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SYNOPSIS

Critical temperatures of two-dimensional microstructures with su perconduct­
ing proximity effect in the dirty limit are evaluated for various geometrical con­
structions. As a numerical method, the finite element method is applied. Guide­
lines in estimating critical temperatures are given for the case where the decay of
superconducting order parameter is either sufficiently slow or fast in comparison
with the scale length of the structure.

I. INTRODUCTION

The critical parameters of microstructures including superconductors are key quan­

tities in their applications to electronic devices.! They are related to the geometry of

the structure as well as the bulk properties of constituent materials. Their depen­

dency on the size and other characteristics is also of interest from theoretical point

of view.
Among important cases of realistic applications, there may be the one where the

behavior of the superconducting order parameter is described by a relatively simple
equation in the dirty limit.2 ,3

The analyses of critical parameters of such microstructures so far have been done

mainly in one-dimensionalcases.4 The purpose of this paper is to extend them to the

two-dimensional cases where geometrical effects may playa more important role due

to increased freedom of shape of the structure.
This is the third of a series of papers on related subjects: Preceding papers will be

cited as 13 and IJ.S In I, the superconducting proximity effect has been revisited and
generalized to inhomogeneous media, and in II, a numerical method has been formu­
lated. We here confine ourselves within the critical temperature without magnetic
field. The critical magnetic field will be discussed in a forthcoming paper.
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II. METHOD OF ANALYSIS

(2.1)

We follow the method described in II and will not reproduce the formulation. We

also use the same notations unless defined otherwise here.
At the temperature T, the characteristic length ~ of the diffusion process with the

diffusion coefficient Do is given by

~ = ( nDo ) 1/2

21f'kB T

For a structure with the scale oflength Lo, the ratio e/Lo determines the behavior of
the order parameter. We use the parameter 77 defined by

(2.2)

to express the effect of this ratio.
The diffusion coefficient Do is related to the mean free path l as

(2.3)

(2.4)

where VF is the Fermi velocity. Thus the parameter 77 is expressed by the mean free
path as

1 l vF(n/kBT)
77 = '3 Lo Lo .

Though the mean free path l is much smaller than the system size Lo, the ratio
vF(n/kBT)/Lo can be larger than unity and the resultant ratio 77 may take values
up to, say, 0.5: For example, when Lo rv lO-scm, l f'V 1O-6cm, VF f'V 1Q8cm/ s , and

T rv 10K, vF(n/kBT)/Lo f'V 10-3 and 77 rv 0.3. Note that the parameter 77 is smalle~,

but not always much smaller, than unity.
For a bulk superconductor with the density of states No and the effective interaction

(attraction) between electrons VOl the critical temperature T~bulk) given by the Bes
theory is

(2.5)

where e D is the Debye temperature. We consider microstructures composed of this
superconductor and other materials such as normal metals and superconductors with
lower critical temperatures.

When we normalize the temperature T by T~bulk) as

t = T/T(bulk)c ,

the equation which determines the critical parameters is written ass

(2.6)
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det ICnn, 1= 0,
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(2.7)

Cnn, =Onn'

- VONOAn f drv(r)2 ePn(r)v(r)ePn,(r) / [f drv(r)ePn(r)2 f dr'v(r')ePn,(r')2]t, (2.8)

Here ePn(r) is the eigenfunction of an operator 1 with the eigenvalue En as

• Ii
L = - N(r) \7. D(r)N(r)\7,

(2.10)

(2.11)

D(r) being the diffusion tensor, and N(r), the local density of states.
In eq.(2.8) the effective interaction between electrons V(r), the eigenvalue En' and

N (r) are normalized as

The parameter eD is defined by

v(r) = V(r)/Vo,

v(r) = N(r)/No,

(liDo)
en = En / L~ .

(2.12)

(2.13)

(2.14)

(2.15)

and its typical value may be of the order of 102
: For example, eD rv 3 . 102 ]{,

Lo rv 1O-5cm, l rv 1O-6cm, and VF rv 108cm/ s give eD rv 120.

From eq.(2.9) we see that the properties of microstructures related ~o the super­
conducting proximity effect are determined by the parameter rJ and the geometrical
characteristics of the structure, as well as the obvious parameters such as Vo, No, and
eD .
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III. QUASI-ONE-DIMENSIONAL STRUCTURES

For a cylinder composed of layers stacked· in the direction perpendicular to the

cross section, the critical temperature is exactly the same as the one for the one­
dimensional system with corresponding structure. The order parameter given for the
one-dimensional system becomes the solution for the cylinder when its value outside
the cylinder is defined to be zero. The boundary condition at the surface is that the
normal derivative vanishes. It is clear that one-dimensional solutions limited within
the cylinder satisfy the condition at the surface along the side, as well as on the top
or bottom, of the cylinder. We note that the above statement holds for any shape of
the cross section of the cylinder.

There have been considerable amount of investigations on the one-dimensional

structures4 and the possibility of controlling superconducting channel based on the
proximity effect has also been discussed.6

In this case, the critical temperature is determined by the ratio of the super part
in the system and is decreased with its decrease.

As is expected naturally, the critical temperature is also reduced with the increase
of the parameter 'T}: Larger value of'T} enables the Cooper pairs to penetrate to the
normal (or weakly superconducting) part and has the effect of lowering the critical
temperature, since the effective interaction between electrons is not (or only weakly)
attractive in the latter part.

An example of the dependence of the critical temperature on the ratio of the super
part and the parameter 'T} is shown in Fig.1a. In this example, the structure is a
bilayer composed of super and normal metals, with effective interactions Va and 0,
respectively, and the density of states and the diffusion coefficient is assumed to
be uniform in the whole system. We see that the critical temperature changes as
expected.

In all the results presented in this paper, we specify the value of 'T} by 'T}o at the bulk
critical temperature Ti bu1k ):

(3.1)

It is therefore to be noted that the actual value of 'T} at the critical point Tc is larger
than 'T}o by the factor of T~bulk)ITc'

In Fig.1b we plot the critical temperature as functions of the ratio in the case
where the density of states of the normal part is changed. We have higher critical
temperatures when the density of states is larger in the super part. This tendency
may also explained by the localization of the Cooper pair in the super part in these
cases.
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Fig.la. Critical temperature (normalized by bulk
value) of bilayers composed of superconductor and nor­
mal metal vs. ratio of super part. Values of 170 are, from
top, 0.03, 0.05, 0.1, 0.2, 0.5, and 1. Density of states and
diffusion coefficient are uniform in the system.

Fig.lb. The same as Fig.la for 170 = 0.1 with different
values of density of states in two parts; super to normal
ratio is 2(top), l(middle), or 0.5(bottom).

Fig.Ie. The same as Fig.la for 170 = 0.1 with differ­
ent values of diffusion coefficient in two parts; super to
normal ratio is 2( top), 1(middle), or 0.5(bottom).

Fig.2. Division into triangular elements.
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In Fig.lc we plot the behavior of the critical temperature when the diffusion coef­
ficient in the normal part has different values compared with that in the super part.

In this case, the change of the coefficient has little effect on the critical temperature.
In contrast to the situation where the density of states is directly responsible for the
critical temperature as in eq.(2.5) and is related to the continuity of the value of
the order parameter at interfaces, the diffusion coefficient affects the order parameter
only through its derivative at interfaces and has small effect on the critical behavior.

IV. TWO-DIMENSIONAL STRUCTURES

For two-dimensional structures, it is difficult to calculate the eigenfunctions of 1
analytically, especially in the case of complex geometries. In order to analyze the
geometrical effect, we therefore use the finite element method as described in II. We
here repeat only the essential equations.

A. Division into Elements

In this analysis, we consider the structure where the superconductor is placed in

the central part and the normal metal (or the weak superconductor) surrounds it,
forming a square as a whole. Viewed in three dimensions, our system may be con­
sidered as a wire with a square cross section. When the density of states and the
diffusion coefficient is constant throughout the system, the eigenfunctions are analyt­
ically written down and provide a reference for confirmation of the accuracy of the
numerical procedures.

We divide the domain of our interest into triangular elements as shown in Fig.2.
In this process, we keep all symmetry properties, such as symmetry axes and mirror
planes, of the system.

B. Shape Functions

We use the third-order Hermite interpolations as shape functions. Among various
possibilities, we adopt the shape functions for the element with vertices PI, P2 , and
P3 given by

N I ~6 (36 - 2(~ -766),

N2 =6 (36 - 2(~ -766),

N3 =6 (1 + 6 + 6 - 2(~ - 2(~ - 1166) ,
Na =27666,
N23 = (X~3 + Yi3)1/266(6 - 6),

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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N32 =(X~3 + Y~3)1/266(6 - 6),
N31 = (X~l + yil)1/266(6 - 6),
N 13 = (X~l + Yi1)1/266(6 - 6),
N 12 = (X~2 + Y~2)1/266(6 - 6),
N21 = (X~2 + Y~2)1/266(6 - 6).
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(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Here ~i is the area coordinates and Xij = Xi - Xj, etc. These functions are charac­
terized by four values, at three vertices and the center of mass PG , together with two
derivatives, along two sides, at each vertex;

Ni(Pj ) = Oij, Ni(PG) = Pij . 'leNk(R) = 0,

NG(PG) = 1, NG(~) = Pij . 'leNk(R) = 0,

Pij . 'leNji(Pk) = Ojk, Nij(Pk) = Nij(PG) = 0,

where

and Pi is the position of the vertex Pi, and i,j, k, 1= 1,2,3.

C. Galerkin Equation

(4.11)

(4.12)

(4.13)

(4.14)

We express the solution as a superposition of the above shape functions for the

element (l) as

¢>~')

n ¢>(2' )
,J. = "" [N(I) N(I) N(I) N(I) N(I) N(I)]
'I-' L...J 1 2 3 G 23' . . 21

1=1
,J.(I)
'1-'21

(4.15)

and rewrite the original equation into the weak form by taking the inner product with
the function 'ljJ which has the same form as ¢>:

Here £ is defined by

('ljJ;{£ - e)¢» = 0. (4.16)

(4.17)

and we assume that the diffusion tensor reduces to a scalar denoting the normalized
value by 0,
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0= DIDo. (4.18)

Taking into account the boundary condition on the normal derivative at surfaces

a
-¢ = 0,an (4.19)

we have the Galerkin equation for our system as the superposition of the equation

for the element (l)

where

¢il)

[F8)] ¢~)
= 0,

¢(I)
21y

rF(I)] = [J{~I)] - to [M~I)]t I) I) I) ,

J{CI) = f dxdyvo\lN(l) . \lN(l).) 1(1) .) ,

M~I) = 1dxdyvN(I)N(I).
I) (I) .)

(4.20)

(4.21)

(4.22)

(4.23)

In order to perform computations, we need to evaluate the integrals J{g> and Mg>
for each element. In the case where v and 0 can be regarded as constant in an element,
it is possible to prepare a table of necessary values,

J{(I) /vo = 1dxdy\lN(I) . \lN CI )
.) CI) • ) ,

M CI )/v = 1 dxdyN~I)NCI).) . (I) I) ,

. (4.24)

(4.25)

for general purposes. We have obtained the results of these straightforward but te­

dious integrations by computers with the help of a software for algebraic computation.
The results are given in Appendix.

D. Results

In our computations, the Debye temperature eD, the effective interaction va, and
the density of states No in the central superconducting part are assumed to be

eD = 300K,

YoNo = 1/3.

(4.26)

(4.27)

These values give the bulk critical temperature Tibulk ) = 17I<. We also assume that
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(4.28)

We first compare the numerical solution for the quasi-one-dimensional case with the

corresponding half-analytic solution for one-dimensional system. An example is shown
in Fig.3. This comparison confirms the relation described in the subsection above and
also the reliability of our numerical procedure for two-dimensional structures.

For two-dimensional cases, we perform numerical analyses for three cases of the

parameter, rJo = 0.3, 0.1, and 0.03. As the geometry of the structure, those shown in

Fig.4 are adopted.

We present here the results for the case of uniform density of states and diffusion

coefficient. The effects of the stepwise change of the latter two parameters are similar

to those in one-dimensional cases: The effect of their gradual changes will be given
elsewhere. The critical temperatures of these structures are shown in Fig.4.

In the case of two dimensions, the critical temperature is not a function of a single

variable even for a fixed value of the parameter rJo: It might depend on infinite
degrees of freedom related to the shape of the structure. This is the very reason for

the necessity of numerical analyses such as developed in II and in this paper.

On the other hand, it is also clear that the results for the critical temperature may
be approximately described by a simple function in the case of either relatively large

or small value of rJ.

When rJ is large, the order parameter may penetrate rather freely into the normal

part and the effective interaction between electrons will be averaged over the whole

structure. The critical temperature may then be determined by the ratio of the areas

of the super and normal parts.

When rJ is small, however, the order parameter may be well localized in the super
part where the effective potential is attractive, and the critical temperature may

depend only on the shape of the super part measured in the scale of the length ( If
the super part has a much smaller dimension in one direction in comparison with other

directions, the critical properties may be similar to those of one-dimensional structure;

directions with larger dimensions are expected to play little role in determination of

the critical temperature. Thus the smallest scale of length in the structure may be
most important in this situation. As an example of the smallest length for two­
dimensional structures, we may take the diameter 2R of the largest circle which
inscribes the super part.

These two values, the areal ratio of the super part a and the diameter 2R of the

inscribing circle, are given also in Fig.4. We now check whether these values serve as

guidelines for determining the critical temperatures.

In Figs.5a, 5b, and 5c, the critical temperature normalized by the bulk value is

plotted as a function of the ratio of the area of the super part in the whole structure
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Fig.3a. Values of order parameter (divided by the
interaction and density of states) numerically obtained
by two-dimensional analysis for a quasi-one-dimensional
structure. Central superconducting part (3/4) is sym­
metrically placed and 1/0 = 0.3.

1.5

1.0

0.5

O·~O.5 -0.4 -0.3 -0.2 -Dol 0.0 0.1 0.2 0.3 0.4 0.5

Fig.3b. The same as Fig.3a obtained by half-analytical
calculation for corresponding one-dimensional structure.

DClCC=
'TIo A B C D E
0.3 0.200 0.110 0.036 0.0024 0.00007
0.1 0.460 0.363 0.207 0.050 0.0035

0.03 0.886 0.862 0.817 0.726 0.260
a 0.563 0.488 0.375 0.25 0.156

2R 0.75 0.625 0.5 0.5 0.25

'TIo F G H I J

0.3 0.256 0.060 0.0008 0.0038 0.0524

0.1 0.708 0.569 0.303 0.082 0.270

0.03 0.956 0.963 0.888 0.736 .0.835

a 0.391 0.25 0.141 0.25 0.391

2R 1.25* 1.0* 0.75* 0.5 0.625

Fig.4. Critical temperatures (normalized by bulk value) of various two-dimensional
structures for 1]0 = 0.3, 0.1 and 0.03. Light and dark domains are super and normal
parts, and entries under a and 2R are areal ratio and maximum length (in unit of
side of square) of super part, respectively. (*These values are doubled due to
symmetry.)
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DEJClEI
'f/o K L M N
0.3 0.138 0.112 0.117 0.092
0.1 0.396 0.302 0.331 0.243

0.03 0.870 0.786 0.833 0.655
u 0.5 0.5 0.5 0.5

2R 0.707 0.5 0.5 0.293

Fig.4. (Continued)
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Fig.5a. Critical temperature vs. areal ratio of super
part for 710 = 0.3.co D
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Fig.5b. The same as Fig.5a for 710 = 0.1. Values for F,
G, and H with 710 =0.3 are shown by *.
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Fig.5c. The same as Fig.5a for 710 =0.03. Values for
F, G, and H with 710 =0.1 are shown by *.
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and squares (others)] and 0.1[* (F, G, H) and x (others)].
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for 170 = 0.3, 0.1, and 0.03.

In structures F, G, and H, the result should be regarded as the one for a larger

structure obtained by folding these structures in both directions. Since the side of

the square is effectively doubled, we reduce the value of 170 defined by eq.(2.2) by a
factor 4. The critical temperatures of these structures for 170 = 0.3 and 0.1 are plotted

in Figs.5b and 5c, regarding 0.3/4 f'V 0.1 and 0.1/4 f'V 0.03, respectively.
We observe that the critical temperatures for 170 = 0.3 and 0.1 are approximately

determined by the areal ratio of the super part.
In the case of 170 = 0.03, however, it is clear that we have only weak dependence on

that ratio,

When 1]0 is small, the critical temperature is not determined by the areal ratio.
The structures A and H, with quite different values of the areal ratios and the critical
temperatures at 170 = 0.3, have similar critical temperatures at 170 = 0.03. The same
kind of observation may be made for structures C, D, I, L, and M. Noting that these
groups have the values of 2R in common, we see that the maximum length of the
super part has decisive effect on the critical temperature in these cases.

In Fig.6, we show the dependence of the normalized critical temperature on the
ratio of the maximum length determined above to the value of ~ at T = Tibu1k ) for the
cases of 170 = 0.1 and 0.03. We see that for sufficiently small value of 170 the critical
temperature is determined by this ratio in the first approximation.

Naturally, these guidelines are not perfect. For example, among structures B, K,
L, M, and N with similar areal ratios around 0.5, K and N have the highest and the
lowest critical temperatures, respectively, also for 170 = 0.3. The maximum length is

thus important even for large values of 17 in some cases.

In applications of superconducting microstructures, it will become necessary to

predict the critical temperature of a given structure without analyzing the behavior
of the order parameter in detail. Our results may be useful for this purpose.

v. CONCLUSION

We have performed numerical analyses on the critical temperatures of various su­
perconducting microstructures in two dimensions. As a result, we have obtained their
dependency on quantities characterizing the structures, the areal ratio and the ap­
propriately defined maximum length of the superconducting part. These values may

provide us with approximate guidelines to determine critical temperatures in struc­
tures of various shapes, when the characteristic length of diffusion process is either
large or small enough in comparison with the scale of the structures. We also ex­
pect that the volume ratio and the maximum length may playa similar role in three
dimensions.
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APPENDIX A: CALCULATION OF MATRIX ELEMENTS

The values of the integrals (4.24) and (4.25) for the triangle with vertices

(Xl, YI), (X2' Y2), and (X3' Y3) (in the counterclockwise order) are evaluated as fol­
lows. Here

Mij/v = / dxdyNiNj = (AI) ·25,

Kij/vo = [(A2) + (A3))/25,

(A2)/25=KiJ/vo = / dxdy(8Ni/8x)(8Nj /8x),

(A3)/25 = K,!)vo = / dxdy(8N;f8y)(8Nj/8y),

(1)

(2)

(3)

(4)

and 5 is the area of the triangle. The values are symmetric with respect to the suffices
i and j which run from 1 to 10 corresponding to eqs.(4.1)rv(4.10).
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(i=l,j=l)

313
Al=-­

5040

1 ( 2 2
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Al = _1_
720

. 1 ( 2 2
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(i = 3 , j = 3)

Al = 313
5040

1 ( 2 2
A2 = 180 199Y31 + 349Y31Y23 + 199Y23)

1 ( 2 2A3 = 180 199x31 + 349x31X23 + 199x23 )
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(i=6,j=l)(i = 5 , j = 1)

Al- 53 . / 2 2
- 10080 V X31 + Y31

A2 = 1~0 J X51 + yM3Y~3 - 25Y23Y31 + 7Y51)

Al-~/ 2 + 2
- 10080 VX12 Y12

A2 = I~O J Xf2 + yM35Y~3 + 39Y23Y31 + 7Y51)

A3 = 1~0 J Xf2 + yM35x~3 + 39x23X31 + 7X~1)

(i = 5 I j = 2)

A -13 . / 2 2
1 = 10080 VX31 + Y31

A2 = ~~ JX51 + Y51Y31(7Y23 + 2Y31)

(i = 5 I j = 3)

A 17. / 2 2
1 = 10080 VX31 + Y31

(i = 6 , j = 2)

Al-~/ 2 + 2- 10080 VX12 Y12

A2 = 1~0 J Xf2 + yM14Y~3 + 39Y23Y31 + 22Y;1)

A3 = 1~0 J Xf2 + yM14x~3 + 39x23X31 + 22x;1)

(i = 6 , j = 3)

Al - -13 . / 2 + 2
- 10080 Vx12 Y12

A2 = ~~ J X51 + Y~l (3Y~3 - 5YZ3Y31 - 22Y51)

A3 = ~~ JX51 + Y~1(3x~3 - 5X23X31 - 22x;1)

A2 = 1~0 J xf2 + yM5Y~3 + 3Y23Y31 - 2Y51)

A3 = 1~0 J Xf2 + yM5x~3 + 3X23X31 - 2X;1)

(i = 5 , j = 4)

Al- _3_ / 2 + 2
- 1120 VX31 Y31

A2 = 2
3
0J X51 + Y~lY31 (Y23 - Y31)

A3 = 2
3
0 JX51 + Y~lX31(X23 - X31)

(i = 5 , j = 5)

Al - 1 (2 + 2)- 1260 x31 Y31

A2 = 1~0 (X;1 + Y;1)(3Y~3 + 3Y23Y31 + 7Y~1)

(i = 6 , j = 4)

_ 3 / 2 2
Al - 1120 V X12 + Y12

A2 = ;~ J Xf2 + Yf2(2Y~3 + 3Y23Y31 + Y;l)

A3 = ;:JXf2 + yM2x~3 + 3X23Y31 + X;l)

(i = 6 , j = 5)

Al = 50~0 J X51 + Y51 J Xf2 + yr2

A2 = ;~ /X51 + Y~l J Xf2 + Yf2Y31 (Y23 + Y3d

A3 = ;: JX51 + Y~l J Xf2 + Yf2 X31(X23 + X31)
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(i = 7 , j = 5)(i = 6 , j = 6)

1 (2 2 )
Al = 1260 X12 + Y12

A2 = -1-(xi2 + yi2)(7Y53 + 11Y23Y31 + 7Y51)
180

(i= 7 l j = 1)

-13 f 2 2
Al = 10080 V X23 + Y23

A2 = ~~ VX§3 + y'i3yd2Y23 + 7Y31)

A3 = .=.!. fX§3 + yi3X23(2x23 + 7X31)
180 V

(i = 7, j = 2)

53 . f 2 2
Al = 10080 V X23 + Y23

(i = 7 , j = 6)

Al = 1~~0 JX§3 + Y'i3JXI2 + ~I2

A2 = ~~ VX§3 + yi3vx f2 + Yf2Y23(Y23 + Y31)

A3 = 2VX~3 + Y~3VXf2 + Yf2 X23(X23 + x3d
180

(i = 7 l j = 7)

1 2 2 )
Al = 1260(x23 + Y23

A2 = 1~0 VX~3 + yM7Y~3 - 25Y23Y31 + 3Y~1)

A3 = _1_ VX §3 + yi3(7x~3 - 25x23X31 + 3X~1)
180 '

A2 = 1~0 (X~3 + Y~3)(7Y~3 + 3Y23Y31 + 3Y~1)

A3 = _1_(x~3 + yi3)(7x~3 + 3X23X31 + 3x51)
180

(i = 7 l j = 3)

17 .f 2 2
Al = 10080 V X23 + Y23

(i=8,j=l)

Al = 10~780 J Xf2 + Yf2

A2 = 1~0 VXf2 + yM22yi3 + 39Y23Y31 + 14yi1)

A3 = 1~0 VXI2 + Yf2(22x~3 + 39x23X31 + 14x~1)

(i = 7 , j = 4)

3 f 2 2
Al = 1120 V X23 + Y23

A2 = ;~ VX~3 +yi3Y23(Y23 - Y31)

A3 = ;~ VX§3 + Y'i3 xd x 23 - X31)

(i = 8, j = 2)

53 r---­
Al- __ .fX 2 +y2

- 10080 V 12 12

A2 = 1~0 VX f2 + yM7Y~3 + 39Y23Y31 + 35Y51)

A3 = 1~0 VX f2 + yM7x~3 + 39x23X31 + 35x~1)



(i = 8 , j = 3)

_ - 13 1 2 2
Al - 10080 V x l2 + Y12

2·Dimensianal Supercanducting Microstruclures

. (i = 8 , j = 8)

Al - 1 ( 2 + 2)
- 1260 X12 Y12

111

A2 = ~~ JXI2 + Y?2(2Y~3 - 3Y23Y31 - 5Y;1)

A3 = ~~ JXI2 + Y?2(2x~3 - 3X23X31 - 5X~1)

1
A2 = 180 (Xi2 + yi2)(7Y~3 + 11Y23Y31 + 7Y;1)

1
A3 = 180 (Xi2 + yi2)(7x~3 + 11X23X31 + 7x51)

(i = 8 , j = 4)

3 1 2 2
Al = 1120 VX12 + Y12

A2 = ;~ JXI2 + yMY~3 + 3Y23Y31 + 2Y;1)

A3 = ;~ JXi2 + Yf2(X~3 + 3X23X31 + 2X~1)

(i = 9, j = 1)

Al-~I 2 + 2
- 10080 VX31 Y31

A2 = ~~ JX51 + yM3Y~3 + 11Y23Y31 - 14Y;1)

A3 = ~~ J X~l + Y~l (3X~3 + 11X23X31 - 14X51)

(i = 9, j = 2)(i =8, j = 5)

Al = 1~~OVX~l + Y51Vxi2 + Yf2

A2 = ~~ IX?'l + Y'ilJXI2 + yr2Y31(Y23 + Y31)

Al - -13 V2 + 2
- 10080 X31 Y31

(i = 8 , j = 6)

Al - 1 (2 2 )
- 2016 x l2 + Y12

1
A2 = 36 (Xi2 + yi2)(Y23 + !/3d2

A3 - 1 (2 2 )( 2- 36 x l2 + Y12 X23 + :);31)

(i = 8 , j = 7)

(i = 9, j = 3)

Al - 53 .1 2 + 2
- 10080 VX31 Y31

A2 = 1~0 J X51 + Y51(3Y~3 + 31Y23Y31 + 35Y51)

A3 = 1~0 JX?'l + yM3x~3 + 31x23X31 + 35x51)

(i = 9 , j = 4)

Al- _3_ 1 2 + 2
- 1120 V X31 Y31
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(i = 9 , j = 5)

1 (2 2 )
Al = 2016 X31 + Y31

1(2 2)2
A2 = 36 X31 + Y31 Y31

1(2 2)2
A3 = 36 X31 + Y31 X31

(i = 9 , j = 6)

Al = 1~~0 JX~l + Y§lJX!2 + Y!2

(i=10,j=l)

-13 .1
Al = 10080 VX~3 + yi3

A2 = 1~0 J X~3 + Y~3yd5Y23 + 7Y31)

A3 = 1~0 JX~3 + yi3 X23(5x23 + 7X31)

(i=1O,j=2)

17 .1 2 2
Al = 10080 VX23+ Y23

A2 = ~~ JX51 + Y§l JX!2 + Y!2Y31(Y23 + Y31)

A3 = ~~ JX~l + Y§lJX!2 + Y!2X31 (X23 + X31)

A2 = 1~0 JX~3 + yM14Y~3 - 11Y23Y31 - 3yi1)

A3 = 1~0 JX~3 + yM14X~3 - 11X23X31 - 3x~1)

(i = 9 , j = 7)

Al = 1~~0 JX~3 + Y~3JX~1 + Y51

A2 = 1~0 JX~3 + Yi3JX~1 + Y'#,lY23Y31

A3 = 1~0 JX~3 + Y~3VX~1 + Y'#,l X23 X31

(i = 9 , j = 8)

(i=1O,j=3)

53 .1 2 2
Al = 10080 VX23 + Y23

A2 = 1~0 JX~3 + yi3(35Y~3 + 31Y23Y31 + 3Y;1)

A3 = 1~0 J X~3 + Y~3(35x~3 + 31x23X31 + 3X~1)

(i=10,j=4)

Al = 5~~0 J X'#,1 + Y51 J X!2 + yr2

A2 = 1~0 J X51 + Y§l JX!2 + yr2Y31(Y31 + Y23)

Al = --3-VX~3+ Y~3
1120

A2 = ;~ J X~3 + Y~3yd2Y23 + Y31)

A3 = ;~ JX~3 + Y~3X23(2x23 + X31)

(i = 9, j = 9)

1 (2 2 )
Al = 1260 X31 + Y31

A2 = 1~0 (X~l + yi1)(3Y~3 + 3Y23Y31 + 7Y~1)

A3 = 1~0 (x~l + yi1)(3x~3 + 3X23X31 + 7X;1)

(i = 10, j = 5)

Al--=-!-·/2 + 2./2 + 2- 10080 VX23 Y23V X31 Y31

A2 = 1~0 JX~3 + Y~3vx51+ Y51Y23Y31

A3 = 1~0 JX~3 + Y~3VX'#,1 + Y§l X23 X31



2-Dimensional Superconducting Microstructures

(i= 1O,j=6)

Al = 5~~0 J X~3 + Y~3 J X!2 + Yf2

A2 = 1~0 JX~3 + Y~3JX!2 + Y!2ydY23 + Y31)

A3 = 1~0 JX~3 + Y~3JX!2 + Y!2xd X23 + Y31)

(i = 10 , j = 7)

1 (2 2
Al = 2016 X23 + Y23)

1(2 2)2
A2 = 36 X23 + Y23 Y23

1 (2 2 2
A3 = 36 X23 +Y23)x 23

(i=1O,j=8)

(i=1O,j=9)

(i = 10 , j = 10)

1 2 2 )
Al = 1260 (X 23 + Y23

A2 = 1~0 (X~3 + Y~3)(7Y~3 + 3Y23Y31 + 3Y;1)

A3 = 1~0 (X;3 + Y~3)(7x;3 + 3X23X31 + 3X;1)
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