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Flow of Rarefied Vapour past a Liquid Sphere
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SYNOPSIS

This paper deals with the low Mach numbers flow of

a rarefied vapour past a liquid sphere accompanied

with condensation and evaporation at its surface.

The linearized Bhatnager-Gross-Krook(B-G-K} equation

is used for the analysis, and from it the integral

equations of the density, temperature and flow

velocities are derived. These integral equations

are solved numerically over a wide range of the

Knudsen number covering from the slip flow to the

nearly free molecular flow. The drag on the sphere

is also calculated and is compared with that of

previous work.

1. INTRODUCTION

The motion of or the flow around a very small particle

suspended in a gas is an interesting problem in aerosol science and

technology. A uniform flow past a solid spherical particle in a

rarefied gas is a basic problem to understand the motion of

aerosols, and this problem has been extensively studied.1~5) The

drag on the sphere was calculated by a variational method for the

whole range of the Knudsen number, 1 } by the Knudsen iteration method
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the

the

fortheory

not only

range of

for large Knudsen numbers,2,3) and by the asymptotic

small Knudsen numbers. 4 ) Lea and LOyalka S ) calculated

drag on the sphere but also the flow field over a wide

Knudsen number.

When the particle is not solid but liquid, the condensation

or evaporation usually takes place at its surface. This phenomenon

will inevitably effect the velocity or temperature field over the

liquid surface and hence the drag, too. The drag on a volatile

liquid sphere was calculated for small Knudsen numbers6~8) and is

found to be smaller than that of the solid sphere. The drag for a

free molecular flow was obtained by Brock. 9 ) A variational method

matching

These

by

body.the Stokes solution which is valid far from thewith

was applied to get the drag on a liquid sphere for a wide range of

the Knudsen number~O~12) The variational method is very useful and

rather simple to calculate the total quantities such as the drag,

but it dose not provide the results for the local quantities such as

the velocity. It is interesting and important for the investiga­

tion of the motion of aerosol to obtain the local quantities and to

know how the rarefaction affects the temperature or velocity field.

In the present paper, we shall consider the low speed flow of a

rarefied vapour past a liquid sphere, on which the condensation or

evaporation takes place. The method of analysis is the same as is
13~1 S )developed in previous papers. That is, we derive the

simultaneous integral equations for the density, flow velocities,

and temperature from the linearized B-G-K equation16 )

integral equations are solved numerically for a wide range of the

Knudsen number covering from the slip flow to the nearly free

molecular flow. We give the results for the drag as well as the

velocity, density and temperature distributions.

2. FUNDAMENTAL EQUATIONS

We take a spherical droplet of radius a in its rarefied vapour.

Let the number density, velocity, temperature, and pressure in the

free stream be nO' QO' TO' and PO' respectively. The temperature of

the sphere is taken to be a constant Tw. We consider the steady

problem.

It is assumed that the uniform speed QO is small compared with

the most probable speed em = 12kTO/m, where k is the Boltzmann

constant, and m the mass of a molecule. We also assume that the

differences of the temperature between TO and Tw' and of the
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pressure between PO and Pw' which is the saturation pressure at Tw'

are small. Then, we can linearize both the fundamental equations and

the boundary conditions. We here employ the B-G-K equation. The

linearized version of this equation is written in the following

forms:

35

KV •.£1. = <P
e

- <P,- dr

-3/2 2E=7T exp(-v),

( 1 )

(2 )

(3 )

(4 )

-3where nOCm E(l+<p) is the distribution function of the molecular
-3velocity, Cm the most probable speed, nOCm E(l+<P e ) the local

Maxwellian distribution function, Cm~ the molecular velocity, ar the

position vector,n
O

(1+0) the number density,TO(l+w) the temperature,

PO(l+~) the pressure, Cmg the flow velocity, K=/nl/(2a) the Knudsen

number, and I the mean free path.

As for the condition of the liquid droplet, it is assumed that

the droplet has a constant radius a and a constant temperature Tw.

We also assume that the molecules leaving the surface of the sphere

have the Maxwellian distribution with temperature Tw and number

density n =p /(kT). Then, the distribution function for thew w w
reflected molecules at the surface is given by

(r=l) , ( 5 )

where Ww=(Tw-TO)/Tw' ~w=ow+ww=(pw-PO)/PO' and g the unit normal to

the surface.

The uniform condition at infinity is given by

(a, w) ->- (0, 0) (a s r->- 00), (6 )

in the spherical polar coordinates (r,8,w), and S=QO/Cm is the speed

ratio.
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3. ANALYSIS

The method of analysis is the same as is developed in the
. 13'U15)preVlOUS work. In the field far from the sphere compared with

the mean free path, the distribution function is close to an

equilibrium because of a lot of intermolecular collisions.

Therefore, we can treat the Stokes equations for the mean quantities

instead of Eq.(1) for the distribution function. It is easy to get a

proper solution of the Stokes equation which satisfies the condition

at infinity (6) and also provides the form suggested by the boundary

condition (5) at the surface. The results are given by

aS
K(A + C)scose

Bl~w +
B2 Ww

r 2
- r

{ 1 - A B A1~w +
A2 Ww

qr,s + ---;3} Scos e +
r 2r

-{ 1 A ~} Ssine,qe,s -
2r 2r

KC B1~w +
B2ww

Ws --2scose +
r r

( 7 )

( 8 )

(9 )

( 1 0 )

where A,B,C,A i and Bi (i=1,2) are unknown constants to be determined

by matching the Stokes flow with the flow near the sphere.

In the region adjacent to the sphere, whose extent is of the

order of the mean free path, we must treat Eq.(1). We call this

the kinetic region. Integrating Eq.(1) formally along a character­

istic, we have

+ -K1It <p exp{ - ---.l( t-t I )} dt 1

v t e Kv '
w

( 1 1 )

where the subscript w denotes the quantities at the

v=I~I. The value <P w is given by Eq.(5) if t w is on

the sphere, whereas it is taken to be zero when tw=oo.

boundary, and

the surface of

Substitution



of Eq.(11) into Eq.(3) leads to the simultaneous integral equations

for 0, g and w. Considering that 0, g and w approach the Stokes

solution given by Eqs.(7)~(10) outside the kinetic region, we may

assume the solutions in the kinetic region in the following forms:

a

w

q S + KQ (r)ScosS,r, r

( 1 2 )

( 1 3 )

( 1 4 )

( 1 5 )

where L(rl, Qr(rl, QS(rl,G(r),Li(rl and Gi(rl (i=l,2) are the

correction functions in the kinetic region and hence should vanish

outside this region. We put these forms (12)~(15) into the

integral equations for 0, wand g. Since the derived equations are

linear, the solutions can be superimposed. That is, the flow field

caused by the uniform flow S is separated from the thermal field due

to the temperature difference wand s. The solution depending on
w 15) w

wand s has been obtained already and hence we here only solvew w
the equations for L, Q and G. These have the following forms:

lrrG. (r I
1

+ 2JoodSJWO FK . (-tSIHK .dW
1 0 ,1 ,1

(i=1~4), ( 1 6 )

( 17)

( 1 8 )
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- K ( r -1 ) [ CJ 5 ( II )

2A }( r - 1) SJ 4 ( II )

( 1 9 )

- K ( r -1 ) [ CJ 5 ( II )

2A l
( r - 1) SJ 4 ( ll) S

( 20 )

( 21 )

A B A
+ 2J2 (T)[(1 - S + ---3)C05X + (~

5

3B rt . 2 J---3)---25ln Xl , (22)
25 5

A B A 3B rt . 2 1+ 2J 3 (T)[(1 - S + ---3)C05X + (~ - ---3)---25ln xl , (23)
5 25 5

~5in3X{K~[CJ4(T) - (A + iC)J2(T)l
5

A
+ 2J 3 ( T ) [ - (1 - 5

B A 3B r }+ ---3) + (- "2 + ---3)---3(r-tco5xl , (24)
5 25 5
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3L: ( s ) J 1 (T )coslli + [J 3 ( T) - i J 1 ( T ) ]8 ( s )coslli

rcoslli-s r . 2
+ 2J 2 (T)[Qr(S) t coslli + Qe(s)ES1n iii],

3L:(S)J 2 (T)coslli + [J 4 (T) - iJ2(T)]8(s)coslli

rcoslli-s r . 2
+ 2J 3 (T)[Qr(S) t coslli + Qe(s)Es1n iii],

( 26 )

( 27)

3 t
- iJ2(T)]~(S)

- Qe (s );coslli l' ( 28 )

FK, 4 L: ( s) [J 3 ( T )-~J 1 ( T ) ] coslli +[J 5 ( T ) - 3J3 (T )+tJ 1 (T ) ]8 (s ) cos iii

3 rcoslli-s r . 2
+ 2[J4 (T)-iJ 2(T)][Qr(s) t cos iii + Qe(s)Es1n iii], (29)

ssinlli(r-scoslli)

t 2

J (X) = fOOt n e-
t2

- X/ t dt,
n a

-1 1 -1 1 -1 1
B = sin (r)' Ilia = cos (r) + cos (5)'

( 31 )

(32 )

( 33)

t = (r 2 - 2rs coslli + 2) 1 /2s , ( 34)

s

T
r-1
1<'

( 35 )

(36 )
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The integral equations are to be solved under the condition that the

unknown functions should vanish as ~ + The unknown constants A,

Band C are to be determined with the solutions. Before showing

the numerical results, we here give the formula of the drag acting

on the sphere and the results of the free molecular flow. The drag

may be calculated by taking a large control volume in the Stokes

region enclosing the sphere and by applying the conservation law of

the momentum to the volume. The drag coefficient is given by

Drag 4 K
S A. ( 37 )

It may be noted that the constant temperature of the sphere

does not contribute to the force on the sphere, because this

taken to be constant and hence induces the symmetric temperature

T w
is

and

velocity fields around the sphere.

The free molecular flow is easily evaluated and the results are

a

w

- __1-cos8
2 '/ITr

1---2cos 8 ,
3/ITr

( 2 1 )3/2
~{1 + r 3 }cos8,

r

(38)

(39 )

(40 )

4. NUMERICAL RESULT

(41 )

The method of the numerical calculation is the same as is in

Refs.13 and 14 • We have carried out the calculation for the

Knudsen number covering from the nearly free molecular flow to the

near continuum flow. Some of the result are shown here.

The distributions of the flow velocity Q, temperature (') and

density L: in the kinetic region for typical four cases of the



Knudsen number K=O.Ol,O.l, 1 and, 10 are plotted in Figs. 1 , 2, 3,

and 4 respectively. The results by Onishi 6 ) for small K are also

marked in Fig.l when K is taken to be 0.01 in his result. It will

be seen that our result agrees well with Onishi's. The

distribution of the flow velocity g, temperature wand density a at

K=50 are shownin Fig.5. The cross in the same figure shows the

distributions of the free molecular flow.

The varation of the flow velocity qr at the surface versus K,

which corresponds to the evaporation or condensation velocity, is

shown in Fig.6. The straight dotted line for small K is taken from

Onishi's result, while the horizontal dotted line for large K shows

the value of free molecule's.

Numerical values of the constsnts A, B, and C, which are

involved in the flow velocity, temperature and density, are listed

in Table I. The value A in Table I is also included in the formula

C

twoThe agreement of

The corresponding values of A ,B and

the same table.

of the drag (see Eq.(3?)).

by Onishi 6 ) are shown in

results are quite good.

The drag coefficient Co from Eg.(3?) is plotted in Fig.5. The

square on the right vertical line shows the drag coefficient of the

free molecular flow,9) and the circles are taken from the paper by

Beresnev et al •. 11 ) The dotted line represents the drag coefficient

of the solid sphere for which there is neither condensation nor

evaporation and whose data are taken from Lea and Loyalka,5) and

supplemented by the present author for several values of large K.

The drag reduction is clearly seen if the evaporation and

condensation takes place at the surface. It is also noticed that

the drag reduction is larger for larger Knudsen numbers.

0.6

0.4

0.2

0 q
2 3

-0.2

-0.4

-0.6

Fig.l. Variations of the mean quantities in the kinetic region at

K=O.Ol. x: Onishi. 6 )
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Fig.2. Variations of the mean

quantities in the kinetic

region at K=O.l.

Fig.3. Variations of the mean

quantities in the kinetic

region at K=1.0.
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Fig.4. Variations of the mean

quantities in the kinetic

region at K=10.0.

Fig.5. Distribution of

mean quantities at K=50.0.

free molecular flow.
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x:
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m

'0

Fig.6. Radial flow velocity at

the surface versus K. ----­

(K«l ): Onishi, 6) ----- (K»l ) :

free molecular flow.

lcf

..
'0

Fig.7. Drag coefficient versus

K. 0: free molecular flow, 0 :
11 ) l' dBeresnev et ai, -----:so 1

sphere.

cf

Table I Values of A, Band C.

* * *K A A B B C C

0.01 1 .481 1.4812 0.4883 0.48827 -0.3058 -0.31431

0.05 1 .408 1 .4062 0.4412 0.44137 -0.2765

0.1 1 .320 1.3124 0.3821 0.38275 -0.2510

0.2 1 .1 64 1.1248

0.3 1 .033 0.93718

0.5 0.8331 0.56197

0.75 0.6645

1 0.5500 -0.7613 -0.1157

2 0.3213

3 0.2254

5 0.1410

7.5 0.09575

10 0.07246 -12.07 -0.01380

20 0.03753

30 0.02509

50 0.01539

* Onishi. 6 )
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