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Flow of Rarefied Vapour past a Liquid Sphere
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SYNOPSIS

This paper deals with the low Mach numbers flow of
a rarefied vapour past a liquid sphere accompanied
with condensation and evaporation at 1its surface.
The linearized Bhatnager-Gross-Krook{(B-G-K)} eqguation
is used for the analysis, and from it the integral
equations of the density, temperature and flow
velocities are derived. These integral equations
are solved numerically over a wide range of the
Knudsen number covering from the slip flow to the
nearly free molecular flow. The drag on the sphere
is also calculated and is compared with that of

previous work.

1. INTRODUCTION

The motion of or the flow around a very small particle
suspended in a gas is an interesting problem in aerosol science and
technology. A wuniform flow past a solid spherical particle in a
rarefied gas 1is a basic problem to wunderstand the motion of
aerosols, and this problem has been extensively studied.‘mS) The
drag on the sphere was calculated by a variational method for the

1)

whole range of the Knudsen number, by the Knudsen iteration method
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2,3)

for large Knudsen numbers, and by the asymptotic theory for

5)

small Knudsen numbers.4) Lea and Loyalka calculated not only the
drag on the sphere but also the flow field over a wide range of the
Knudsen number.

When the particle is not solid but 1liquid, the condensation
or evaporation usually takes place at its surface. This phenomenon

will inevitably effect the velocity or temperature field over the

liguid surface and hence the drag, too. The drag on a volatile
liquid sphere was calculated for small Knudsen numbers6w8) and 1is
found to be smaller than that of the solid sphere. The drag for a

9)

free molecular flow was obtained by Brock. A variational method

was applied to get the drag on a liquid sphere for a wide range of

the Knudsen number!ow12)

The variational method is very useful and
rather simple to calculate the total quantities such as the drag,
but it dose not provide the results for the local quantities such as
the velocity . It is interesting and important for the investiga-
tion of the motion of aerosol to obtain the local quantities and to
know how the rarefaction affects the temperature or velocity field.
In the present paper, we shall consider the low speed flow of a
rarefied vapour past a liquid sphere, on which the condensation or
evaporation takes place. The method of analysis is the same as is
developed in previous papers.13%15) That 1is, we derive the
simultaneous integral equations for the density, flow wvelocities,

6)

and temperature from the linearized B-G-K equation1 by matching
with the Stokes solution which is valid far from the body. These
integral equations are solved numerically for a wide range of the
Knudsen number covering from the slip flow to the nearly free
molecular flow. We give the results for the drag as well as the

velocity, density and temperature distributions.

2. FUNDAMENTAL EQUATIONS

We take a spherical droplet of radius a in its rarefied vapour.
Let the number density, velocity, temperature, and pressure in the
free stream be no, QO, TO, and Pq respectively. The temperature of
the sphere 1is taken to be a constant Tw. We consider the steady
problem.

It is assumed that the uniform speed QO is small compared with
the most probable speed Cm = /5??875, where k 1is the Boltzmann
constant, and m the mass of a molecule. We also assume that the

differences of the temperature between T0 and Tw, and of the
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pressure between Py and by, which is the saturation pressure at T

w’

are small. Then, we can linearize both the fundamental equations and

the boundary conditions. We here employ the B-G-K equation. The
linearized version of this equation is written in the following
forms:
3
Kyeg? = 0, - 0, (1)
2 3
b, = 0+ 2veg + w(¥” - 3), (2)
o, g, %(O+w)=§€] = J[1, v, 22]¢Edg, (3)
" E=7 3/2exp(—22), (4)
where nOC&3E(1+¢) is the distribution function of the molecular

velocity, Cm the most probable speed, nOC%3E(1+¢e) the 1local
Maxwellian distribution function, Cmy the molecular velocity, ar the
position vector,n0(1+c) the number density,TO(1+m) the temperature ,
po(1+£) the pressure, Cmg the flow velocity, K=/71/(2a) the Knudsen
number, and 1 the mean free path.

As for the condition of the liquid droplet, it is assumed that
the droplet has a constant radius a and a constant temperature Tw'
We also assume that the molecules leaving the surface of the sphere
have the Maxwellian distribution with temperature Tw and number
density nw=pw/(kTw). Then, the distribution function for the

reflected molecules at the surface is given by

byunso = By * (v - D, (r=1), (5)

where wwz(Tw—TO)/Tw, €w=ow+ww=(pw—po)/p0, and n the unit normal to
the surface.

The uniform condition at infinity is given by

(q., dg. qw) + S{(cosb, sin6, 0), (o, w) > {0, 0) (as r> =), (6}

in the spherical polar coordinates (r,9,y), and S=Q0/Cm is the speed

ratio.
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3. ANALYSIS
The method of analysis is the same as is developed in the

v
previous work.13 15)

In the field far from the sphere compared with
the mean free path, the distribution function 1is «close to an
equilibrium because of a lot of intermolecular collisions.

Therefore, we can treat the Stokes equations for the mean quantities
instead of Eq.(1) for the distribution function. It is easy to get a
proper solution of the Stokes equation which satisfies the condition
at infinity (6) and also provides the form suggested by the boundary

condition (5) at the surface. The results are given by

Og = - 5LA;%—ELSCOSG - ElEE_%_EQSE' (7)

a ¢ = (1- i . 53}50058 . AJE—"’—;%, (8)

ag g = 11 - A= - Bssing, (9)
! 2r 2r

wg = KEESCOSQ + ElEE—%—Eziﬂ, (10)

where A,B,C,Ai and Bi (i=1,2) are unknown constants to be determined
by matching the Stokes flow with the flow near the sphere.

In the region adjacent to the sphere, whose extent is of the
order of the mean free path, we must treat Eqg.(1). We call this
the kinetic region. Integrating Eq.(1) formally along a character-

istic, we have

t
- _1 _1_ _1 ' 1
o = ¢wexp{— KV(t—tw)} + vat ¢eexp{— Kv(t—t )yydace!', (11)
w
where the subscript w denotes the quantities at the boundary, and
v=[x[. The value ¢w is given by Eqg.(5) if tw is on the surface of

the sphere, whereas it is taken to be zero when tw=w. Substitution
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of Eq.(11) into Eg.(3) leads to the simultaneous integral equations
for 0, g and w. Considering that o, g and w approach the Stokes
solution given by Egs.{(7)%(10) outside the kinetic region, we may

assume the solutions in the kinetic region in the following forms:

g = Og + L{r)ScosfH + €w21(r) + meZ(r), (12)

q, = qr,S + KQr(r)Scose, (13)

dg = qe,S - KQe(r)Ssine, (14)

W= wg + KO(r)Scosb + £w®1 + ww®2(r), (15)
where I(r), Qr(r), Qe(r),O(r),Zi(r) and Oi(r) (i=1,2) are the
correction functions in the kinetic region and hence should wvanish
outside this region. We put these forms (12)%v(15) into the
integral equations for o, w and (. Since the derived equations are

linear, the solutions can be superimposed. That is, the flow field
caused by the uniform flow S is separated from the thermal field due

to the temperature difference w _ and £_. The solution depending on

15)%

W, and Ew has been obtained already and hence we here only solve

the equations for £, Q and O. These have the following forms:

_ 2 B tO n r+1 §] ©
/ﬂGi(r) = GK,i(r) + EiJOdXJ dt + J dxj at - J dxj dt}FA,i

r-1 R r-1 0 r+1
+ 2 oods WO F (§)H dy (i=174) (16)
] o  KiTEUK,A = '
3
(G1I G2' G3I G4) = K(ZI er “Qer EO)I (17)

4K 5
G,1 = = 2l — (A s ZOT (], (18)
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8
3

- K(r-1)[CJ5(n)

- (A + %C)J4(ﬂ) +

2
AJ6(n)]

5

5 2
(A + EC)J3(W) + §AJ5(”)]

- m ) - S - 2 By o)
r r
+—%§Jj+ﬁ_;%§[(A +50)0,(1) - €I, (1) ]
£ 20,0000 - (F - gig)A N 231§dt,
—ﬂg{- KZ{CJ6(n) (A + %C)J4(n) + %AJ6(H)]

3r

- K(r-1)[Cig(n)

2A 4
SCRPE LIRS [P

KT

- 2J3(T)[1 -

5 2
- (A + EC)J3(H) + gAJS(ﬂ)]

A

r

=

5t

- Lrcagm) - (a + 4013 ()

S

S

1

2

r

iny

KELEE%EX[CJ3(T)

S

+

A
+ 2J2(T)[(1 -3

B

S

3

Ycosy + (

2

2r

3

3
2

_B_

r

)A

(A

3

+

+

)J4(n)

- —15[(A + %C)Jz(T) + CI,(1)]

5
5C)3, ()1,

5
(A + 3C)3, (1)]

A

2s

3B
3

2s

rt . 2
)——Es1n X1
s

inxcosx|KEEER X [ca, (1) - (A + 30)3,(1))

3
s

+

+ 2J3(T)[(1 -

20k

3

+ 2300 0-(1 - 2 +

B

]

3

B

S

Jcosy +

3

) o+ (-

A

(—

Sk

2s

+

sin X{K—Ei{CJ4(T) - (A + %C)JZ(T)]
S

2

3

S

B
3

2

)

3B

S

_r_

S

rt

S

3(r—tcosx]

l.

- —3—)—251r12)(]} ’

¥

(19)

(20)

(21)

(22)

(23)

(24)
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Fa g = sinx{KElzigéx[CJs(T) - (A + 4C)I(T) + %(A + %C)J1(T)]
3 A B A 3B, rt . 2
+ 2[J4(T) - EJZ(T)][(1_§+ S3)cosx + (_Eg - ;;3)—2551n X]}, (25)

Fg 1 = I(s)J,(T)cosb + [I5(1) - %J1(T)]O(s)cosw
" 2J2(r)[Qr(s)£99%9:§cosw + Qg(s)Esin®y1, (26)
Fg p = L(s)J,(T)cosb + [J,(T) - %JZ(T)]O(s)cosw
+ 2J3(r)[Qr(s)£99%§:§cosw + Qe(s)ﬁsinzw], (27)
Fe,3 = Z{EIZI,(T) + (3,00) - 33,(1)156(s)
+ 20501110, (s)EEO2=E gy (s) Ecosu ), (28)
FK’4 = Z(S)[J3(T)—%J1(T)]cosw + [Js(r)—3J3(T)+%J1(T)]O(s)cosw
v 200,(1)-23, (1) 11Q () 5925005y + oy (s)Esin®yl,  (29)
_ ssiny _ ssiny(r-scosy) _ ,ssiny,3
Hg, 158k, 4= Tt ¢+ Hg,2 = 2 poHg,3 = g )T, (30)
“ n t?y/t
J (x) = J t" e X't g, (31)
n
0
R = sin_1(1;), IDO = cos'1(1;) + cos_1(1§), (32)
t0 = r cosy - /q - r2 sin2x , (33)
t = (r2 - 2rs cosy + 52)1/2, (34)
s = (r2 - 2rt cosy + t2)1/2, (35)

T = %, n = —. (36)
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The integral equations are to be solved under the condition that the
unknown functions should vanish as n =+ =, The unknown constants A&,
B and C are to be determined with the solutions. Before showing
the numerical results, we here give the formula of the drag acting
on the sphere and the results of the free molecular flow. The drag
may be calculated by taking a large control volume in the Stokes

region enclosing the sphere and by applying the conservation law of

the momentum to the volume. The drag coefficient is given by
- —brag = _ , K
Cp = =4 5 A. (37)

It may be noted that the constant temperature of the sphere T
does not contribute to the force on the sphere, because this is
taken to be constant and hence induces the symmetric temperature and
velocity fields around the sphere.

The free molecular flow is easily evaluated and the results are

g = - 12cose, (38)
/Tr
1
w = - 2cose, (39)
3Vnr
2 3/2
S -1
q, = 5{1 + L£;§—l }cos6, (40)
2 2 3/2
qg = - %{2 P! rr'1 e 'l) }sinb. (41)

4, NUMERICAL RESULT

The method of the numerical calculation is the same as 1is in
Refs.13 and 14 . We have carried out the calculation for the
Knudsen number covering from the nearly free molecular flow to the
near continuum flow. Some of the result are shown here.

The distributions of the flow velocity Q, temperature O and

density L in the kinetic region for typical four cases of the
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Knudsen number K=0.01,0.1, 1 and, 10 are plotted in Figs. 1, 2, 3,

and 4 respectively. The results by Onishi6) for small K are also
marked in Fig.1 when K is taken to be 0.01 in his result. It will
be seen that our result agrees well with Onishi's. The

distribution of the flow velocity g, temperature w and density o at
K=50 are shownin Fig.5. The cross in the same figure shows the
distributions of the free molecular flow.

The varation of the flow velocity q, at the surface versus K,
which corresponds to the evaporation or condensation wvelocity, 1is
shown in Fig.6. The straight dotted line for small K is taken from
Onishi's result, while the horizontal dotted line for large K shows
the value of free molecule's.

Numerical wvalues of the constsnts A, B, and C, which are
involved 1in the flow velocity, temperature and density, are listed
in Table 1I. The value A in Table I is also included in the formula
of the drag (see Eg.(37)). The corresponding values of A ,B and C
by Onishi6) are shown in the same table. The agreement of two
results are quite good. ’

The drag coefficient C_ from Eg.(37) is plotted in Fig.5. The

D
square on the right vertical line shows the drag coefficient of the
9)

free molecular flow,
11)

and the circles are taken from the paper by
Beresnev et al.. The dotted line represents the drag coefficient

of the so0lid sphere for which there is neither condensation nor

evaporation and whose data are taken from Lea and Loyalka,s) and
supplemented by the present author for several values of large K.
The drag reduction is clearly seen 1if the evaporation and

condensation takes place at the surface. It is also noticed that

the drag reduction is larger for larger Knudsen numbers.

0.6
0.4
108
0.2
0 ¥ =1 1
2 3

-0.2
-0.4

-0.6

Fig.1. Variations of the mean quantities in the kinetic region at

K=0.01. x: Onishi.®’
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-1.0 L
Fig.2. Variations of the mean
quantities in the kinetic
region at K=0.1.
1.0
4 1
0.5
_1'0 4L
Fig.4. Variations of the mean
quantities in the kinetic

region at K=10.0.

Fig.3.

Variations

of the
guantities in the

region at K=1.0.

1.0 Qr/{Scose)

-9/ (Scose)

mean

kinetic

i " i r-1
1 W/{Scoss) 2 3

-0.2

-0.4

-0.6

0.8 9/ (Ssinn)

-1.0
Fig.5. Distribution of the
mean quantities at K=50.0. x:

free molecular flow.
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Fig.6. Radial flow velocity at Fig.7. Drag coefficient versus
the surface versus K. ----- K. D:free molecular flow, O:
. .6
(K<<1): Onishi, S (K>>1) Beresnev et al,11) ————— :solid
free molecular flow. sphere.
Table I Values of A, B and C.
* * *

K A A B B c C
0.01 1.481 1.4812 0.4883 0.48827 -0.3058 -0.31431
0.05 1.408 1.4062 0.4412 0.44137 -0.2765
0.1 1.320 1.3124 0.3821 0.38275 -0.2510
0.2 1.164 1.1248
0.3 1.033 0.93718
0.5 0.8331 0.56197
0.75 0.6645
1 0.5500 -0.7613 -0.1157
2 0.3213
3 0.2254
5 0.1410
7.5 0.09575

10 0.07246 -12.07 -0.01380
20 0.03753
30 0.02509
50 0.01539
6)

* Onishi.



Yuji ISHIHARA and Kvoji YAMAMOTO

REFERENCES

1)

2)
3)

4)

5)

6)

7)

8)

9)

10)

1)

12)

13)
14)

15)

16)

C. Cercignani, C.D. Pagani and P. Bassanin : Phys. of Fluids,
11(1986), 1399.

D.R. Willis : Phys. Fluids,9(1966),2922.

K. Yamamoto and M.E.H. van Dongen : J.Colloid Interface Sci.,
57(1976), 162.

Y. Sone and K. Aoki : "Rarefied Gas Dynamics, Progress in
Astronaut., and Aeronaut.", American Inst. Aeronaut.
Astronaut., New York,(1977), 417.

K.C. Lea and S.K. Loyalka :Phys. Fluids, 25(1982),1550.

Y. Onishi : J. Phys. Soc. Jpn., 43(1977),1434.

Y. Sone and K. Aoki : " Rarefied Gas Dynamics" ,Commissariat a
1'Energie Atomique, Paris, (1979),1207.

K. Aoki : J. de Mecanique Theorique et Appliquee, 3(1984),825.
J.R. Brock :J. Phys. Chem., 68(1964),2862.

S.A. Beresnev, V.G. Chernyak and L.Ya. Lokshina :J. Eng. Phys.,

41,(1981),pp.1137-1141

S.A. Beresnev, V.G. Chernyak and P.E. Suetin : Sov. Phys.
Dokl. 28(1983),41.
S.A. Beresnev, V.G. Chernyak and P.E. Suetin : High Temp.,

21(1983), 875.
K. Yamamoto and K. Sera : Phys. Fluids, 28(1985),1286.

K. Yamamoto and Y. Ishihara : "Rarefied Gas Dynamics",B.G.
Teubner, Stuttgart,(1986) 334.
K. Yamamoto and T. Nishitani : "Rarefied Gas Dynamics", Univer-

sity of Tokyo Press,(1984),893.
P.L. Bhatnagar, E.P. Gross and M. Krook : Phys. Rev., 94
(1954),511.





