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Finite Elements with Divergence-free Shape Function and the
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Divergence-free shape functions are proposed for the finite elements, with which

inhomogeneously-Ioaded and arbitrarily-shaped waveguides are analysed. The methOd is based

on vectorial finite element fonnulation employing edge elements. The shape functions used for

the approximation of the fields are shown analytically to be divergence-free and as an evidence,

the non-physical solutions that appeared in the longitudinal component finite element

formulation have been shown to be absent. To show the validity of the elements, application is

made for the analysis of rectangular waveguides loaded with dielectric slab and a waveguide

with curved structure. The solutions obtained are compared with the analytical ones or the

solutions reported elsewhere. The degree of accuracy has been found satisfactory.

1. INTRODUCTION

The finite element method has been widely used for the analysis of waveguide components and is considered to be

one of the most powerful and versatile methods for the solution of a wide variety of waveguide problems. In the design of

the structures, it is important to calculate the propagation characteristic of the guided modes or the eigenfrequencies of the

cross-section. However, the finite element analysis of electromagnetic problems is well known to be plagued by the

occurrence of non-physical or spurious solutions. One of the earliest reports on these spurious solutions was by Daly [1],

who used axial components for the elements. Several methods have been proposed to suppress these spurious solutions.

One of the earliest proposal to identify these spurious modes, made by Davies [2] was to include the square of the

divergence of the field in the variational formulation. The subsequent headway was made by Rahman [3], Webb [4] and

Koshiba [5] and others, who introduced a penalty term in the fonnulation which enforces the constraint V·E=O in the

formulation. This constraint has empirically been found to suppress the spurious modes and in some cases, this only

pushes the spurious modes out of the region of interest. This technique involves an arbitrary positive constant, called the

penalty coefficient and the accuracy of the solution depends on its magnitude. As to the fonnulation, Hayata [6] used three

components of the magnetic field where the axial component (z direction) is expressed in terms of the transverse

components, satisfying the condition of zero divergence. Lee [7] obtained the fonnulation providing the multiplicity of the

set of zero eigenvalues set to a finite number known in advance, yielding approximation of the zero eigenvalues with good

accuracy.

Kobelansky and Webb [8] proposed the use of the basis functions in the elements with which the fields are exactly

divergence-free. These divergence-free basis functions are obtained by solving an auxiliary eigen-matrix system in which

intensive computations are required since at least tens of basis functions are needed to be calculated. The present method
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proposes the use of the shape functions which does not need any pre-fixing but is inherently divergence-free. This means

that the present shape functions accommodate straightforwardly the zero divergence of the field in the formulation in an

explicit way and get rid of the spurious solutions resulting from the non-compliance with divergence-free condition. The

analytical proof of its divergence-free condition is given in section 4.

2. BASIC EQUATION AND VARIATIONAL FORMULATION

Considering a metallic-walled waveguide with closed cross-section n, the source-free Maxwell's equations with

time dependence of exp(jrot) being implied are given by

V x E =-jrollollrH

V x H =jrofoerE

(1)

(2)

where ro is the angular frequency, EO and Ilo are the permittivity and permeability of free space, respectively, and Er and Ilr

are the corresponding relative material properties. At the interface between two contiguous media i and j, the following

conditions must be satisfied:

n xHj=n xHj

n . Dj =n . D j

(3a)

(3b)

(3c)

n . B j = n . B j (3d)

where B and D are respectively the magnetic and electric flux density and n is the interface normal unit vector. On the

boundary of the domain n, the appropriate boundary conditions are:

nxE=O

n· B =0

on the perfect electric walls and

nxH=O

n· D =0

(3e)

(3f)

(3g)

(3h)

on the perfect magnetic walls.

The above Eqs. (1)-(3) describe the classical boundary-value problem unambiguously, where part of the equations

are dealt with in a straightforward manner while the rest of those are satisfied naturally. The Maxwell's equations given by

Eqs. (1) and (2) and the equations of tangential boundary conditions givenby Eqs. (3a), (3b), (3e) and (3g) are used

directly in solving the problem within the prescribed domain while at the same time solutions to them implicitly satisfy the

Maxwell's divergence equation V·B=O and V·D=O and the normal boundary conditions given by Eqs. (3c), (3d), (3f)

and (3h).

By taking the curl of both sides of the Eq. (1) and then substituting Eq. (2) into (I), the following vectorial wave

equation for E is derived:

where

inn (4)

(5)

The following functional (6) can easily be obtained from Eq. (4) when there is no energy flow across the boundary and it

has been proved [9] that the functional given by Eq. (6) is stationary about the correct solutions:
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L(E) =f {(Ilr-IV X E)*·(V X E) - k02Er E*·E 1dn
n

where the asterisk denotes the complex conjugate.

3. FINITE ELEMENT FORMULATION

(6)

37

The cross-section of a waveguide is divided into the finite elements of simple geometric shape to approximate the

domain. Thus, we seek an approximate solution for the domain with a suitable finite element mesh. The finite element

meshes consist of triangular or quadrilateral elements, that allow unique derivation of the interpolation functions. For edge

elements, the elements are connected to each-other by"sharing the common edges on the boundaries of the elements. Hano

[10] has used rectangular edge elements and Kikuchi [11] and Koshiba [12] have used triangular edge elements. Koshiba •

has shown the tangential components to be continuous along the inter-element boundaries and constant on each side of

triangles. Hano and Koshiba's formulations have been developed for solving inhomogeneous waveguiding problems

whereas Kikuchi's one is for homogeneous hollow waveguiding problems. We here use triangular edge elements [13]

where the shape functions are chosen to be analytically non-divergent, which are different from the ones used by the above

authors. However, even though Koshiba's element [12] is also analytically divergence-free, the present shape function can

be presented by expression which are simpler compared (see appendix) to Koshiba's.

3.1 Triangular edge elements

The domain of the problem is here divided into triangular elements, in each of which the material property is

constant. Within the element, the electric field E is approximated by the linear combination as

and

TE(x,y,z) = [F] {<P}e

and Ez =j{NH<I>zle

(7)

(7)'

(8)

(9)

In Eq.(8), the set of unknowns of tangential components <Ptl, 4>12 and <Pt3 and axial components $zh $z2 and $z3

are defined on the edges and the nodes respectively of the triangle as shown in Fig.l(a). Besides, Nij and Nlj , the

components of {Fxl and {Fy } respectively, are x and y directed components of the vector shape function Nij, such that

N .. =iN~·+ J·N~. where i and J' are the unit vectors along x and y directions respectively of the rectangular coordinate
IJ IJ IJ '

system. The vector shape functions Nij are given by

D3
N23=--N2

al' D3

Dl
N3I =---N3

a2' Dt

D2
NI2=---NI

a3' D2
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D2
N3Z=---N3

31' D2

D3
N 13 =--Nl

32' D3

D1
Nz1 =--N2

33' D1

(10)

where 'a's are the unit vectors defined along the edg~s and 'o's are the unit nonnals defined on the corresponding edges of

the triangle as shown in Fig. l(b), and 'N's are the area coordinates (LNi=l, i=1 to 3). The shape function component

Nij, defined along the edge with unit vector ak, is the contribution from the side of node i, and the tangential shape

function F(Fx. Fy). defined along an edge is made of the components (defmed by Eq. (10)) contributed from the two nodes

joining that edge.

3

y Globaltc:r:nates

<PzZ L.-__-..:...-__~

2

(a) (b)

3

Fig. 1 Present triangular edge element showing location of (a) tangential and

axial unknowns and (b) unit vectors along the edges and nonnal to the edges.

Here, the electric field is assumed to have a z dependence as E(x,y) exp(-:if3z), where f3 is the propagation constant.

Substituting Eqs.(7)-(1O) in Eq.(6),and making the functional stationary for element e, we obtain

where

[K]e {<!It- k~[M]e {<!It= {o}

(~Fyt _~F~ ) (~~ _ ~Fxt {
ax ay ax ay

2 T T
+ 13 qFxl{F x) +(Fyl{Fy) )

alN} otNlT otNl alNlT

-----+----
ax ax ay ay

(11)

dxdy

{oj

(NHN}T IdxdY

Eq.(II) can be resolved into

f [~2 ({F,JIF,iT+ IFyiIFyJT) {~,}.+(~L~I~I) (~L~;I)T{~,}.
no
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I TT T T
and [~ ({F } d{N} + {F }d{N} ) {tP} + ( d{N) d{N} + d{N} d{N} ) {tP \ _ k \ (N}{N}T) {tP } ] dxdy = 0

x dX y dy t e dX dX dy dy zJ e 0 z e

n.

(12)

Rearranging the tenns of Eq.(12), we obtain,

f [k:( IF,ltF,}T+ (FyXFy}T) {q,}.-(~-~)(~::L~)T{q,}.
n.

- ~ ({Fx} d:)T+ {Fy}d~}T ) {tPz}e_ ~ 2
({Fx}{Fx}T+ (Fy}(Fy}T) {tPt}e] dxdy = 0

I TT T T
[- ~ ({Fx} d{N} + {F }d{N} ) {tP} + (k2{NHN}T_ d{N) d{N}_ d{N} d{N} ) {tP } ]dxd _ 0

dX y dy te 0 dX dx dy dy Ze y=

n.
(13)

Eq.(13) can be considered for all the elements and expressed by a system of matrix equation as follows

2

[StJ{4>t} - ~[StzJ{tPz} -~ [MtJ{tPt}=O

- ~[SzJ{4>t} + [SzzJ{tPz}=0

where {4>tl and {4>zl are the global unknowns,

[St~ = Lf [k~ ((Fx}{F~T+{Fy}{Fy}T)- (~~-~) (~~_~~)T ]dxdy
e n. dX dy dX dY

T T

[St~ = L J [({Fx}<l{~) +{Fy}<l{~} ) ]dxdy=[Sz~T
en. oX oy

T T

[Sz~ = LJ [( k~{NHN}T - d{N) <l{N} _ d{N} <l{N} ) ]dxdy
en. dX dX dy dy

[Mt~ = LJ [({F x}{ F x} T+ {Fy}{ F y} T) ]dxdy
e n.

(14)

(15)

Following the way described in Ref.(12), from the two matrix equations of Eq.(14), the following eigenvalue equation can

be obtained where the unknowns to be resolved are consist of tangential components only.

(16)

Eq.(16) can easily be solved by standard eigenvalue solver which yield directly the propagation constant as the

eigenvalues.
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4. DIVERGENCE-FREE SHAPE FUNCTION AND ITS ANALYTICAL PROOF

By now, it has been well established that a non~compliance with the divergence-free condition has always appeared

to be an origin of non-physical solutions. This phenomenon is quite evident while the spurious modes encountered by the

conventional elements have been found to be suppressed by incorporation of zero-divergence of the field in the original

formulation by Penalty [3] or Lagrange multiplier [13] method. The present element is found to encounter spurious-free

solutions. The reason behind that is, the element has been found to be non-divergent. This means that the condition of zero-

divergence of the field incorporated externally in order to suppress the spurious modes by Penalty or Lagrange multiplier

method has been applied naturally in an inherent manner in the present element employed. The analytical proof of non­

divergence in the present element is furnished as follows:

The divergence of the present shape function (Eq.(9» is given by

T

T [(F~ (Fyj lOllV·[F] = v·
{Ol {Ol j{Nl

a(F x} a(Fyj
--+---

ax a y

jCJ(NI
az

T

As N doesn't have any derivatives along z direction, we are left with tangential shape function F(Fx, F y), so that for the

edge 2-3 of the triangle shown in Fig.I(b), we can write the divergence of the shape function using Eqs.(9)-(1O) as

D3' i aN2 D3' j aN2 DZ' i aN3 DZ' j aN3
V·F23=V·(N23+N32)= ----+ ---- + ----+ --.-- (AI)

a 1 . D3 ax a 1 . D3 ay a 1 . DZ ax a 1 . DZ ay

Here, a's are the unit vectors along the edges and D'S are the unit normals directed outward at the corresponding edges as

described in section 3.1 and shown in Fig.I(b) andNs are the area coordinates. So that F23 is defined along the edge with

unit vectoral. Each resolved component of (AI) is derived as follows:

al . i =--------­
[ (X3 - X2)2 + (Y3 - Y2)2]112

Y3-Y2
al . j =--------­

[ (X3 - X2)2 + (Y3 - Y2)2Jl/2

; 03' i =--------­
[ (X2 - Xl)2 + (Y2 - Yl)2]112

; 03·j=--------­
[ (X2 - Xl)2 + (Y2 - Yl)2JlI2

Yl - Y3
; 02' i=---------­

[ (X3 - Xl)2 + (Y3 - Yl)2]112

; 02' j =-------'----­
[ (X3 - Xl)2 + (Y3 - Yl)2]112

(A2)

In Eq.(A2), Xi and Yi represent the x and Ycoordinate respectively at node 'i' of the triangle. Obtaining the derivatives of

area coordinate N with respect to x and Y for the triangle consisting of nodes 1, 2 and 3, and making some algebraic

simplification and considering d = 2 x area of triangle, we obtain

--- --=----------------
d[X3Y2 - X3Yl + X2Yl + XlY3 - X2Y3 - XlY2]

(A3)
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and -----=----------------
- d[X3Yz - X3Yl + XZYI + XIY3 - XZY3 - XIYZ]

(A4)

From Eqs.(A3) and (A4) we can write

-----= ------

or
03' i aN2 02' i aN3
----+----=0
31' D3 ax 31' 02 ax

(A5)

Again, using Eq.(A2) and some algebraic simplification, we obtain

-----=~----------------

(A6)

(A7)

d[x3YZ - X3Yl + XZYI + XIY3 - XZY3 - XIYZ]

- d[X3YZ - X3Yl + XZYI + XIY3 - XZY3 - XIYZ]

and

And from Eqs.(A6) and (A7), we can write

03' j aN2 02' j aN3
----+----=0
31'03 ay 31'02 ay

(A8)

Adding Eqs.(A5) and (A8) we have

03' i aN2 02' i aN3 03' j aN2 02' j aN3
----- + ----- + ----- + ----- = 0
31' 03 ax 31' 02 ax 31' 03 ay 31' D2 ay

Comparing Eqs.(Al) and (A9) we get

V·FZ3 =V·(NZ3 + N3Z) =0

(A9)

(A10)

Applying the same reasoning, the other shape functions of the present element (section 3.1) can be proved divergence-free.

5. NUMERICAL EXAMPLES

To justify that the analytically proven non-divergent elements presented in the previous sections encounter spurious­

free solutions, the numerical analysis are carried out by employing the present elements for some sample problems. The

solutions are compared with other finite element solutions to examine the quality and accuracy offered by the present

elements.

The first example, the structure of which is shown in Fig. 2, is a waveguide where the outer surface is a perfect

conductor and a strip of zero thickness is placed in the center. For symmetry, half of the structure is only considered. The

dominant mode is a quasi-TEM. Comparison is made for the dominant mode with the longitudinal component formulation

by Daly [1]. The dispersion curves are furnished in Fig.3. In Daly's solutions, spurious modes have been reported to
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Metalic wall

,
'II( a

Intetface

Fig. 2 Cross-sectional structure of the closed micro-strip waveguide

with a = b =2w =2d.
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Fig. 3 Comparison of dispersion curves for different permittivity, obtained by Daly's

and present method. The dotted lines indicate the devia~ion in Daly's method.
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o Present Method
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0.5

1.0
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>

Fig. 4 Structure of a rectangular waveguide

with the half loaded with a dielectric slab.

Fig. 5 Dispersion curve for the dominant TE 10 mode

for the structure of half-loaded dielectric waveguide.

appear along with the physical ones. The dotted lines for Daly's solutions indicate the deviation due to singularity [1]. The

solutions obtained by the present method have been found to be completely free of the spurious solutions.

Next, a rectangular waveguide, half of which (FigA) is loaded with a dielectric slab is considered. In Fig. 5, the

exact dispersion characteristics [14] are compared with the ones obtained by employing the present element for the

fundamental TElO mode. The element divisions taken for the simulation is 8x4. The comparison indicates a good degree of

accuracy. The next higher mode is longitudinal section magnetic (LSM) mode for which the dispersion curve obtained by

employing the present element is compared in Fig.6 with the one obtained by Angkaew [15]. The present element offers

better accuracy than the Angkaew's for the same number of element divisions (8x4).

3.02.82.62.2
0.0 I--__--L...-.-L-JOL..----L .L..-__-'--__~

2.0 204

koa

Fig. 6 Comparison of the dispersion curves obtained by this and Angkaew's

1.0

0.8

0 0.6
~--co. 004 Exact---

• Present Method

0.2 0 Angkaew (FEM)

method for LSMll mode for the structure of half-loaded dielectric waveguide.

As a test for the applicability of the element to a waveguide with curved boundaries, a hollow circular waveguide of

radius 'a' is analyzed. The computation is carried out with the mesh shown in Fig.7 where a quarter of the waveguide is

considered with 32 triangular elements. The dispersion characteristics for TMol and TE21 modes are compared in Fig.8.
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Fig. 7 Finite element mesh of one quarter

of a hollow circular waveguide.

0.8 ___ Theoretical
lMOl

o Present method
0.6 :J Angkaew

0

~
0.4.......

c:o..

0.2

0.0
2 3 4

kOa

Fig. 8 Dispersion curve for a hollow circular waveguide of radius 'a'.

Angkaew [15] employed 36 fIrst order linear triangular elements. The present elements have been found to yield spurious­

free solutions and exhibit better accuracy compared with the one by Angkaew, even for fewer number of elements.

Moreover, experience of very low percentage of error for the solutions that correspond to modes upto several higher ones,

also validates the use of the present element (shape function) in the analysis of particular waveguiding problem that deals

with higher modes.

6. CONCLUSION

A simple fInite element that provides divergence-free shape functions is proposed, and its capability is examined for

inhomogeneously-loaded arbitrarily shaped waveguiding problem. Employing the present shape functions, the eigenvalue

formulation that solves for the propagation constant directly is derived. The shape function used for approximating the fIeld

is analytically proven to be non-divergent, and it can completely eliminate the spurious modes originating from the non­

compliance with the divergence-free condition implied by Maxwell's equation. As a test, the example of a closed microstrip

waveguide known to encounter non-physical solutions when analyzed by the axial component fInite element formulation

has been tried employing the present formulation. As expected, no spurious modes have been observed. Another merit is

that the present shape functions provide good accuracy and convergence characteristics.
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APPENDIX

The vector shape functions employed to approximate the transverse field components can be presented by simple
expression. For example, if {Fxl of Eq.(7)' is expressed as (Fxl = [ Fxl, Fx2, Fx3 ], then FXl is given by

Fxl=(Yl-y)xAi/d (B1)
where A 1 is the length of the triangle-side along which FXl is defined; y1 is the y coordinate of the vertex of the triangle
corresponding to the base Al and d equals twice the area of the triangle. The derivation of the expression given by Eq.(B1)

is obtained as follows:
As explained in section 3.1, FXl is made of the components of vector shape function given by Eq.(lO).

Accordingly, for the triangular edge element of Fig. l(b), FXl can be written as



46 Zaheed MAHMOOD and Yukio KAGAWA

°3· i
Fx1 = _0_0- Nz

31' 03
+

OZ· i
---N3
31· 0z

(B2)

(B3)

where
(X3- XZ) (YZ - Y1) + (Y3 - YZ) (Xl - XZ)

31 . 03 =--------....,....---,-------,--~------,~,....

[ (X3 - XZ)Z + (Y3 - YZ)Z]lIZ [ (XZ - X1)Z + (YZ - Y1)ZjlIZ

(X3- XZ) (Y3 - Y1) + (Y3 - YZ) (Xl - X3)
31· 0z =-----::----'----'---::-::-=-'---'----::------'-----::"""":""C:-

[ (X3 - XZ)Z + (Y3 - YZ)Z]lIZ [ (X3 - Xl)Z + (Y3 - Y1)ZjlIZ

Nz = [(X3Y1 - X1Y3) + (Y3 - Y1)X + (Xl - X3)Y ] / d
N3 = [(X1YZ - XZY1) + (Y1 - YZ)x + (XZ - X1)Y ] / d (B4)

After carrying out some algebraic simplification on the numerators of Eq.(B3), using Eqs.(A2), (B2)-(B4), the expression
for the shape function FX1 can be written as

(YZ - Y1) Nz [ (X3 - xz)Z + (Y3 - YZ)Z]liZ (Y3 - Y1) N3 [ (X3 - xz)Z + (Y3 - YZ)Z]liZ

FX1= +----------~----
X3YZ - x3Y1 + xZY1 + x1Y3 - xZY3 - x1YZ

[ (X3 - xz)z + (Y3 - YZ)Z]liZ
X3YZ - x3Y1 + x2Y1 + X1Y3 - XZY3 - X1YZ

FX1=-------------- G (B5)

X3YZ - x3Y1 + XZY1 + X1Y3 - XZY3 - X1YZ
where G = (yz - Y1) Nz"+ (Y3 - Y1) N3

= (yz - Y1) [(X3Y1 - X1Y3) + (Y3 - Y1)X + (Xl - X3)Y ] / d + (Y3 - Yl) [(X1YZ - XZY1) + (Y1 - yZ)x + (xz - X1)Y ] / d
or, G = (y - Y1) [ X1YZ - XZY1 + XZY3 - X3Yz - X3Y1 - X1Y3] / d (B6)

From Eqs.(B5) and (B6), we get
FX1= (Y1 - y) [ (X3 - xz)Z + (Y3 - Yz)Z] liZ / d

Similarly, Fxz and Fx3 are given by
Fxz = (y - yZ) [ (X3 - X1)Z + (Y3 - Y1)Z]lIZ / d; Fx3= (Y3 - y) [ (xz - X1)Z + (yz - Y1)Z]lIZ / d

And the shape functions employed to approximate the Ycomponents of the fields are given by
Fy1 = (x - Xl) [ (X3 - xz)Z + (Y3 - YZ)Z]liZ / d; Fyz = (xz - X) [ (X3 - X1)Z + (Y3 - Y1)Z]lIZ / d

and Fy3= (x - X3) [ (xz - X1)Z + (yz - Y1)Z]lIZ / d
Now, for comparison, the shape functions employed in Koshiba's element [12] for approximating the transverse

field components are discussed here. For Koshiba's element, the edge shape functions are given by

{Fx} = [[1 + glY fz + gzy f3 + g3Y] ; {Fy} = [h1 - glx hz - gzx h3 - g3X] (B7)

where fk = [(Ym+3 COSOm+3 - Xm+3 sinOm+3) sinO'+3 -:- (Y'+3 COSO'+3 - X'+3 sinO'+3) sinOm+3] / Ll

hk = [(Y'+3 COSO'+3 - X'+3 sinO'+3) COSOm+3 - (Ym+3 COSOm+3 - Xm+3 sinOm+3) COSO'+3] / Ll

gk = [ COSO'+3 sinOm+3 - COSOm+3 sinO'+3 ] / Ll
3

Ll = L (Yk+3 cosOk+3- xk+3 sinOk+3l (cosO'+3 sinOm+3- cosOm+3sinO,+3l
k=l

-lYk-Ylo~ 0k+3= tan --< 1t
xk- x1

Here, ('4, Y4), (xs, YS) and (X6, Y6) represent the mid point of the three sides of the triangle respectively and k, 1, m
progress cyclically around the three vertices of the triangle. Carrying out some trigonometric operations, the shape
functions FX1 and Fy1 for Koshiba's element are obtained as

(X3 - X1)(YZ - Y3)(Y6 - y) - X6(Y3 - Y1)(YZ - Y3) - (xz - X3)(Y3 - Y1)(YS - y) + xS(Yz - Y3)(Y3 - Y1)
FX1= f1 + glY =~--------------------------------­

S [ (xz - X3)Z + (yz - Y3)Z]l12 [(X3 - X1)Z + (Y3 - Y1)Z]lIZ

(xz - X3)(Y3 - Y1)(X6 - x) - Y6(X3 - X1)(XZ - X3) - (X3 - X1)(YZ - Y3)(XS - x) + Ys(xz - X3)(X3 - Xl)
Fy1= h1 - glx =----------------------------------

Ll [ (XZ - X3)Z + (yZ - Y3)Z]lIZ [(X3 - X1)Z + (Y3 - Y1)2]lIZ

The other shape functions also arrive at the similar expressions as above.




