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Functional Testing of an ALU
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SYNOPSIS

This paper considers a test set for an ALU with look ahead carry

generators(LCGs). The ALU is logically partitioned into two groups of

blocks, the group of one-bit operation units and LCG group. Each group is

tested in parallel and exhaustively, independent of the other. And an easily

testable design is applied to several blocks for decreasing the number of the

input combinations of them. Under the easily testable design, a minimum

test set for each group is generated, and the upper and lower bounds for

a minimum test for the ALU are derived. The difference of the lower and

upper bounds is not large, and a test set whose number of test vectors is

equal to the upper bound can be easily obtained as the union of minimum

test sets for two groups. Hence, the union can be used as a complete and

practical test set for the ALU.

1. INTRODUCTION

An arithmetic login unit (ALU) is one of the main components of the processor, and must

be precisely tested when it is used in the situation that high reliability are required.

ALU is one of combinational circuits. It can be, therefore, tested by the use of the classical

test pattern generation methods, e.g., D-algorithm(l) and PODEM method(2). However, in these

methods, as the word size of ALU increases, the time required for generating test patterns also

increases rapidly, and the detection of the multiple faults is not always guaranteed. Abraham et

al.(3) and Becker(4) have proposed the methods to generate test patterns easily. However, they

restricted the internal structure of ALU to a tree structure. Hence, it may be hard to apply

their methods to usual ALU structures.

One solution for these problems is to partition an ALU into several blocks and test all of

the blocks exhaustively(5,6). By the use of this method, Sridhar et al.(7) have generated a test
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set for the ripple carry ALU. However, ALU usually has a look ahead carry generator (LCG) for

performing high speed operations. Hence, it is also hard to apply their methods to such ALUs.

In this paper, we consider a test set for an ALU with LCG by the use of a block partitioning

method. The ALU is partitioned into two groups of blocks, the group of one-bit operation units

and LCG group. Each group is tested in parallel and exhaustively, independent of the other.

And an easily testable design is applied to several blocks for decreasing the number of the input

combinations of them. Under such a policy, we will generate a practical and complete test set

for the ALU.

In the next section, the configuration of the ALU is described. In section 3, the easily

testable design are explained. Section 4 gives a minimum test set for each group, and a practical

and complete test set for the ALU as the union of minimum test sets for two groups.

2. OPERATIONS AND CONFIGURATION OF ALU

2.1 Operations of ALU

Operations of an ALU are separated into the arithmetic operations and logical ones. Basic

arithmetic and logical operations implemented on most ALUs are shown in Table 1, where n,

x (= Xn-l X1XO) and Y (= Yn-l ... Y1YO) are the word size, the inputs of an n-bit ALU, and Z

(= Zn-l ZlZO) is the output. And C;n is a value of of the processor carry flag.

Table 1 Operations of ALU

Arithmetic Operation Logical Operation

increment (INC) z=x+1 or (OR) Zi = Xi V Yi

add (ADD) z=x+y and (AND) Zi = Xi 'Yi

add with carry (ADC) z = x + y+ Gin exclusive or (XOR) Zi = Xi EB Yi

decrement (DEC) z=x-l equivalence (EQU) Zi = Xi EB Yi

subtract (SUB) Z=X-Y complement (CMP) Zi = Xi

subtract with carry (SBC) z = x - Y - Gin through (THR) Zi == Xi

(0 ~ i ~ n - 1)

2.2 Configuration of ALU

If n = 4, all of the operations shown in Table 1 can be realized by the 4-bit ALU illustrated

in Fig. 1. The external signal SG is the vector of control signals in the ALU, provided from

the processor control circuits, and specifies the operation to be executed. And the value of the

external signal Gout is sent to the processor carry flag after each operation. All blocks in Fig. 1

are combinational circuits; Block Ai (0 ~ i ~ 3) generates the external output signal Zi and

internal signals Pi and Gi called the carry propagate signal and carry generate one, respectively,
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Fig. 1 Configuration of ALU

from the external input signals Xi and Yi and internal carry signal Cj. Internal configurations of

all Ais are identical. Block El generates the internal signal Co from Cin, and block E2 generates

Cout from the internal carry signal C 4. We call the group of blocks El , E2 and all Ais the

operational unit (aU). Block CGO_ 3 is a look ahead carry generator (we call it LCG briefly,)

which generates the internal carry signals (Cl , C2 , C3 and C4 ).

The relations between the inputs and outputs of au are shown in Table 2, where'd'

represents "don't care" value. SCAj and SCLj (0 ~ j ~ 5) represent values of SC for each

operation. And the relation between the inputs and outputs of CGO_ 3 is as follows:

C;+l = Gi V PiGi- l V P;P;, Pi- 2 v··· V PiPi-l ... PoCo (0 ~ i ~ 3). (1)

When n > 4, au has similar structure shown in Fig. 1, and LCG is usually constructed with

a layered structure(8). For example, when n = 16, LCG has two layers as illustrated in Fig. 2.

All blocks in LCG, i.e., CG t_ t+3 (t = 0,4,8,12) and CGO_ 15 have similar internal structures.

CG t_ t+3 generates the internal signals Pt- t+3 and G t_ t+3 called the block carry propagate signal

and block carry generate one. The relations between the inputs and outputs of CGt_ t+3 are as

follows:

Pt- t+3 = PtPt+1Pt+2Pt+3, (2)

G t_ t+3 = G t+3 V G t+2Pt+3 V Gt+lPt+3Pt+2 V GtPt+3Pt+2Pt+l, (3)

C tH = G t_t+3 V Pt-t+3Gt-4-t-l V ... V Pt-t+3Pt-4-t-l ... PO_ 3C O• (4)

Similarly, for n (4k
-

l < n ~ 4k
), LCG is constructed with k layers.

3. TEST FOR ALU

3.1 Assumptions for Test

For simplicity, in. this paper, au and LCG are tested separately. All of the blocks in au
and LCG are tested in parallel and exhaustively. In testing, values of the internal input lines
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Table 2 Input-output relation of OU

Operation SC z· p.. G· Co Cout• • •

INC SCAO :1:; ED C; :1:' 0 1 C4•

ADD SCAl :1:; ED y; ED C; :1:; V y; :1:; . y; 0 C4

ADC SCA2 :1:; ED y; ED C; :1:; Vy; :1:;' y; C;n C4

DEC SCA3 :1:; ED C; 1 :1:' 0 C4•

SUB SCA4 :1:; ED ViED C; :1:; VVi :1:;' Vi C;n C4

SBC SCA~ :1:; ED ViED C; :1:; VVi :1:;' Vi 0 C4

OR SCLO :1:; Vy; d d d d

AND SCLl :1:;' y; d d d d

XOR SCL2 :1:; ED y; d d d d

EQU SCL3 :1:; ED y; d d d d

CMP SCL4 :1:; d d d d

THR SCL~ :1:' d d d d•
d : don't care, (0 :s i :s 3)

of each block are indirectly controlled through other blocks from the external lines of the ALU.

Similarly, values of the internal output lines of each block are indirectly observed through other

blocks at the external lines. We make the following assumptions about faults:

(1) All faults are solid ones.

(2) There are no bridge faults between two arbitrary blocks.

(3) Any sequential circuit is never produced by faults.

(4) Faults occur in one block at most.

(5) The indistinguishable /aulti 9 1, i.e., faults that don't have influence on the external

output values of the ALU are neglected.

The assumptions (1) rv (4) made for simplifying the derivation of the test set for the AL U, and

by the assumption (4) and (5), it is not necessary to consider the controllability and observability

of all blocks.

3.2 Easily Testable Design

3.2.1 Easily Testable Design of au

The number of test vectors, i.e., the number of (n + 2)-tuple (SC, Xn-l, Yn-l, ... , Xl, Yl,

Xo, Yo, C;n)s for testing each block is equal to the number of all its input combinations. And, as
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Fig. 2 Configuration of LCG with layered structure

shown in Fig. 1, C4 and Ci (0 ::; i ::; 3) are inputs of E2 and Ai, respectively. However, in the

logical operations, these values don't have influence on values of the outputs of E2 and all Ais

from Table 2. Therefore, these values are allowed to be fixed at either '0' or 'I', and by being

fixed, the number of test vectors for E2 and all Ais can be decreased by half. In the logical

operations, if an easily testable design as described below is applied to E1 and all Ais, then,

values of all CiS can be fixed at '0'.

lt is trivial that, if all'd's of the column Co in Table 2 are fixed at '0', then, the value of Co

can be fixed at '0'. And, the situation that the value of Co is '0' also occurs in the arithmetic

operations. Therefore, even if the value of Co is fixed at '0', the number of test vectors for CGO_3

doesn't increase. Thus, we design El so that all'd's of the column Co are fixed at '0'.

Since Co is fixed at '0' and from the equations (1) tV (3), if the value of each (Pi, Gi) (0 ::;

i::; 3) is (0,0), then, the value of each C;+l becomes '0'. And, the situation that (Pi, Gi) = (0,0)

also occurs in the arithmetic operations. Therefore, even if the value of each (Pi, G;) is fixed at

(0,0), the number of test vectors for CGO_3 doesn't increase. Therefore, we design all Ais so

that all'd's of the columns P; and Gi are fixed at '0'.

As described above, after all, we design all Ais and El so that all'd's of the columns Co,

P; and Gi are fixed at '0'. This design can be easily applied, and the amount of additional

hardwares for it may be little.

3.2.2 Easily Testable Design of LeG

LCG has a layered structure as described above when n is a value more than four. As seen

from Table 2, the equations (2) and (3), each (Pt- t+3 , Gt_ t+3 ) (t =.0,4,8,12) can be (0,0), (0,1),

(1,0) or (1,1). However, from the equation (4), values of all outputs of CGO_IS are identical for
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either (Pt-t+3, Gt_t+3) = (0,1) or (1, 1). Therefore, we design CG t _ t +3s that generate (0,0), (1,0)

or (1,1) as a value of (Pt- t+3, Gt_t+3). This design can be applied by changing the equation (2)

into the equation (5),

(5)

The equation (5) is the equation summed logically (OR) the right hand sides of the equations (2)

and (3).

By designing CG t_ t+3 as described above, the number of test vectors for CGO_ 15 can be

decreased from 2 x 44 ( = 512) to 2 x 34 ( = 162), and additional hardwares are only four OR gates.

4. TEST VECTORS

4.1 Test Vectors for OU

In the logical operations, the value of Ci (0 ~ i ~ n - 1) is fixed at '0' as described in

subsection 3.2. Therefore, four input combinations of (Xi, Yi) are necessary and sufficient for

testing Ai per logical operation. Similarly, one and two input combinations are necessary and

sufficient for testing El and E2 , respectively. And all input combinations for each block in OU

can be applied, independent of the other blocks. Therefore, all blocks in OU can be exhaustively

tested by using four test vectors shown in Table 3 per logical operation.

Table 3 Minimum test set for OU in the logical operations

SC Xn -1Yn-1 Xn-2Yn-2 · · · Xo Yo Cin

SCLO 0 0 0 0 · · · 0 0 0
SCLO 0 1 0 1 · · · 0 1 1
SCLO 1 0 1 0 · · · 1 0 d
SCLO 1 1 1 1 · · · 1 1 d
SCLl 0 0 0 0 · · · 0 0 0
SCLl 0 1 0 1 · · · 0 1 1

· · · · · ·· · · · · ·· · · · · ·
SCL5 0 0 0 0 · · · 0 0 0
SCL5 0 1 0 1 · · · 0 1 1
SCL5 1 0 1 0 · · · 1 0 d
SCL5 1 1 1 1 · · · 1 1 d

d : don't care

In the arithmetic operations, values of Ci (0 ~ i ~ n - 1) can be '0' and 'I'. Hence,

the derivation of a minimum test set for OU is pretty complicated. In case of ADC operation

(SC = SCA2 ), if eight input combinations of (xo, Yo, Co) are applied to Ao, then, four 'O's and

four 'l's are generated as values of C l , as seen from Table 2 and the equations described above.

Similarly, for eight input combinations of (Xl, Yl, Cd, four 'O's and four 'l's are generated as

values of C2 , and so on. This situation can be represented with a directed graph (we call it the

input-output graph of ADC operation) in Fig. 3. The number labeled on each vertex represents
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a value of Gi, and each arc represents that Gi+i is determined the value of Gi and the value of

(Xi, Yi) labeled on it. In the input-output graph, eight arcs linking Gi and Gi+i correspond to

eight input combinations of Ai. And, eight arc sequences reaching from Go to Gn can cover all

of the arcs sufficiently, and reversely, eight ones are necessary. It is trivial that an arc sequence

corresponds to a test vector for au. Therefore, eight test vectors are necessary and sufficient

for testing all of block in au. In case of SBC operation, the input-output graph is similar to

one in ADC operation. And in cases of ADD and SUB operations, the input-output graphs

are similar to one in ADC operation except that the value of Go is fixed at '0' or 'I'. Thus, in

cases of ADC, SBC, ADD and SUB operations, minimum test sets can be easily obtained by

the use of the input-output graphs. The number of test vectors in every minimum test set is

eight independently of the word size n.

For INC operation (SG = SGAO ), we illustrate the input-output graph in Fig. 4. If eight

input combinations of (Xi, Yi, Gi) are applied to Ai, six 'O's and two 'l's are generated as values

of Gi+i as seen from Table 2 and the equations described above. Therefore, even if eight test

vectors are applied, they can not test two input combinations of Ai+ i , and two other test vectors

must be applied for testing Ai+i exhaustively. Thus, ten test vectors are necessary and sufficient

for testing both Ai and Ai+i, exhaustively and simultaneously. Similarly, twelve test vectors

are necessary and sufficient for testing three adjacent blocks Ai, Ai+i and Ai+2, exhaustively

and simultaneously. Hence, the number of test vectors in a minimum test set for au is 2n + 4

(= 2(n - 2) + 8). And, the input-output graph of DEC operation is similar to one in INC

operation except that the numbers of 'O's and 'l's are in reverse. Therefore, a minimum test set

also has 2n+ 4 test vectors.

From the discussions above, it is concluded that the total number of test vectors of a
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minimum test set for au is 4n + 64 (= 4 x 6 + 8 x 4 + (2n + 4) x 2).

4.2 Test Vectors for LeG

In this subsection, we consider the number of test vectors of a minimum test set for LCG,

where we assume n = 2m (m ~ 2) for practical use.

Suppose that every layer of LCG is separately tested. In Fig. 1 and Fig 2, all of the blocks

in LCG have nine inputs, and generate (0,0), (1,1) and (1,0) as values of (Pi, G;) (0 :S i :S n-l)

and (Pt -t+3, Gt_ t+3) (t = 0,4,8,12). Thus, each block in LCG can be tested with 2 x 34 (= 162)

input combinations exhaustively. Hence, if n = 4, it is trivial that 162 test vectors can test

CGO_ 3 exhaustively. If n = 8, CGO_ 3 , CG4_ 7 and CGO_ ll; shown in Fig. 2 are used. If 162

input combinations are applied to CGO_ 3 , 81 'O's and 81 'l's are generated as values of C4 •

From the same reason described in subsection 4.1, 162 test vectors can test CGO_ 3 and CG4_ 7 ,

exhaustively and simultaneously. Similarly, even if n increases, all blocks in the first layer of

LCG can be tested with 162 test vectors, exhaustively and simultaneously. And from similar

discussions above, it is also trivial that all blocks in each layer of LCG can be tested with 162

test vectors, exhaustively and simultaneously. In Table 4, we show the number of test vectors

in a minimum test set.

In the discussions above, it is assumed that every layer of LCG is tested separately. Next,

we attempt to overlap the test vectors of individual layer. For simplicity, we describe the case,

n = 16. If 81 input combinations are applied to CGO_ 3 for either value of Co, forty (O,O)s,

forty (1, l)s and one (1,0) are generated as values of (PO- 3 , GO_ 3 ). And, each of the necessary

numbers of (0,0), (1,1) and (1,0) is twenty-seven (= 34 /3). Therefore, if twenty-six (= 27 - 1)

(1, O)s are appended, the first and second layers can be tested with 107(= 81 + 26) test vectors,
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Table 4 Minimum number of test vectors (testing every layer)

# of bits (n)
First Second Third

Layer Layer Layer

4 162 - -

8 162 18 -

16 162 162 -

32 162 162 18

64 162 162 162
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exhaustively an simultaneously. For a different value of n, the similar discussions above hold.

In Table 5, we show the number of test vectors of a minimum test set generated under the

condition that all layers are tested exhaustively and simultaneously.

Table 5 Minimum number of test vectors (testing all layers simultaneously)

# of bits (n)
Minimum Number
of Test Vectors

4 162

8 166

16 214

32 218

64 266

4.3 Minimum Number of Test Vectors for ALU

In subsection 4.1 and 4.2, the numbers of test vectors in two minimum test sets for au and

LCG are shown under the condition that au and LCG are tested separately. In this subsection,

we discuss a practical test set for the ALU.

Let Sou and SLCG denote minimum test sets obtained in subsection 4.1 and 4.2, respectively.

Then, the union ST of Sou and SLCG is a complete test set for the ALU. It is not, however, a

minimum test set for the ALU, because each of Sou and SLCG is independently derived. The

number of test vectors of the minimum test set (denoted by Nm ,) satisfies the following.

Max(ISoul, ISLCGI) ~ N m ~ ISoul + ISLCGI, (6)

where ISoul and ISLCGI are the numbers of test vectors of Sou and SLCG, respectively. From

the equation (6), the upper and lower bounds of Nm can be obtained as shown in Table 6. It

is hard to obtain the minimum test set. And, it is easy to obtain the complete test set whose

number of test vectors is equal to the upper bound. Furthermore, the test set corresponding

to the upper bound may be considered to be sufficiently small f~r practical use. Thus, we can

conclude that the complete test set can be used as a practical test set for the ALU.
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Table 6 The lower and upper bound

"# of bits (n)
Lower Upper

Bound Bound

4 162 162 + 56 + 24 = 242
8 166 166 + 72 + 24 = 262

16 214 214 + 104 + 24 = 342
32 218 218 + 168 + 24 = 410
64 296 266 + 296 + 24 = 586

5. CONCLUSIONS

In this paper, we considered a test set for the ALU, partioned into two groups of the

operation units and look ahead carry generators. As the results, we obtained a minimum test

set for each group. Since the number of test vectors of it is sufficiently small for practical use,

the union of minimum test sets for two groups can be used as a practical and complete test set

for the ALU.

Our future work is to deal with minimum test sets for ALUs with other high speed carry

generators.
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