On Conformal Mapping onto Circular-Radial Slit Covering Surfaces and its Extremal Properties

Hisao MIZUMOTO

Department of Mechanical Engineering

(Received December 28, 1966)

1. Let B be a domain on the z-plane of which the boundary C consists of a finite number of continua C_1, \dots, C_N $(N \ge 1)$. Partition the boundary C into two disjoint sets

and

$$C' = \sum_{j=1}^{\lambda} C_j$$

$$C'' = \sum_{j=1}^{\mu} C_{\lambda+j}$$

$$(\ge 0, \mu \ge 0, \lambda + \mu = N),$$

where $C' = \emptyset$ or $C'' = \emptyset$ is permitted. Let z_j and ζ_k $(j=1, \dots, \iota; k=1, \dots, \kappa; \iota \ge 1, \kappa \ge 1)$ be arbitrarily preassigned $\iota + \kappa$ points in B, and m_j , and $n_k (j=1, \dots, \iota; k=1, \dots, \kappa)$ be arbitrarily preassigned positive integers under the condition

$$(1) p \equiv \sum_{j=1}^{l} m_j = \sum_{k=1}^{\kappa} n_k.$$

We shall conventionally agree to take as $\zeta_{\kappa} = \infty \subset B$ through the present paper. Let \mathfrak{F}_p be the class of functions w = f(z) single-valued, analytic on B with the following properties;

- (a) f has the only zeros z_j ($j=1, \dots, \iota$) and the only poles ζ_k ($k=1, \dots, \kappa$) with their orders m_j and n_k , respectively;
- (b) The rotation number of the image of each C_j $(j=1, \dots, N)$ about w=0 under f is equal to zero; i. e.

$$\nu_{j}(f) \equiv \frac{1}{2\pi} \int_{c_{j}^{*}} d \arg f = 0 \ (j=1, \dots, N),$$

where C_j^* $(j = 1, \dots, N)$ are analytic Jordan curves homotopic to C_j in

$$B - \sum_{j=1}^{l} \{z_j\} - \sum_{k=1}^{\kappa} \{\zeta_k\}$$

and $\nu_j(f)$ $(j=1, \dots, N)$ are integers not depending on a particular choice of C_j^* ;

(c)
$$\left| \int_{\mathcal{C}} \lg |f| d \arg f \right| < +\infty$$
,

where the line integral means

$$\lim_{n\to\infty} \int_{\partial B_n} \lg \mid f \mid d \arg f$$

with an exhaustion $\{B_n\}_{n=1}^{\infty}$ of B;

(d) f satisfies the normalization condition

$$\lim_{z\to\infty}\frac{f(z)}{z^{n_{\kappa}}}=1.$$

Since the rational function

$$R(z) \equiv \prod_{j=1}^{i} (z - z_j)^{m_j} / \prod_{k=1}^{i-1} (z - \zeta_k)^{n_k}$$

belongs to \mathfrak{F}_p , we find that $\mathfrak{F}_p \neq \phi$.

Let \mathfrak{G}_p be the subclass of \mathfrak{F}_p which consists of functions f(z) satisfying the condition:

(e) An arbitrary branch of arg f is constant on each component C_J ($j = \lambda + 1, \dots, N$), which means that for each decreasing sequence $\{Q_{J_R}\}_{n=1}^{\infty}$ of ends defining C_J ($j = \lambda + 1, \dots, N$)

$$\bigcap_{n=1}^{\infty} \overline{\arg f(Q_{jn})}$$

is reduced to a real value.

Let \mathfrak{D}_p be the subclass of \mathfrak{F}_p which consists of functions f(z) of \mathfrak{F}_p satisfying the condition:

(e') $1g \mid f \mid$ is constant on each component $C_J(j=1,\dots,\lambda)$, which means that for each decreasing sequence $\{Q_{Jn}\}_{n=1}^{\infty}$ of ends defining $C_J(j=1,\dots,\lambda)$

$$\bigcap_{n=1}^{\infty} \frac{}{ | \lg | f(\mathcal{Q}_{jn}) | }$$

is reduced to a real value.

Here if $C'' = \emptyset$ or $C' = \emptyset$, \mathfrak{G}_p or \mathfrak{F}_p , respectively, is identical to \mathfrak{F}_p . Let \mathfrak{F}'_p , \mathfrak{G}'_p and \mathfrak{F}'_p be the subclasses of \mathfrak{F}_p , \mathfrak{G}_p and \mathfrak{F}_p , respectively, which consist of functions f(z) of \mathfrak{F}_p , \mathfrak{G}_p and \mathfrak{F}_p satisfying the condition:

(f)
$$\int_{\mathcal{C}} \lg |f| d \arg f \leq 0.$$

Clearly the rational function R(z) belongs to \mathfrak{F}_p . We shall also see that the other classes \mathfrak{G}_p , \mathfrak{F}_p , \mathfrak{G}_p' and \mathfrak{F}_p' are not vacuous (cf. REMARK of 2).

2. Let

(2)
$$J(f) = \int_{\sigma} \lg |f| d \arg f$$
$$-2\pi \sum_{j=1}^{L} m_{j} \lg |f^{\lfloor m_{j} \rfloor}(z_{j})|$$

$$-2\pi\sum_{k=1}^{\kappa-1}n_k\log|f^{\lfloor n_k\rfloor}(\zeta_k)|$$

for $f \in \mathcal{F}_{\nu}$, where

$$f^{[m_{j}]}(z_{j}) \equiv \lim_{z \to z_{j}} \frac{f(z)}{(z - z_{j})^{m_{j}}}$$

$$= \frac{1}{m_{j}!} f^{(m_{j})}(z_{j}) \quad (j = 1, \dots, \iota),$$

$$f^{[m_{k}]}(\zeta_{k}) \equiv \lim_{z \to \zeta_{k}} \frac{1}{(z - \zeta_{k})^{n_{k}} f(z)}$$

$$= \frac{1}{n_{k}!} \left[\left(\frac{1}{f(z)} \right)^{(n_{k})} \right]_{z = \ell} (k = 1, \dots, \kappa - 1).$$

I hen we obtain the following fundamental theorem.

THEOREM 1. (i) There exists the unique element φ of \mathfrak{G}_p and \mathfrak{H}_p which maps B onto the p-sheeted covering surface of which the boundary consists of circular slits (the images of C_1, \dots, C_{λ}) centred at the origin and radial slits (the images of $C_{\lambda+1}, \dots, C_N$) emanating from the origin;

- (ii) The function φ is the only element which simultaneously belongs to \mathfrak{G}_p and \mathfrak{F}_p ;
 - (iii) For every $f \in \mathfrak{G}_p$, the inequality

$$J(\varphi) \leq J(f)$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$;

(iv) For every $f \in \mathfrak{H}_p$, the inequality

$$I(\varphi) \geq I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$.

Proof. The domain B can always be conformally mapped onto the domain by a univalent function Φ satisfying the condition $\Phi(\infty) = \infty$, $\Phi'(\infty) = 1$ of which the boundary consists of analytic Jordan curves. Thus we may assume that so is the domain B. In fact, by the mapping Φ the functional J(f) varies only an additive quantity

$$2\pi \sum_{j=1}^{\iota} m_j^2 \lg | \Psi'(z_j) | + 2\pi \sum_{k=1}^{\kappa-1} n_k^2 \lg | \Psi'(\zeta_k) |$$

independent of a particular choice of $f \in \mathfrak{F}_{p}$.

Construction of φ in (i). It is easy to find a solution u of the boundary value problem satisfying the conditions:

(A) u is single-valued harmonic on B $-\{z_j\}_{j=1}^k - \{\zeta_k\}_{k=1}^k$ and has logarithmic singularities

$$u(z) = m_j \lg |z - z_j| + O(1) \quad \text{at } z_j$$

$$(i = 1, \dots, \iota),$$

$$u(z) = n_k \lg \frac{1}{|z - \zeta_k|} + O(1) \quad \text{at } \zeta_k$$

$$(k = 1, \dots, \iota - 1)$$

and

$$u(z) = n_{\kappa} \lg |z| + o(1)$$
 at $\zeta_{\kappa} = \infty$;

(B) u is constant on each boundary component C_j $(j = 1, \dots, \lambda)$ and

$$\int_{\sigma_{+}} \frac{\partial u}{\partial n} ds = 0 \quad (j = 1, \dots, \lambda),$$

where $\partial/\partial n$ denotes the inner normal derivative on C_j and ds does the line element of C_j ;

(C)
$$\frac{\partial u}{\partial n} = 0$$
 along C_j $(j = \lambda + 1, \dots, N)$.

Let u^* be a conjugate harmonic function of u determined up to multiples of 2π such that

$$\lim_{z\to\infty} (u^*(z) - n_k \arg z) = 2\pi \pi \ (z : integers),$$

and set $\varphi(z) = \exp(u + iu^*)$. Then it is easily verified that $\varphi(z)$ is the function satisfying the property (i) up to the uniqueness. The *p*-valency of φ is shown by the argument principle.

Proof of (iii) and (iv). Let f be an arbitrary element of \mathfrak{G}_p or \mathfrak{F}_p' and let

$$B_r = B - \sum_{j=1}^{L} \{ |z - z_j| \le r \} - \sum_{k=1}^{\kappa-1} \{ |z - \zeta_k|$$

$$\le r \} - \{ |z| \ge 1/r \},$$

where r should be chosen suitably sufficiently small. Then, the image curves of $\{|z-z_j|=r\}$ $(j=1,\cdots,\ \iota),\ \{|z-\zeta_k|=r\}\ (k=1,\cdots,\ \kappa-1)$ and $\{|z|=1/r\}$ under f surrounds about w=0 m_f -times $(j=1,\cdots,\ \iota),\ n_k$ -times $(k=1,\cdots,\kappa-1)$ and n_k -times, respectively, and lies between circumferences

$$|w| = r^{m_j} |f^{(m_j)}(z_j)| (1+\delta(r))$$
 and $|w| = r^{m_j} |f^{(m_j)}(z_j)| (1-\delta(r))$ $(j=1, \dots, \epsilon)$

$$|w| = \frac{1}{r^{n_k} [f^{(n_k)}(\zeta_k)]} (1 + \delta(r)) \text{ and } |w| = \frac{1}{r^{n_k} |f^{(n_k)}(\zeta_k)|} (1 - \delta(r)) \quad (k = 1, \dots, \kappa - 1),$$

and

$$|w| = \frac{1}{r^n} (1 + \delta(r))$$
 and $|w| = \frac{1}{r^n} (1 - \delta(r))$,

respectively, where the positive number $\delta(r)$ does not depend on $f \in \mathfrak{G}_p$ or $f \in \mathfrak{G}'_p$, and

$$\lim_{r\to 0}\,\delta(r)=0.$$

Therefore, using the Green's formula, we have

$$\begin{split} J(f) &= D_{B_r}(\lg|f|) + \sum_{j=1}^{\iota} \int_{|z-z_j|=r} \lg|f| d \arg f + \sum_{k=1}^{\kappa-1} \int_{|z-\zeta_k|=r} \lg|f| d \arg f \\ &- \int_{|z|=1/r} \lg|f| d \arg f - 2\pi \sum_{t=1}^{\iota} m_j \lg|f^{\lfloor m_j \rfloor}(z_j)| - 2\pi \sum_{k=1}^{\kappa-1} n_k \lg|f^{\lfloor n_k \rfloor}(\zeta_k)| \\ &= D_{B_r}(\lg|f|) + 2\pi \sum_{j=1}^{\iota} m_j \lg|r^{m_j} f^{\lfloor m_j \rfloor}(z_j)| + 2\pi \sum_{k=1}^{\kappa-1} n_k \lg|r^{n_k} f^{\lfloor n_k \rfloor}(\zeta_k)| + 2\pi n_k \lg r^{n_k} \\ &- 2\pi \sum_{j=1}^{\iota} m_j \lg|f^{\lfloor m_j \rfloor}(z_j)| - 2\pi \sum_{k=1}^{\kappa-1} n_k \lg|f^{\lfloor n_k \rfloor}(\zeta_k)| + O(\delta(r)) \\ &= D_{B_r}(\lg|f|) + 2\pi \sum_{k=1}^{\iota} m_j^2 \lg r + 2\pi \sum_{k=1}^{\kappa} n_k^2 \lg r + O(\delta(r)), \end{split}$$

where $D_{B_n}(\lg |f|)$ denotes the Dirichlet integral of $\lg |f|$ over B_r .

Let $f \in \mathfrak{G}_p$ and set $U = \lg |f|$, $u = \lg |\varphi|$ and h = U - u. Then, we have that

$$J(f) - J(\varphi) = D_{B_r}(\lg |f|) - D_{B_r}(\lg |\varphi|) + O(\delta(r)) = D_{B_r}(U) - D_{B_r}(u) + O(\delta(r)) = 2D_{B_r}(u, h) + D_{B_r}(h) + O(\delta(r)),$$

which yields, by $r \rightarrow 0$.

(3)
$$J(f)-J(\varphi)=2D_B(u,h)+D_B(h).$$

We shall show that

(4)
$$D_B(u, h) = 0.$$

Let $\{B_n\}_{n=1}^{\infty}$ be an exhaustion of B such that z_1 $\subseteq B_1 \ (j=1,\cdots,\ \iota), \zeta_k \subseteq B_1 \ (k=1,\cdots,\ \kappa), \ C''$ is a portion of the boundary ∂B_n of B_n for all nand $C'_n = \partial B_n - C''$ consists of analytic Jordan curves C_{jn} $(j=1,\dots,\lambda)$ homotopic to C_{j} , respectively. Let $u_n(z)$ ($n=1, 2, \cdots$) be the function on B_n which satisfies the conditions:

(A) u_n is single-valued harmonic on B_n $-\{z_j\}_{j=1}^{\iota} - \{\zeta_k\}_{k=1}^{\kappa}$ and has the logarithmic singularities

$$u_n(z) = m_j \lg |z-z_j| + O(1)$$

at z_j $(j = 1, \dots, l)$,
 $u_n(z) = n_k \lg \frac{1}{|z-\zeta_k|} + O(1)$
at ζ_k $(k = 1, \dots, \kappa - 1)$

and

$$u_n(z) = n_{\kappa} \lg |z| + O(1)$$

at $\zeta_{x} = \infty$:

(B)
$$u_n = c_j$$
 on each component C_{jn} $(j = 1, \dots, \lambda),$

where c_j ($j = 1, \dots, \lambda$) are the constant values which u(z) takes on C_j , respectively;

$$\frac{\partial u_n}{\partial n} = 0 \quad \text{along } C''.$$

Set $u_n(z) = c_1$ on each ring domain of $B - \overline{B}_n$ adjacent to C_{jn} $(j = 1, \dots, \lambda)$. Then we can easily see that $\{u_n\}_{n=1}^{\infty}$ uniformly converges to u on B and thus

(5)
$$\lim_{n\to\infty} D_B(u-u_n)=0.$$

Since

$$\int_{c_{jn}} \frac{\partial h}{\partial n} ds = \int_{c_{jn}} \frac{\partial U}{\partial n} ds$$
$$-\int_{c_{jn}} \frac{\partial u}{\partial n} ds = 0 \quad (j = 1, \dots, \lambda)$$

and

$$\frac{\partial h}{\partial n} = 0 \quad \text{along } C'',$$

we find that

(6)
$$D_{B_n}(u_n, h) = -\int_{\partial B_n} u_n \frac{\partial h}{\partial n} ds = 0$$
 for all n .

Further by the Schwarz's inequality,

(7)
$$|D_{B}(u, h) - D_{B_{n}}(u_{n}, h)|$$

$$\leq |D_{B}(u - u_{n}, h)|$$

$$\leq \sqrt{D_{B}(u - u_{n}) D_{B}(h)}$$

holds. Our assertion (4) follows from (5), (6) and (7). Consequently, by (3) and (4) we have that

$$J(f)-J(\varphi)=D_{B}(h)\geq 0.$$

The equality sign in the last inequality appears if and only if $h \equiv \text{const.} = 0$ and thus $f \equiv \varphi$, because of the normalization condition (d).

Next let $f \subseteq \mathcal{G}_p$ and set $U = \lg |f|$, $u = \lg |\varphi|$ and h = u - U. Then we have that

$$J(\varphi) - J(f)$$

$$= D_{B_r}(\lg | \varphi |) - D_{B_r}(\lg | f |) + O(\delta(r))$$

$$= D_{B_r}(u) - D_{B_r}(U) + O(\delta(r))$$

$$= 2D_{B_r}(U, h) + D_{B_r}(h) + O(\delta(r)),$$

which yields, by $r \rightarrow 0$,

(8)
$$J(\varphi) - J(f) = 2D_B(U, h) + D_B(h)$$
.
We shall show that

(9)
$$D_B(U, h) = -\int_C \lg |f| d \arg f.$$

Let $\{B_n\}_{n=1}^{\infty}$ be an exhaustion of B such that $z_j \in B_1$ ($j=1,\cdots,\iota$), $\zeta_k \in B_1$ ($k=1,\cdots,\kappa$), C' is a portion of ∂B_n for all n and $C_n'' \equiv \partial B_n - C'$ consists of analytic Jordan curves C_{jn} ($j=\lambda+1,\cdots,N$) homotopic to C_j , respectively. Let $v_n(z)$ ($n=1,2,\cdots$) be the function on B_n which satisfies the conditions:

(A) v_n is single-valued harmonic on B_n $-\{z_j\}_{j=1}^n-\{\zeta_k\}_{k=1}^\kappa$ and has the logarithmic singularities

$$v_n(z) = m_j \lg |z-z_j| + O(1)$$

at z_j $(j = 1, \dots, \iota)$,
 $v_n(z) = n_k \lg \frac{1}{|z-\zeta_k|} + O(1)$
at ζ_k $(k = 1, \dots, \kappa-1)$

and

$$v_n(z) = n_{\kappa} \lg |z| + o(1)$$
 at $\zeta_{\kappa} = \infty$;
(B) $v_n = \text{const.}$ on each component $C_j(j = 1, \dots, \lambda)$, and
$$\int \frac{\partial v_n}{\partial s} ds = 0 \quad (i = 1, \dots, \lambda)$$

$$\int_{\sigma_j} \frac{\partial v_n}{\partial n} \, ds = 0 \quad (j = 1, \, \dots, \, \lambda);$$

(C)
$$\frac{\partial v_n}{\partial n} = 0$$
 along C_{jn}

$$(j = \lambda + 1, \dots, N).$$

Extend v_n to B by setting $v_n = 0$ on $B - \overline{B}_n$. For n > m the equation

$$D_{B_m}(v_m - v_1, v_n - v_1)$$

$$= -\int_{\partial B_1} (v_n - v_1) \frac{\partial}{\partial n} (v_m - v_1) ds$$

$$-\int_{\sigma_m^{\prime\prime} - \sigma_1^{\prime\prime}} v_n \frac{\partial v_m}{\partial n} ds$$

$$=\int_{\partial B_1} v_1 \frac{\partial v_m}{\partial n} ds = D_{B_m} (v_m - v_1)$$

implies that

$$D_{B_m}(v_m - v_n) \leq D_{B_m}(v_n - v_1) - D_{B_m}(v_m - v_1).$$

Thus $D_{B_n}(v_n-v_1)$ is increasing with n. Let v_0 be the function on B_1 which satisfies the conditions:

(A) v_0 is single-valued harmonic on B_1 $\{z_j\}_{j=1}^{\ell} - \{\zeta_k\}_{k=1}^{\kappa}$ and has the same logarithmic singularities as v_1 at z_j $(j=1,\dots, \ell)$ and ζ_k $(k=1,\dots, \kappa)$;

(B) $v_0 = \text{const.}$ on ∂B_1 . Since, on setting $v_0 = 0$ on $B - \overline{B}_1$,

$$egin{aligned} D_{B_n} \left(v_0 - v_1, \ v_n - v_1
ight) \ = - \int_{\partial B_1} v_1 rac{\hat{\epsilon} \, v_n}{\hat{\epsilon} \, n} \, ds = D_{B_n} (v_n - v_1), \end{aligned}$$

we find that

$$D_{B_n}(v_n-v_0)=D_{B_1}(v_0-v_1)-D_{B_n}(v_n-v_1).$$

Hence $D_{B_n}\left(v_n\!-v_1
ight)$ is uniformly bounded and $v=\lim_{n
ightarrow\infty}v_n$

exists on B with

(10)
$$\lim_{n\to\infty} D_{B_n}(v-v_n)=0.$$

Clearly v is independent of the particular exhaustion $\{B_n\}$ of B and thus we see that

$$(11) v = u.$$

Set $h_n = v_n - U$ on B_n . Then since

$$U = \text{const.}$$
 on each C_j $(j = 1, \dots, \lambda)$,

$$\int_{\sigma_j} \frac{\partial h_n}{\partial n} ds = 0, \int_{\sigma_j} \frac{\partial U}{\partial n} ds = 0 (j = 1, \dots, \lambda)$$

and

$$\frac{\partial h_n}{\partial n} = -\frac{\partial U}{\partial n}$$
 along C_n'' ,

we find that

$$(12) \quad D_{B_n}(U, h_n)$$

$$= -\sum_{j=1}^{N} \int_{c_j} U \frac{\partial h_n}{\partial n} ds - \sum_{j=\lambda+1}^{N} \int_{c_{jn}} U \frac{\partial h_n}{\partial n} ds$$

$$= \sum_{j=\lambda+1}^{N} \int_{c_{jn}} U \frac{\partial U}{\partial n} ds = -\int_{aB_n} \lg |f| d \arg f.$$

Further the inequality

(13)
$$|D_B(U, h) - D_{B_n}(U, h_n)|$$

 $\leq |D_{B_n}(U, u-v_n)| + |D_{B-B_n}(U, h)|$

holds. Our assertion (9) follows from (10), (11), (12) and (13). Consequently, by (8), (9) and the condition (f) we have that

(14)
$$J(\varphi) - J(f)$$

$$= -2 \int \lg|f| d \arg f + D_B(h) \ge 0.$$

The equality sign in the last inequality appears if and only if $h \equiv \text{const.} = 0$ and thus $f \equiv \varphi$, because of the normalization condition (d).

Proof of the uniqueness in (i). Let $\hat{\varphi}$ be another element of \mathfrak{G}_p and \mathfrak{F}_p with the same circular-radial slit mapping property as φ . Then by (iii) and (iv) we have that

$$J(\hat{\varphi}) = J(\varphi)$$

and thus

$$\hat{\varphi} \equiv \varphi$$
.

Now (ii) is evident.

We should note that in Theorem 1 the case $C' = \emptyset$ or $C'' = \emptyset$ is permitted. Then we have the following corollary (cf. Theorem 1 of $\lceil 6 \rceil$).

COROLLARY 1. (i) There exists the unique element ψ of \mathfrak{F}_p which maps B onto the p-sheeted covering surface of which the boundary consists of circular slits centred at the origin;

(ii) For every $f \in \mathfrak{F}_r$, the inequality

$$J(\psi) \leq J(f)$$

holds. Here the equality sign appears if and only if $f \equiv \psi$;

- (iii) There exists the unique element χ of \mathfrak{F}_p which maps B onto the p-sheeted covering surface of which the boundary consists of radial slits emanating from the origin;
 - (iv) For every $f \in \mathfrak{F}_{r}$, the inequality

$$I(\chi) \ge I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \chi$.

REMARK. Let $D_{j}(j=1, \dots, N)$ be the complement continua of B adjacent to C_{j} , respectively, and let

$$B^1 = B + \sum_{j=1}^{\lambda} D_j$$
 and $B^n = B + \sum_{j=1}^{\mu} D_{\lambda+j}$.

Let $\mathfrak{F}_p(B^1)$ and $\mathfrak{F}_p(B^2)$ be the class \mathfrak{F}_p defined for the domains B^1 and B^2 , respectively, in place of B. Apply the consequences (iii) and (i) of COROLLARY 1 to $\mathfrak{F}_p(B^1)$ and $\mathfrak{F}_p(B^2)$, respectively. Then we see that the restrictions to the domain B of the functions $\mathcal{X} \in \mathfrak{F}_p(B^1)$ and $\psi \in \mathfrak{F}_p(B^2)$ of Corollary 1 belong to \mathfrak{G}_p and \mathfrak{G}_p , respectively. Furthermore it is easily verified that the functions \mathcal{X} and ψ also belongs to \mathfrak{G}_p' and \mathfrak{G}_p' . The above construction method is available for each domain conformally equivalent to B in place of B. Therefore we know that the both classes \mathfrak{G}_p and \mathfrak{F}_p have infinite numbers of elements other than the function φ of Theorem 1.

3. Let

(15)
$$I(f) := \prod_{j=1}^{4} |f^{\lceil m_j \rceil}(z_j)|^{m_j} \prod_{k=1}^{\kappa-1} |f^{\lceil n_k \rceil}(\zeta_k)|^{n_k}$$

for $f \in \mathfrak{F}_p$. Then, we obtain the following theorem.

Theorem 2. Let φ be the function defined in Theorem 1.

(i) For every $f \in \mathfrak{G}_p$, the inequality

$$I(\varphi) \geq I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$;

(ii) For every $f \in \mathfrak{H}_p$, the inequality

$$I(\varphi) \leq I(f)$$

holds. Here the equality sign appears if and only if $f = \varphi$.

Proof. It is immediately seen that

(16)
$$\int_{C} \lg |\varphi| \ d \arg \varphi = 0$$

for φ of Theorem 1 and thus $\varphi\in \mathfrak{G}_p$ and $\varphi\in \mathfrak{F}_p$. We note that

(17)
$$I(f) = \int_{c} \lg |f| \ d \arg f - 2\pi \lg I(f)$$

for any element f of \mathfrak{G}'_p or \mathfrak{F}'_p .

Proof of (i). Let $f \in \mathfrak{G}_p$. Then, by (f), (16), (17) and THEOREM 1,

$$-2\pi \lg I(\varphi) = J(\varphi) \leq J(f) \leq -2\pi \lg I(f)$$
 and thus

$$I(\varphi) \geq I(f)$$
.

Further, by Theorem 1, the equality sign in the last inequality appears if and only if $f(z) \equiv \varphi(z)$.

Proof of (ii). Let $f \in \mathfrak{F}_p$. Then, by (16) and (17), the equation

$$J(\varphi) - J(f) = -\int_{\sigma} \lg |f| d \arg f$$

 $+ 2\pi (\lg I(f) - \lg I(\varphi))$

holds. On the other hand, by (14), the equation

$$J(\varphi) - J(f) = -2 \int_{\mathcal{C}} \lg |f| d \arg f + D_B(h)$$

holds. Hence we have that

$$\begin{split} 2\pi & \left(\lg \ I \left(f \right) - \lg \ I \left(\varphi \right) \right) \\ &= - \! \int_{\mathcal{C}} \lg \ |f| \ d \ \text{arg} \ f + D_{B}(h) \geq 0 \end{split}$$

and thus

$$I(\varphi) \leq I(f)$$
.

The equality sign in the last inequality appears if and only if $h \equiv 0$ and thus $f(z) \equiv \varphi(z)$.

Similarly to Corollary 1 we have the following corollary of Theorem 2 (cf. Theorem 2 of [6]).

Corollary 2. (i) Let ψ be the function defined in (i) of Corollary 1. Then for every $f \in \mathfrak{F}_p$, the inequality

$$I(\psi) \ge I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \psi$;

(ii) Let χ be the function defined in (ii) of Corollary 1. Then for every $f \in \mathfrak{F}_p$, the inequality

$$I(\chi) \leq I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \chi$.

In the case p = 1 in (1), we know that $\iota = \kappa$ = 1, $m_1 = n_1 = 1$ and thus

$$I(f)=|f'(z_1)|.$$

Hence we have the following corol ary of Theorems 1 and 2.

COROLLARY 3. (i) There exists the unique element φ of \mathfrak{G}_1 and \mathfrak{H}_1 which univalently maps B onto the domain of which the boundary consists of circular slits (the images of C_1, \dots, C_{λ}) centred at the origin and radial slits (the images of $C_{\lambda+1}, \dots, C_{N}$) emanating from the origin;

- (ii) The function φ is the only element which simultaneously belongs to \mathfrak{G}_1 and \mathfrak{H}_1 ;
 - (iii) For every $f \in \mathfrak{G}_1$, the inequality

$$|\varphi'(z_1)| \geq |f'(z_1)|$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$;

(iv) For every
$$f \in \mathcal{S}'_{p}$$
, the inequality $|\varphi'(z_1)| \leq |f'(z_1)|$

holds. Here the equality sign appears if and only if $f \equiv \varphi$.

4. Let \mathfrak{F}_p'' , \mathfrak{G}_p'' and \mathfrak{F}_p'' be the subclasses of \mathfrak{F}_p , \mathfrak{G}_p and \mathfrak{F}_p , respectively, which consist of functions f(z) of \mathfrak{F}_p , \mathfrak{G}_p and \mathfrak{F}_p being *p-valent*.

LEMMA. $\mathfrak{F}_{p}'' \subset \mathfrak{F}_{p}', \mathfrak{G}_{p}'' \subset \mathfrak{G}_{p}'$ and $\mathfrak{F}_{p}'' \subset \mathfrak{F}_{p}'.$

Proof. Let $\{B_n\}_{n=1}^{\infty}$ be an exhaustion of B such that $z_j \in B_1$ ($j=1, \cdots, \iota$), $\zeta_k \in B_1$ ($k=1, \cdots, \kappa$) and such that ∂B_n consists of a finite number of analytic Jordan curves. Let f(z) be an arbitrary element of \mathfrak{F}_p'' (, \mathfrak{G}_p'' or \mathfrak{F}_p''), and let F and F_n ($n=1,2,\cdots$) be the image covering surfaces of B and B_n , respectively, by the mapping w=f(z). We can take a sufficiently small positive number r such that ∂F_1 does not lie over $|w| \leq r$ and $|w| \geq 1/r$. Let F_r and F_{nr} ($n=1,2,\cdots$) be the subsets of F and F_n , respectively, obtained by taking off from F and F_n the portions over $|w| \leq r$ and $|w| \geq 1/r$. Then, we find that

(18)
$$D_{F_r}(\lg |w|)$$

$$= \lim_{n \to \infty} \int_{\partial F_{nr}} \lg |w| d \arg w$$

$$= \lim_{n \to \infty} \int_{\partial F_n} \lg |w| d \arg w - 4\pi p \lg r$$

$$= \int_{C} \lg |f| d \arg f - 4\pi p \lg r.$$

On the other hand,

(19)
$$D_{F_r}(\lg |w|) \leq p \ D_{\{r < |w| < 1/r\}}(\lg |w|)$$

= $-4\pi p \lg r$,

for f(z) is *p*-valent. By (18) and (19), we have that

$$\int_{c} \lg |f| \ d \arg f \leq 0$$

and thus $f \in \mathfrak{F}_{p'}(, f \in \mathfrak{G}_{p'})$ or $f \in \mathfrak{F}_{p'}$, resp.).

We note that $\varphi \in \mathfrak{G}_{\mathfrak{p}}''$ and $\varphi \in \mathfrak{F}_{\mathfrak{p}}''$ for the function φ defined in Theorem 1. Then, by Theorem 2 and Lemma, we have immediately the following theorem.

Theorem 3. Let φ be the function defined in Theorem 1.

(i) For every $f \in \mathfrak{G}_{\mathfrak{p}}$, the inequality

$$I(\varphi) \geq I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$;

(ii) For every $f \in \mathfrak{H}_p''$, the inequality

$$I(\varphi) \leq I(f)$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$.

We note that \mathfrak{G}_{1}'' (or \mathfrak{F}_{1}'') consists of all univalent functions f(z) on B which satisfy the conditions

$$f(z_1) = 0$$
, $f(\infty) = \infty$, $f'(\infty) = 1$

and (e) (or (e'), resp.) of 1. Then we have the following corollary of THEOREM 3 (cf. [2], [3] and $\lceil 4 \rceil$).

Corollary 4. Let φ be the function defined in Corollary 3.

(i) For every $f \in \mathfrak{G}_1''$, the inequality

$$|\varphi'(z_1)| \geq |f'(z_1)|$$

holds. Here the equality sign appears if and only if $f = \varphi$;

(ii) For every $f \in \mathfrak{H}_1$ ", the inequality

$$|\varphi'(z_1)| \leq |f'(z_1)|$$

holds. Here the equality sign appears if and only if $f \equiv \varphi$.

If $C'' = \emptyset$ (or $C' = \emptyset$) in (i) (or (ii), resp.) of COROLLARY 4, the present consequences are reduced to the well-known classical results (cf. [1] and [8]).

REMARK. Each class \mathfrak{F}_p'' (\mathfrak{G}_p'' or \mathfrak{F}_p'') is a strict subclass of \mathfrak{F}_p' (\mathfrak{G}_p' or \mathfrak{F}_p' , resp.); i. e. $\mathfrak{F}_p'' \subseteq \mathfrak{F}_p'$ ($\mathfrak{G}_p'' \subseteq \mathfrak{G}_p'$ or $\mathfrak{F}_p'' \subseteq \mathfrak{F}_p'$). To see this, it is sufficient to show that there exists even the function of \mathfrak{F}_p' (\mathfrak{G}_p' or \mathfrak{F}_p') of which the valence is *not bounded*. The detailed argument is omitted (cf. Example 1 of [6]). By the last assertion, we can infer that \mathfrak{F}_p'' (\mathfrak{G}_p' or \mathfrak{F}_p') is a class much larger than \mathfrak{F}_p'' (, \mathfrak{G}_p'' or \mathfrak{F}_p'' , resp.). Theorem 2 (and Corollary 2) assert that φ (and ψ or χ) preserve the extremality with respect to the functional I(f) even on such the classes \mathfrak{G}_p' or \mathfrak{F}_p' (and \mathfrak{F}_p' , resp.).

5. Example 1. Does the function φ defined in Theorem 1 preserve the maximality with respect to the functional I(f) on the class \mathfrak{G}_p ? The following example gives the negative an-

swer for this question.

Let G be the whole w-plane slit along a circular arc

$$l' = \{w \mid |w| = 1, -\alpha \leq \arg w \leq \alpha\}$$

and a segment

 $l'' = \{w \mid \arg w = \pi, e^{-\rho} \leq |w| \leq e^{\rho}\} (\rho > 0),$

and Δ' be the domain

$$\{w \mid e^{-\varepsilon} < |w| < e^{\varepsilon}, -(\alpha + \varepsilon)$$

$$<$$
arg $w<\alpha+\varepsilon$ } $(0<\alpha<\pi-\varepsilon, \varepsilon>0)$

slit along l'. Let F be the covering surface over the w-plane obtained by the crosswise connection of Δ' and G along the common slit l'. Then F is a doubly-connected planar surface. Thus we can conformally map F onto the domain B of which the boundary consists of a circular slit C' (the image of $\partial \Delta' - l'$) centred at the origin and a radial slit C'' (the image of l'') emanating from the origin, and further may assume that the mapping function z = g(w) satisfies the conditions

$$g(0)=0, g(\infty)=\infty, g'(\infty)=1.$$

The inverse function $w = f(z) \equiv g^{-1}(z)$ maps B onto F under the condition

$$f(0)=0$$
, $f(\infty)=\infty$, $f'(\infty)=1$.

It is obvious that $f(z) \in \mathfrak{G}_1$. However $f(z) \notin \mathfrak{G}_1'$, for

$$\int_{c} \lg |f| d \arg f$$

$$= \int_{a} \lg |w| d \arg w = 4\varepsilon (\alpha + \varepsilon) > 0.$$

Let B^* be the image domain of G by g(w). Then we see that $\overline{B}^* - C'' \subset B$ and the restriction of f(z) on B^* is the mapping function of B^* onto the domain G of which the boundary consists of the circular slit l' and the radial slit l''. Thus, by Corollary 4, we have that

On the other hand, $\varphi(z) \equiv z$ and thus $\varphi'(0) = 1$ for the present B. Consequently, we see that

$$|f'(0)| > \varphi'(0),$$

which rejects the maximality of φ (z) with respect to I(f) on the class \mathfrak{G}_1 .

By an analogy of the present example, we can infer that the function φ of Theorem 1 does not preserve the maximality with respect to the functional I(f) on any class \mathfrak{G}_p .

6. Example 2. Does the function φ defined

in Theorem 1 preserve the maximality (or minimality) with respect to the functional J(f) (or I(f), resp.) on the class \mathfrak{F}_p ? The following example gives the negative answer for the both questions.

Let G, l' and l'' be the ones defined in Example 1. Let A'' be the domain

$$\{w \mid e^{-(\rho+\epsilon)} < |w| < e^{\rho+\epsilon}, \ \pi-\epsilon$$

 $< \arg w < \pi+\epsilon \} \ (0 < \epsilon < \pi)$

slit along l''. Let F be the covering surface over w-plane obtained by the crosswise connection of Δ'' and G along the common slit l''. Then F is a doubly-connected planar surface. Thus we can conformally map F onto the domain B of which the boundary consists of a circular slit C' (the image of l') centred at the origin and a radial slit C'' (the image of $\partial \Delta'' - l''$) emanating from the origin, and further may assume that the mapping function z = g(w) satisfies the conditions

$$g(0)=0$$
, $g(\infty)=\infty$, $g'(\infty)=1$.

The inverse function $w = f(z) \equiv g^{-1}(z)$ maps B onto F under the condition

$$f(0)=0, f(\infty)=\infty, f'(\infty)=1.$$

It is obvious that $f(z) \subseteq \mathfrak{H}_1$. However $f(z) \in \mathfrak{H}_1$, for

(20)
$$\int_{c} \lg |f| d \arg f$$

$$= \int_{\partial d''-l''} \lg |w| d \arg w = 4\pi(\rho + \varepsilon) > 0.$$

Let B^* be the image domain of G by g(w). Then we see that $\overline{B}^* - C' \subset B$ and the restriction of f(z) on B^* is the mapping function of B^* onto the domain G of which the boundary consists of the circular slit l' and the radial slit l''. Thus, by Corollary 4, we have that

On the other hand, $\varphi(z) \equiv z$ and thus $\varphi'(0) = 1$ for the present B. Consequently, we see that

$$(21) |f'(0)| < \varphi'(0),$$

which rejects the minimality of $\varphi(z)$ with respect to I(f) on the class \mathfrak{H}_1 . Further, by (20) and (21), we can also see that $\varphi(z)$ does not preserve the maximality with respect to J(f) on the class \mathfrak{H}_1 .

By an analogy of the present example, we can infer that the function φ of Theorem 1 does not preserve the maximality (or minimality) with respect to the functional J(f) (or I(f), resp.) on any class \mathfrak{D}_p .

7. The present consequence suggests the possibility of an extension to the case of an infinitely-connected domain or an open Riemann surface of finite genus. We shall concern ourselves with the problem in the next paper.

References

- GRÖTZSCH, H., Zur konformen Abbildung mehrfach zusamenhängender schlichter Bereiche. (iterationsverfahren.) Leipziger Ber. 83 (1931), 67-76.
- KOMATU, Y., AND M. OZAWA, Conformal mapping of multiply connected domains, I. Kōdai Math. Sem. Rep. 3 (1951), 81—95.
- Conformal mapping of multiply connected domains, II. Kōdai Math. Sem. Sep. 4 (1952), 39-44.
- MARDEN, A., AND B. RODIN, Extremal and conju's gate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings. Acta Math. 115 (1966), 237—269.
- MIZUMOTO, H., On conformal mapping of a multiply-connected domain onto a circular slit covering surface. Kōdai Math. Sem. Rep. 13 (1961), 127— 134.
- On extremal properties of circular slit covering surfaces. Math. Journ. Okayama Univ. 12 (1966), 147—152.
- 7) , Theory of abelian differentials and relative extremal length with applications to extremal slit mappings. Jap. Journ. Math. (to appear).
- RENGEL, E., Existenzbeweise für schlichte Abbildungen mehrfach zusammenhängender Bereiche auf gewisse Normalbereiche. Deutsch. Math. -Vereinig. 44 (1934), 51-55.