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SYNOPSIS

Nested dissection method is an elimination method for

a set of linear algebraic equations with minimum fill­

ins. Physically it divides a domain into four subdomains,

and each subdomain is again divided into four. This pro­

cedure is repeated till all nodes are included in some

subdomains. Using this characteristic, the authors ex­

amine the efficiency of the method on the transputer.

1. INTRODUCTION

According to the development of the ability of computers, the size

of problems treated in engineering fields has been growing. Then,

faster solvers have been always required, and a number of effective

solvers were proposed and applied for the actual problems. For the

finite element users solvers for a large sparse set of linear equa­

tions have been required. Using the characteristics of the coefficient

matrices, the sparse matrix technique is effectively introduced in the

solvers and at present we find, for example, the band matrix method,

the skyline method, and so on.

The efficiency of solvers can be judged by the ammount of necessary

memories and also the CPU time required for the solution. Especially,

the restriction of the memory size becomes important in rec~nt years,

when very large problems are treated.
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Any method based on the elimination necessarily requires additional

memory for the storage of new nonzero entries called fill-in appearing

during the forward elimination process. At present it is known that

the nested dissection method generates the least number of fill­

ins[I,2].

The elimination process used in the nested dissection method sug­

gests us another important aspect, i.e. the parallel computation. At

using the nested dissection method, physical domain is divided into

subdomains, and the elimination of these subdomains can be treated in­

dependently. This characteristic obviously fits to the property of

parallel machine.

In'this paper the authors investigate the efficiency of the nested

dissection method on a parallel machine. For this purpose they firstly

explain the elimination procedure of the nested dissection method,

discuss on the parallel coding of the method, and show the results of

test problems. The results are compared with ones by other solvers.

2. HARDWARE AND SOFTWARE SYSTEM

The computer used for this investigation is a parallel machine

called transputer with 2 processors, T-800. One of these processor is

called the root processor, which governs another processor called sub­

processor. Each processor has 1MB memory, and auxiliary 6MB memory is

added to the root processor. The structure of this system prepares 8MB

memory as a whole, but the subprocess or can store, at most, 1MB

memory.

A microcomputer, NEC PC-9801RX,

is used as I/O machine of the

transputer, and a hard disk unit

of 40 MB is attached to it.

Operation system is MS-DOS. So,

the user can treat whole system

only using MS-DOS. For the compu­

tation, Parallel Fortran is used.

Total hardware system is illust­

rated in Fig.l.

For the efficient use of any

parallel machine, the tasks load­

ed on each processor should be
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equated. In above hardware system we can use two processors with 7MB

and 1 MB, and the divided task for the machine is restricted by the

subprocessor. That is, two processors can fully work when each proces­

sor subjects to the load less than 1MB.

3. ELIMINATION PROCESS FOR SPARSE SYSTEM

Let

Ax b (1)

be a set of linear algebraic equations obtained by the application of

the finite element method or the finite difference method.

Now, we consider on the elimination process for (1). Let a(i,j) be

an entry of the matrix A. Then, the elimination of the k-th row of A

replaces a(i,j) to a'(i,j).

a'(i,j) a(i,j) - a(i,k)*a(k~j)/a(k,k) (2)

This relation shows that a(i,j) must be modified, if both of a(i,k)

and a(k,j) are nonzeros. Then, the zero entry at a(i,j) becomes non­

zero if the product a(i,k)*a(k,j) is nonzero. New nonzero entry

a'(i,j) is called "fill-in".

The application of the theory of graph can clarify the generation

of fill-in during the elimination ordering. At the presentation of the

coefficient matrix A of (1) by a graph, we set firstly n nodes for ex­

pressing a matrix A(n*n), and indicate the existence of a nonzero

entry a(i,j) of A by a line connecting a pair pf nodes labelled i and

j. Then, we can express the appearance of a fill-in also by a new

line. Fig.2-a shows an example of a coefficient matirx, Fig.2-b

presents its graph, and Fig.2-c shows the graph after the elimination

of a node. located at the centre. Dotted lines in Fig.2-c indicate the

~ppearance of fill-ins, and we can remark that the sub graph consisted

by nodes which are connected to the eliminated node is replaced by a

complete graph after the elimination. That is, all nodes which are

connected to the eliminated node are directly connected each other

after the elimination.

In case of the band matrix method it is known that fill-ins appear

only for entries inside of the bandwidth. For example, if the matrix
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Fig. 2 Hatl'ix and Its Graph

of Fig.2-a is eliminated according to the ordering of the matrix, all

fill-ins appear within the halfbandwidth 4 including the main

diagonal.

3. NESTED DISSECTION METHOD

Let R be a rectangular area, and subdivide the domain into N'~N

small rectangles by placing N nodes on each edge of the domain. Then,

a grillage with (N+l)*(N+l) nodes are placed there.

Now, we consider on the elimination of nodes set in the area. A

part of the grillage is shown as M(O) in Fig.3. The effect of the

elimination of a node is restricted only within the subarea consisting

of nodes which are connected to the eliminated one. The state after

the first elimination is shown as M(l) in the figure, and bigger rec­

tangle with 8 nodes show a complete graph. M(2) shows new state after

the elimination of 2 nodes. At this elimination we can remark that no

fill-ins appear for nodes which locate on the common edge of these two

complete graphs, because fill-ins are already generated at the first

elimination. The figures in Fig.3 clarify that fill-ins once generated

are effectively used for the successive eliminations.

Nested dissection method uses the property of the elimination pro­

cedure mentioned above effectively. Assume a grillage with (N+l)*(N+l)

nodes is placed in a rectangular area. The rectangular area is divided

into four smaller rectangles, and call nodes on the bisecting lines as
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Fig.3 Nested Dissection Method

G(X). Each rectangle is divided into four again, and nodes newly

selected are classified into G(X-l). This subdivision is repeated un­

till all nodes are included in some groups G( j). The final group is

set in G(l). Then, "X" of G(X) indicates the number of groups. The

elimination is started from nodes in the final group, and continued to

nodes in successive group till all nodes are eliminated. The elimina­

t ion 0 r d e r i n g 0 f nod e sin the sameg r 0 u pis arb i t r a r y , but the

elimination of another group must be done after the elimination of

previous one. The different ordering of the elimination for nodes in

the same group does not give any difference of tne number of fill-ins.

The elimination ordering of the nested dissection method can

decrease total number of fill-ins, since

(1) the number of nodes connected to a node to be eliminated is
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restricted to be small, and

(2) nonzero entries once generated during the elimination are

modified as many times as possible not to create new fill-ins.

4. PROBLEMS AND RESULTS ON TRANSPUTER

For nodes on the grillage the elimination process can be easily

parallelized. Since the elimination of a node modifies only the values

of entries as shown in Fig.3, another node which is not influenced by

the elimination can be eliminated at the same time.

This property of the nested dissection method suggests the ap­

plicability of it to the parallel computation. Obviously, the elimina­

tion of nodes included in the group, G(X), must be done in one proces­

sor, because they form a complete graph at the stage. That is, the

elimination procedure of the nested dissection method can be parallel­

ized except the treatment for nodes in G(X).

For the comparison of the efficiency of the nested dissection

method, we choose following two solvers:

1. Gauss Elimination Method

2. Band Matrix Method

In following discussion GEM, BMM and NDM are used for Gauss Elimina­

tion Method, Band Matrix Method, and Nested Dissection Method, respec­

tively.

These three solvers are tested using single processor and also two

processors. The parallel coding for GEM and BMM is as following: Odd

rows are solved by the root processor, and even rows are by the sub­

processor. The parallel coding for NDM is due to the method mentioned

above.

Now, we explain the problems used for the test. Two problems are

prepared for our tests, in which

Test 1 and 2 include 49 and 225

Fig's
1 2 1 3 1 2 1

nodes, respectively. 4 and
2 2 2 3 2 2 2

5 show the groups of nodes of Test
1 2 1 3 1 2 1

1 and Test 2, respectively. In the 3 3 3 3 3 3 3
figures, numbers from 1 to 4 indi- 1 2 1 3 1 2 1
cate the nodes clasified into G(l) , 2 2 2 3 2 2 2
G(2) , G(3) and G(4), respectively. 1 2 1 3 1 2 1

Test 1 is almost one fourth of Test

2, which is enclosed by nodes classi- Fig. 4 Groups of Nod!Js of Test 1
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Fig. J Groups of Nodes of Test 2

Table 1 Results of Test 1 and Test 2
(msec)

Test 1 Test 2
------------------------------ ----------------------------- ------

Single Pa ra Single Pa ra.

GEH 321.98 275.33 31690.05 24149.63

BHH 17.' 98 20. 74 288.96 272.19

NOH 17. 73 17.02 253.89 233.22
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fied in G(4).

For NDM the elimination is started from nodes in G(l), and succes-

sively continued to nodes in G(2), G(3) and G(4). For BMM the elimian­

tion ordering is determined so that the half bandwidth is minimised.

In these tests the half bandwidth is 7 for Test 1 and 15 for Test 2,

and all data are stored in 2-dimensioanl array. Same elimination or­

derings are introduced in GEM, but the elimination is applied for all

entries of the coefficient matrix A.

The results of Test 1 and 2 are summarized in Table 1. From the

table we obtain following conclusions.

(1) Nested dissection method is the fastest solver among them for the

single and also parallel computings.
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(2) The efficiency of the parallel computaion for the nested dissec­

tion method appears already in small-size problem like Test 1. On the

other hand, the band matrix method requires longer execution time in

this case, and it can show the efficiency of the parallel computation

for larger problem like Test 2. This difference is caused by the I/O

time for the parallel procedure of these solvers.

The results of this table suggest that the nested dissection method

becomes more effective for larger problems.

5.CONCLUDING REMARKS

The efficiency of the nested dissection method is surveyed using a

parallel computer, and the comparison of CPU time showed that it is

faster than the Gauss elimination method and the band matrix method.

Moreover, the results suggest that it will be more effective for

larger problems.

Te s t pr 0 b lems t r ea ted in thi s in vest iga ti on are sel ec ted so tha t

the nested dissection method can be easily applied. If more general

problems are chosen for the tests, the use of the nested dissection

method becomes difficult. In this case, the one-way dissection method

should be introduced instead of the nested dissection method.[3]
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