W), (3.1)

It is therefore to be noted that the actual value of 7 at the critical point 7, is larger
than 7, by the factor of T®4%) /T,

In Fig.1b we plot the critical temperature as functions of the ratio in the case
where the density of states of the normal part is changed. We have higher critical
temperatures when the density of states is larger in the super part. This tendency
may also explained by the localization of the Cooper pair in the super part in these
cases.
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Fig.la. Critical temperature (normalized by bulk
value) of bilayers composed of superconductor and nor-
mal metal vs. ratio of super part. Values of o are, from
top, 0.03, 0.05, 0.1, 0.2, 0.5, and 1. Density of states and
diffusion coeflicient are uniform in the system.

.80
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Fig.1b. The same as Fig.1a for 7o = 0.1 with different
values of density of states in two parts; super to normal

.40
ratio is 2(top), 1(middle), or 0.5(bottom).

Fig.lc. The same as Fig.1a for 5y = 0.1 with differ-
ent values of diffusion coeflicient in two parts; super to
normal ratio is 2(top), 1(middle), or 0.5(bottom).

.20

.00
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Fig.2. Division into triangular elements.
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In Fig.1c we plot the behavior of the critical temperature when the diffusion coef-
ficient in the normal part has different values compared with that in the super part.
In this case, the change of the coeflicient has little effect on the critical temperature.
In contrast to the situation where the density of states is directly responsible for the
critical temperature as in eq.(2.5) and is related to the continuity of the value of
the order parameter at interfaces, the diffusion coefficient affects the order parameter
only through its derivative at interfaces and has small effect on the critical behavior.

IV. TWO-DIMENSIONAL STRUCTURES

For two-dimensional structures, it is difficult to calculate the eigenfunctions of L
analytically, especially in the case of complex geometries. In order to analyze the
geometrical effect, we therefore use the finite element method as described in II. We
here repeat only the essential equations. '

A. Division into Elements

In this analysis, we consider the structure where the superconductor is placed in
the central part and the normal metal (or the weak superconductor) surrounds it,
forming a square as a whole. Viewed in three dimensions, our system may be con-
sidered as a wire with a square cross section. When the density of states and the
diffusion coeflicient is constant throughout the system, the eigenfunctions are analyt-
ically written down and provide a reference for confirmation of the accuracy of the
numerical procedures.

We divide the domain of our interest into triangular elements as shown in Fig.2.
In this process, we keep all symmetry properties, such as symmetry axes and mirror
planes, of the system.

B. Shape Functions

We use the third-order Hermite interpolations as shape functions. Among various
possibilities, we adopt the shape functions for the element with vertices P;, P,, and
P; given by

Ny=g (36 - 268 ~T6ats) (4.1)
No=§, (36 — 262 —716:4), (4.2)
Ny=§ (1 + &+ & — 260 — 26 - 115152) , (4.3)
Ng = 27666, (4.4)
Nas= (235 + 435) *6:65(62 — &), (4.5)
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Ny = (235 + y35) 2 €a6a(6s — £1), (4.6)
Nay= (23, + 93,) 6616 — &), (4.7)
Niz= (a3, + y§1)1/2§3€1(€1 - &), (4.8)
Nip= (a3, + v}) P66a(6 - &), (4.9)
Noy = (23, + 13,) /?66:(6 — &) (4.10)

Here & is the area coordinates and z;; = z; — z;, etc. These functions are charac-
terized by four values, at three vertices and the center of mass Pg, together with two
derivatives, along two sides, at each vertex;

Ni(F;) = 6ij, Ni(Pg) =pi; - VeNe(R) = 0, (4.11)
NG(Pg) = 1, Ng(R) = pij . vak(-Pl) = 0, (412)
Pi; - VeNi(P) = 8k, Nij(Pi) = Nij(Ps) =0, (4.13)
where
p;; = (P;=P;)/ | P;—P;|, (4.14)

and P; is the position of the vertex P;, and ¢,7,k,l =1,2,3.

C. Galerkin Equation

We express the solution as a superposition of the above shape functions for the
element (1) as

>

" 0
6=3 [NONP NP NOND . ND] | (4.15)

0

and rewrite the original equation into the weak form by taking the inner product with
the function 9 which has the same form as ¢:

(b,(£ - e)g) = 0. | (4.16)
Here L is defined by

L=1/ (%) (4.17)

and we assume that the diffusion tensor reduces to a scalar denoting the normalized
value by 6,
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§ = D/Dy. (4.18)

Taking into account the boundary condition on the normal derivative at surfaces
0
on

we have the Galerkin equation for our system as the superposition of the equation

for the element ()

=0, (4.19)

¢

W ¢y
[Fij . | =0 (4.20)

851,

where

[F9] = [K9] - e (M), (421)
’(1) /d:z:dyu(SVN(') VN(I), (4.22)
MY = /dmdyuN()N“). (4.23)

In order to perform computations, we need to evaluate the integrals K ,(Jl) and M,(;)
for each element. In the case where v and § can be regarded as constant in an element,
it is possible to prepare a table of necessary values,

KD jvs = / dzdyVN® . VND, (4.24)
MOy = / dzdyNOND, (4.25)

for general purposes. We have obtained the results of these straightforward but te-
dious integrations by computers with the help of a software for algebraic computation.
The results are given in Appendix.

D. Results

In our computations, the Debye temperature © p, the effective interaction V,, and
the density of states Ny in the central superconducting part are assumed to be

Op = 300K, (4.26)

These values give the bulk critical temperature T(***) = 17K. We also assume that
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fp = 1.2 10% (4.28)

We first compare the numerical solution for the quasi-one-dimensional case with the
corresponding half-analytic solution for one-dimensional system. An example is shown
in Fig.3. This comparison confirms the relation described in the subsection above and
also the reliability of our numerical procedure for two-dimensional structures.

For two-dimensional cases, we perform numerical analyses for three cases of the
parameter, 1o = 0.3, 0.1, and 0.03. As the geometry of the structure, those shown in
Fig.4 are adopted. ‘

We present here the results for the case of uniform density of states and diffusion
coefficient. The effects of the stepwise change of the latter two parameters are similar
to those in one-dimensional cases: The effect of their gradual changes will be given
elsewhere. The critical temperatures of these structures are shown in Fig.4.

In the case of two dimensions, the critical temperature is not a function of a single
variable even for a fixed value of the parameter 7o: It might depend on infinite
degrees of freedom related to the shape of the structure. This is the very reason for
the necessity of numerical analyses such as developed in II and in this paper.

On the other hand, it is also clear that the results for the critical temperature may
be approximately described by a simple function in the case of either relatively large
or small value of 7.

When 7 is large, the order parameter may penetrate rather freely into the normal
part and the effective interaction between electrons will be averaged over the whole
structure. The critical temperature may then be determined by the ratio of the areas
of the super and normal parts.

When 7 is small, however, the order parameter may be well localized in the super
part where the effective potential is attractive, and the critical temperature may
depend only on the shape of the super part measured in the scale of the length £. If
the super part has a much smaller dimension in one direction in comparison with other
directions, the critical properties may be similar to those of one-dimensional structure;
directions with larger dimensions are expected to play little role in determination of
the critical temperature. Thus the smallest scale of length in the structure may be
most important in this situation. As an example of the smallest length for two-
dimensional structures, we may take the diameter 2R of the largest circle which
inscribes the super part.

These two values, the areal ratio of the super part ¢ and the diameter 2R of the
inscribing circle, are given also in Fig.4. We now check whether these values serve as
guidelines for determining the critical temperatures.

In Figs.5a, 5b, and 5c, the critical temperature normalized by the bulk value is
plotted as a function of the ratio of the area of the super part in the whole structure
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2.0

0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Fig.3a. Values of order parameter (divided by the Fig.3b. The same as Fig.3a obtained by half-analytical
interaction and density of states) numerically obtained calculation for corresponding one-dimensional structure.
by two-dimensional analysis for a quasi-one-dimensional
structure. Central superconducting part (3/4) is sym-
metrically placed and 5o = 0.3.

U000

7o A B C D E
0.3 0.200 0.110 0.036 0.0024 0.00007
0.1 0.460 0.363 0.207 0.050 0.0035
0.03 0.886 0.862 0.817 0.726 0.260
o 0.563 0.488 0.375 0.25 0.156
2R 0.75 0.625 0.5 - 0.5 0.25
o F G H 1 J
0.3 0.256 0.060 0.0008 0.0038 0.0524
0.1 0.708 0.569 0.303 0.082 0.270
0.03 0.956 0.963 0.888 0.736 .0.835
o 0.391 0.25 0.141 0.25 0.391
2R’ 1.25* 1.0* 0.75* 0.5 0.625

Fig.4. Critical temperatures (normalized by bulk value) of various two-dimensional
structures for ny = 0.3, 0.1 and 0.03. Light and dark domains are super and normal
parts, and entries under o and 2R are areal ratio and maximum length (in unit of
side of square) of super part, respectively. (*These values are doubled due to
symmetry.) '
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o
0.3 0.138 0.112 0.117 0.092
0.1 0.396 0.302 0.331 0.243
0.03 0.870 0.786 0.833 0.655
o 0.5 0.5 0.5 0.5
2R 0.707 0.5 0.5 0.293
Fig.4. (Continued)
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0.0 0 0.4 05 0.6 0.7 0.8 0.9 1.0 0.0 6.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1.0
Stsuper)/S(total) ' S(super)/S(total)
MR -
3‘5 oo Fig.5a. Critical temperature vs. areal ratio of super
a2 no ° —_
Sos w O c part for 79 = 0.3.
MR = |
2 a
0.6
0-8 Fig.5b. The same as Fig.5a for 7o = 0.1. Values for F,
04 G, and H with 5y = 0.3 are shown by *.
0.3
0.2
0.1
0.0 S Fig.5c. The same as Fig.5a for 7o = 0.03. Values for

Tc/Telbulk)
o
»

S{super)/S(total)

+

F, G, and H with 99 = 0.1 are shown by *.

0.6
0.5
0.4
0.3
0z } Fig.6. Critical temperature vs. maximum length nor-
o | { malized by ¢ (at T = T**™) for 5o = 0.03 [+ (F, G, H)
0.0, s T and squares (others)] and 0.1{* (F, G, H) and x (others)].

2R*
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for ng = 0.3, 0.1, and 0.03.

In structures F, G, and H, the result should be regarded as the one for a larger
structure obtained by folding these structures in both directions. Since the side of
the square is effectively doubled, we reduce the value of 7, defined by eq.(2.2) by a
factor 4. The critical temperatures of these structures for o = 0.3 and 0.1 are plotted
in Figs.5b and 5c¢, regarding 0.3/4 ~ 0.1 and 0.1/4 ~ 0.03, respectively.

We observe that the critical temperatures for 7o = 0.3 and 0.1 are approximately
determined by the areal ratio of the super part.

In the case of 1y = 0.03, however, it is clear that we have only weak dependence on
that ratio.

When 7 is small, the critical temperature is not determined by the areal ratio.
The structures A and H, with quite different values of the areal ratios and the critical
temperatures at np = 0.3, have similar critical temperatures at 75 = 0.03. The same
kind of observation may be made for structures C, D, I, L, and M. Noting that these
groups have the values of 2R in common, we see that the maximum length of the
super part has decisive effect on the critical temperature in these cases.

In Fig.6, we show the dependence of the normalized critical temperature on the
ratio of the maximum length determined above to the value of £ at T' = T for the
cases of g = 0.1 and 0.03. We see that for sufficiently small value of 7y the critical
temperature is determined by this ratio in the first approximation.

Naturally, these guidelines are not perfect. For example, among structures B, K,
L, M, and N with similar areal ratios around 0.5, K and N have the highest and the
lowest critical temperatures, respectively, also for g = 0.3. The maximum length is
thus important even for large values of r in some cases.

In applications of superconducting microstructures, it will become necessary to
predict the critical temperature of a given structure without analyzing the behavior
of the order parameter in detail. Our results may be useful for this purpose.

V. CONCLUSION

We have performed numerical analyses on the critical temperatures of various su-
perconducting microstructures in two dimensions. As a result, we have obtained their
dependency on quantities characterizing the structures, the areal ratio and the ap-
propriately defined maximum lenigth of the superconducting part. These values may
provide us with approximate guidelines to determine critical temperatures in struc-
tures of various shapes, when the characteristic length of diffusion process is either
large or small enough in comparison with the scale of the structures. We also ex-
pect that the volume ratio and the maximum length may play a similar role in three
dimensions.
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APPENDIX A: CALCULATION OF MATRIX ELEMENTS

The values of the integrals (4.24) and (4.25) for the triangle with vertices
(z1,11), (72,92), and (z3,y3) (in the counterclockwise order) are evaluated as fol-

lows. Here
M,-J-/z/:/dxdyN,-NJ- = (A1) - 25, (1)
Ky /v6 =[(A2) + (A3))/2S, (2)
(A2)/25 = K7 [v§ = / dzdy(9N;/z)(ON, [0z), (3)
(43)/25 = Kl /vs = [ dudy(9N;/0y)(0N;/0y), (4)

and S is the area of the triangle. The values are symmetric with respect to the suffices
i and j which run from 1 to 10 corresponding to egs.(4.1)~(4.10).
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