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1. Let B be a domain on the z-plane of which
the boundary C consists of a finite number of

continua Cy, -+, Cx (N=1). Partition the
boundary € into two disjoint sets
A
C’ - Z CJ
j=1

and i
C" = Z C)\+j
Jj=1
(=0, yu=0, 2+p=N),

where C'=¢ or (=g is permitted. Let z; and
Ce(i=1, -, ¢; B=1,+, k; ¢=1, k=1) be
arbitrarily preassigned ¢+ & points in B, and
my, and m(j =1, -, ¢; =1 -, k) be
arbitrarily preassigned positive integers under
the condition

(1)

We shall conventionally agree to take as (.
=00 & B through the present paper. Let §, be
the class of functions w = f (2) single-valued,
analytic on B with the following properties;

(a) f has the only zeros z; (7 =1, -+, ¢) and
the only poles & (=1, -+, &) with their orders
m; and 7, respectively;

(b) The rotation number of the image of
each ¢y (=1, ---, N) about w =0 under f is
equal to zero; 1. e.

= darg F=0 (=1, W),
T (]

where C; (j=1, ---, N) are analytic Jordan
curves homotopic to C; in

B-3X1{z) -3t

and v,(f) (7=1, ---, N) are integers not de-
pending on a particular choice of C3;

(c) Sc le | f| darg f| <+oo,

where the line integral means

lim Saa gl fldargf

with an exhaustion {B,}n=1 of B;

13 L4
b= my = > nm.
=1 k=1

12

(d) f satisfies the normalization condition

2«

lim
Z-yo0

Since the rational function
[ K—=1
R(z)=T (2 — z,)"v/v (2 — &)™
J=1 k=1

belongs to §p, we find that F» = ¢.
Let &, be the subclass of &, which consists
of functions f (z) satisfying the condition:

(e) An arbitrary branch of arg f is constant
on each component C; (= 1+ 1, ---, N), which
means that for each decreasing sequence
{212} n-10f ends defining C; (= 4+1,--, N)

nf:\l arg f(2,,)

is reduced to a real value.

Let , be the subclass of §, which consists of

functions f (2) of ¥, satisfying the condition:
(e/) 1g | f | is constant on each component

Cs(j=1,--, 2), which means that for each

decreasing sequence {£2;,}7-1 of ends defining

Cy (=1, 2)

N T 7@

is reduced to a real value.

Here if ¢"=¢ or C'=¢, &, or Dy, respectively,
is identical to &, Let §z, &p and D be the
subclasses of %p, ©, and 9,, respectively, which
consist of functions f(z) of &, Gy and 9,
satisfying the condition:

(f) Sclg | fldarg F<O.

Clearly the rational function R (z) belongs to
& We shall also see that the other classes
Gy, Dy, G5 and D, are not vacuous (cf. Re-
MARK of 2),

2. Let
@ 7= 1glr1dare s
— 2z Bm,lg | £zl
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— 25 3 n1g 1759 (50)]
for f & &,, where
fz)

cCm —1i
f J (-ZJ)_hm (Z'—Zj)mf

Z—’Zj

1 m .
:mf( j)(z.)') (] :17 Tt ‘),

[mkj =1L 1
f (?k) lzlilg,c (Z"‘ gk)nkf(z)
1

<f—(;)>(nk)l=gk(k:1’ cony —1).

Then we obtain the following fundamental the-
orem.

_ 1

7!

TueoreM 1. (i) There exists the unique
element ¢ of &, and D, which maps B onto the
D-Sheeted covering surface of which the boun-
dary consists of circular slits (the images of
Cy, -, C\) centred at the origin and radial
slits (the images of Cyi1, ---, Cy) emanating
from the origin;

(ii) The function ¢ is the only element
which simultaneously belongs to &, and D,;

(iliy For every f & 8,, theinequality

J(e)=T(f)
holds. Here the equality sign appears if and
onlyif f= ¢;
(iv) Forevery f & Dy, the inequality
J(e)=T(S)
holds. Here the equality sign appears if and
onlyif f=¢.

Pyroof. The domain B can always be conform-
ally mapped onto the domain by a univalent
function & satisfying the condition & (o0) = oo,
@’ (©)= 1 of which the boundary consists of
analytic Jordan curves. Thus we may assume
that so is the domain B. In fact, by the map-
ping @ the functional J (f) varies only an addi-
tive quantity

t K—-1

2r2milg | ¢'(2) | + 2z Dmilg |0/
=] k=1

independent of a particular choice of f € Fy.

lw|=7r"s] f7 (2,)|(1+6(r)) and

lw)| = (1+0(#)) and |w| =

1
re [ f1e(E) |

and

13

Construction of ¢ in (i).
a solut'on # of the boundary value problem
satisfying the conditions:

It is easy to find

(A) #is single-valued harmonic on B
— {214y — {{x) £, and has logarithmic singular-
ities
w(z)=mylglz—z;| +0(1) at z
(i:l’ s, {)’
u(2) = my 1g‘7_1Tkl +0(1)  at &
(=1, -+, —1)
and
u(z)=mnlg |zl + 0(1) atf, = oo;
(B) = is constant on each boundary compo-
nent C; (j=1,--, )and
S U gs =0 (=1, 1),
oy (o /)

where 0/07 denotes the inner normal deriva-
tive on C; and ds does the line element of Cj;
(C) @

(& /]

=0 along C;(j=1+1, -+, N).

Let #* be a conjugate harmonic function of #
determined up to multiples of 2z such that
lim(u*(z)— narg z2) =2: = (v : integers),
Z-—o0
and set ¢ (z2) = exp (# + 7u*). Then it is easily
verified that ¢ (2) is the function satisfying the
property (i) up to the uniqueness. The p-valen-
cy of ¢ is shown by the argument principle.
Proof of (iii) and (iv). Let f be an arbitrary
element of &, or D and let

B.=B—3 (jz=5|=7) =3 (12-C
=7 —{lz[=1/7},

where 7 should be chosen suitably sufficiently
small. Then, the image curves of {|z—z;| = 7}
(G=1-- 0, {|z=&l=r}(k=1 -, £—1)
and {|z| =1/7} under f surrounds about w
=0 mytimes (j=1, -+, ¢), 7,-times(k=1, -,
£—1) and #.-times, respectively, and lies be-
tween circumferences

lw|=7r" | f77 (2 )| (1 =6(7)) (G=1, -, ),

1

A ey 100) k=1, x=1),
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1

|lw]|= o

(Vol. 2,

(1+5(r)) and lw| = %(1-—,;@)),

respectively, where the positive number & (7) does not depend on f € &, or f & 9y, and

lim 8(r) = 0.

r—>0

Therefore, using the Green’s formula, we have

](f)=DBr(lg|f|)+§S

Iz—zJI=r

lg |fldarg s+ 3|, g fl dargf

t _ k=1 .
__Sm:mlg If[ d argf — anmjlg ifl_'mj;(zj) 1 — 97 El e lg lf’"'“j(é‘lc)l

] k=1 _
= D,,r(lg|f|)+ 27 %‘,lm, g | ™™ (2) | + 2= ?:"1"" lg | 72 (i) | + 2mmu 1g ™

—2:33m, g | f(2,) |~ 2 Simlg | S| +0(3()

=Dy (lg | f|) + 2= J;V__‘.]mﬁ lg 7 + 2= éln,f lgr + O(8(r)),

where Dp_(lg | f|) denotes the Dirichlet integ-
ral of 1g | f| over B,.

Let fE ®,and set U = 1g| f|, u=1g ||
and 2= U — u. Then, we have that
J()=J(@) =Dy (lg | f1) = Ds (Ig I¢])
+0(0(r))=Ds (U)—Dy (u)+0(3(r))
=2D3r(u, h)+DBr(h)+O((}(T)),

which yields, by »—0,

(3) J()—J(¢)=2Ds(u, k) +Ds(h).

We shall show that
(4) Dg(u, h) = 0.
Let {B,} -1 be an exhaustion of B such that z;
EB (j=1 ), lx EB (k=1 k), C”
is a portion of the boundary 0B, of B, for all »
and C,=98B,—C"” consists of analytic Jordan
curves Cy, (j =1, -+, 1) homotopic to Cj, res-
pectively. Let #,(2) (22=1, 2, ---) be the func-
tion on B, which satisfies the conditions:

(A) #, is single-valued harmonic on B,

— {25}4_, — {&x} 5=, and has the logarithmic
singularities
un(2) =mylglz—2,| + O(1)
atz, (=1, -, /),
1
n =pnlg ——— + 0O(1
U (2’) Ny g lz—Ck| ( )
at &y (=1, £—1)
and
u(2)=n.lg |z| + O(1)
at {y=o0;
(B) #, = c; on each component C,
(j=1,-+ 2),

where ¢, (j =1, -+, 1) are the constant values
which # ( z) takes on Cj, respectively;

(®) Oun _

on

along C”.

Set #, (z) = ¢; on each ring domain of B— B,
adjacent to Cy, (7=1,--, ). Then we can
easily see that {#.},=-1 uniformly converges to
2z on B and thus

(5) lim Dp(u—u,)= 0.
Since
S ch ds:s U g
Cin «n Cin (/]
‘S (4 _gs=0 (j=1,, 2)
0, M
and
(Eh = 0 along C",
n
we find that
(6) Ds(ua k)= —S un—fh ds=0
" 9B, on
for all »n.

Further by the Schwarz's inequality,

(D) 1Dslw, ) =Dy (u,,B)]

= |Dyu—un, h)

<V Ds(u—u,) Ds( k)
holds. Our assertion (4) follows from (5), (6)

and (7). Consequently, by (3) and (4) we have
that

J(f) —J(¢) = Ds(h)=0.
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The equality sign in the last inequality appears
if and only if % = const. = 0 and thus f = ¢,
because of the normalization condition (d).

Nextlet fE Dpandset U=1g | f|,u=1g|¢|
and z=u#—U. Then we have that

T () =T (f)
=Dy (Igle|)—Ds (Ig|f1)+0(5(r))
= Dy, (u)= D, (U)+0(3(r))
= 2D, (U, k) + Dy (B)+0(5(r)),
which yields, by » —0,

®) J(¢)—J(f)=2Ds(U, k) + Ds(h).
We shall show that

@ Da(U, = | 1g1/7|darg .

Let {By} -1 be an exhaustion of B such that z;
€ B, (j=1, vnt), L & By (k=1,-- k) C
is a portion of 0 B, for all # and C.” = 0B,
—C’ consists of analytic Jordan curves Cy, (=2
+1, -+, N) homotopic to C;, respectively. Let
v,(2) (#=1, 2, ) be the function on B, which
satisfies the conditions:

(A) v, is single-valued harmonic on B
— {25}4.,— {#}§.; and has the logarithmic
singularities

v.(2)=m;lg lz—z;| +O(1)
atz; (=1, ¢),

1

at & (k=1 v—1)

and
v.(2)=mnlglz|+0(1) atg, = oo;
(B) v, = const. on each component C;(j
=1, A), and
S Logs =0 (j=1,, 4);
¢, om
© 9% =0 along C,.
on

(]:l +1) RS N)-
Extend v, to B by setting v, = 0 on B— B,.

For #> m the equation

Ds (vn—v1, v.— 1)

=—S (v, — 1) ﬁi (m—v1)ds
881 on

~

ov
_S v, 27 ds
Cm”_ol“ on
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ov
:S V1 -"ds =Dy (vp—vy)
3B, on m

implies that
Dy (0.,—0.)EDys (v, —v1)) — Dy (v, —01).

Thus Ds (vn— v1) is increasing with 2. Let v,
be the function on B, which satisfies the condi-
tions:

(A) v, is single-valued harmonic on B;
~ {2;}Y.; — {4} £, and has the same logarithmic
singularities as v; at 2;(j=1,---, ¢) and &« (&
=1, &)

(B) wy=const. on 0B;. _

Since, on setting v6=0 on B— B,

DBn (vo — vy, Va— 1)

_ Cu, _ _
= SMI vz, s = Da(vs—01),

we find that
DB," ( Uy — Uo) = DB1 ( Uo— Ux) - DB"(Un - 711)-
Hence Dp, (vn— v1) is uniformly bounded and

v = lim v,

n—ro0

exists on B with

(10) lim D, (v—v,) =0,

Tn—ryoo

Clearly v is independent of the particular ex-
haustion { B} of B and thus we see that

(11) v=u.
Set 1,=v,— U on B,. Then since
U=const. oneachC; (j=1,-, i),
[, Pegs—o, | Uas—0(=1, 2
c, on c; in
and
Uy along Cy,
on in
we find that
A o) N
:—zg Ut g5 S Ut g
=1 Jo; on J=a+1)oy, cn

l olU
=2 S U7—d3:~g lg |f|d arg f.
Jer+1)ey, on 9B,
Further the inequality

(13) |Ds(U, k) — Ds (U, hy)]
=I|D» (U, u—v:)|+ |Ds-5,(U, h)|
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holds. Our assertion (9) follows from (10), (11),
(12) and (13). Consequently, by (8), (9) and the
condition (f) we have that

W 7o) —J ()
2 Sclglfid arg f+Dy(h) = 0.

The equality sign in the last inequality app:ars
if and only if # = const. = 0 and thus f= ¢,
because of the normalization condition (d ).

Proof of the uniqueness in (i). Let & be
another element of &, and 9, with the same
circular-radial slit mapping property as ¢. Then
by (iii) and (iv) we have that

T() = J(¢)
and thus
y=¢.

Now (ii) is evident.

We should note that in THEOREM 1 the case
C = g or C” = ¢ is permitted. Then we have
the following corollary (cf. THeOREM 1 of [6]).

CoroLLARY 1. (i) There exists the unique
element r of T, which maps B onto the p-
sheeted covering sur face of which the boundary
consists of circular slits centred at the origin;

(iiy For every f € Tr, the inequality

T =J(N
holds, Here the equality sign appears if and
only if f=r;

(iii) T here exists the unique element 7 of
T which maps B onto the p-sheeted covering
surface of which the boundary consists of radi-
al slits emanating from the ovigin;

(iv) For every f & Tz, the inequality

JO=7T(f)
holds. Here the equality sign appearsif and
onlyif f=17.

Remark. Let D;(j=1, ---, N) be the comple-
ment continua of B adjacent to Cj, respectively,
and let

A
B'—=B+3D,and B'= B+ 3 D,.,
J=1 J=1

Let §» (B!) and §F» (B?) be the class §,p defined
for the domains B! and B?, respectively, in
place of B. Apply the consequences (iii) and (i)
of COROLLARY 1 to F» (B') and &, (B?), respec

(Vol. 2,

tively. Then we see that the restrictions to the
domain B of the functions ¥ & % (B!) and ¥
C ¥p (B%) of CoroLLARY 1 belong to &, and 95,
respectively. Furthermore it is easily verified
that the functions ¥ and ¢r also belongs to &5
and 9. The above ccnstruction method is avail-
able for each domain conformally eguivalent
to B in place of B. Therefore we know that
the both classes &, and 9, have infinite num-
bers of elements other than the function ¢ of
THEOREM 1.

3. Let
(15) I(f) == jllfi'"ﬁ(zj)

k=1 R
RURTART(ONE

for f = Fp Then, we obtain the following
theorem.
THEOREM 2. Lot ¢ be the function defined

¢n THEOREM 1.
(i) Forevery f & @), the inequality

I(e) Zz 1(f)

holds. Here the equality sign appears if and
onlyvif f=¢;
(it) For every f & Du, the inequality

I(e)=I(f)
holds. Here the equality sign appears if and
onlyif f= ¢.

Proof. 1t is immediately seen that

(16) Slgltfldargc/“—*—
[

for ¢ of THEorREM 1 and thus ¢ © &} and ¢
& D».  We note that

an I(f):golglfl d arg f— 2z 1g I(f)

for any element f of &; or 9.
Proof of (i). Let f € G5
(16), (17) and THEOREM 1,

—2z g I{¢)=J () = J(f)=—271g I(f)
and thus

Then, by (f),

I(e) = I(f)

Further, by THeorem 1, the equality sign in
the last inequality appears if and only if f(z)
= ¢ (2).

Proof of (ii). Let f € 95.
and (17), the equation

Then, by (16)
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7@ =100 =~ 1glr1darg 7
+2z (g I(f) — g I(¢))
holds. On the other hand, by (14), the equation
Je)=J()=—2| 1g |71 d arg 7+ Dy ()
holds.
2z (Ig 1(f) —1g I(p))
|, 1& 171 d arg s+ Da (1) 220

and thus

Hence we have that

I(g) = I(S).
The equality sign in the last ineguality appears
if and only if 2= 0 and thus f (2) = ¢ (2).

Similarly to CoroLLARY 1 we have the follow-
ing corollary of THEOREM 2 (cf. THEOREM 2 of

[61).

COROLLARY 2. (i) Let r be the function
defined in (i) of CoroLLARY 1. Then for every
f & T, the inequality

Iy =1(f)

holds. Here the equality sign appears if and
only if f=+;

(i) Let ¥ be the function defined in (ii) of
CoROLLARY 1. Then for everv f & Fp, the
inequality

I < I1(f)

holds. Here the equality sign appears if and
onlyif f=J.

In the case p =1 in (1), we know that =k
=1, 7 =#n;= 1 and thus

I(f) =1f'@)].

Hence we have the following corol'ary of THEO-
REMS 1 and 2.

CorOLLARY 3. (i) T here exists the unique
element ¢ of &, and D, which univalently maps
B onto the domain of which the boundary con-
sists of circular slits (the images of Cy, -+, Cy)
centred at the origin and radial slits (the im-
ages of Cxi1, -+, Cx) emanating from the origin;

(ii) The function ¢ is the onrly element which
simultaneously belongs to &, and Di;

(iii) For every f & ®i, the inequality

lo' (1) |21 f'(2)]

Circular-Radial Slit Covering Surfaces
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holds. Here the equality sign appears if and
only if f=¢;
(iv) For every f € 9%, the inequality

le' (@) = | f'(z))]
holds.  Here the equality sign appears if and
onlyif f= ¢.

4, Let ', &y’ and 9p” be the subclasses
of Fp, ®» and D,, respectively, which consist of
functions f (z) of F», ®, and O, being p-valent.

LEMMA. %p//c’gp,, @p”C@p, and @p”C@p’.

Proof. Let {B,}y.:; be an exhaustion of B
such that z; & Bi(j=1, -, ¢), & E.Bi(k=1,
k) and such that 6B, consists of a finite
number of analytic Jordan curves. Let f(z) be
an arbitrary element of &,” (, &,” or 9,”), and
let " and F, (#=1, 2, ---) be the image covering
surfaces of B and B,, respectively, by the map-
ping w=f(z). We can take a sufficiently small
positive number # such that ¢F; does not lie
over |lw|<7and |w|=1/r. let F, and Fy, (#
=1, 2, ---) be the subsets of F and F,, respec-
tively, obtained by taking off from F and F, the
portions over |w| < # and |w| = 1/7. Then,
we find that

(18) DF'_ (lg ‘w|)

= lim S”mlg lwi| d arg w

SaF Ig |lw| darg w—4=p lg r

—»o00

= Sclg I fl d arg f—4=p lg r.

On the other hand,
19) Df, (Ig |w]|) = p Dicimcun(lg lw])
= —4zplgr,
for f(z)is p-valent. By (18) and (19), we have
that
[, 18171 d arg r <0

and thus fE T (( f =8 or f = Dy, resp.).

We note that ¢ & &, and ¢ & 9,” for the
function ¢ defined in THeorem 1. Then, by
TueoreM 2 and LEmMA, we have immediately
the following theorem.

THEOREM 3. Let ¢ be the function defined in

THEOREM 1.
(i) For every f = &, the inequality
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I()Z I(f) swer for this question.
holds. Here the equality sign appears if and Let G be the whole w-plane slit along a circu-
onlyif f =¢; lar arc
(ii) For every f € 9,”, the inequality I'={w| w|=1, —agarg w<a}
I{) S I(f) and a segment
holds. Here the equality sign appears if and ["={wl|arg w=r, e*<|w|=Ze’} (p>0),

onlyif f=e¢.

We note that &,;” (or §,”) consists of all uni-
valent functions f(z) on B which satisfy the
conditions

f(@) =0, f(o0) =00, fl(e0) =1
and (e) (or (¢€’), resp.) of 1. Then we have the

following corollary of THeoreM 3 (cf. [2], [3]
and [4]).

COROLLARY 4. Let ¢ be the function defined
7 COROLLARY 3.
(i) For every f & &/, the inequality

| SD' (&)‘g lf’ (zl)l
holds. Here the equality sigr appears if and
onlyif f = ¢;
(ii) For every f € ©1”, the inequality

lo' (z) | = f! (20) ]
holds. Here the equality sign appears if and
oulyif f = ¢.

IfC” = g (or C'=¢g)in (i) (or (ii), resp.) of
CoRrOLLARY 4, the present consequences are re-
duced to the well-known classical results (cf.
[1] and [8]).

Remark. Each class §»” (8" or 9,”) is a
strict subclass of §,' (& or §,/, resp.); i. e.
T’ E T (8 & 8, or D, & D). To see
this, it is sufficient to show that there exists
even the function of &y (& or H,’) of which
the valence is #ot bounded. The detailed argu-
ment is omitted (cf. Example 1 of [6]). By the
last assertion, we can infer that &y’ (&, or H,")
is a class much larger than " (, &, or D",
resp.). THeoOrReM 2 (and CoROLLARY 2) assert
that ¢ (and + or X) preserve the extremality
with respect to the functional I(f) even on
such the classes &, or 9, (and F,', resp.).

5. ExampLE 1. Does the function ¢ defined
in THEOREM 1 preserve the maximality with re-
spect to the functional I(f) on the class &, ?
The following example gives the negative an-

and 4’ be the domain
fwle <|w|<e', —(a+¢)
<arg w<a+e} O<a<<zr—e, e>0)

slit along //. Let F be the covering surface
over the w-plane obtained by the crosswise con-
nection of 4’ and G along the common slit /'
Then F is a doubly-connected planar surface.
Thus we can conformally map F onto the do-
main B of which the boundary consists of a
circular slit C’ (the image of 04’'—1") centred at
the origin and a radial slit C” (the image of 7")
emanating from the origin, and further may as-
sume that the mapping function z = g(w) satis-
fies the conditions

g(0)=0, g(oo)=o00, g'(c0)=1.
The inverse function w = f(2) = g~!(2) maps B
onto F under the condition

F(0)=0, f(oo)=o0, fl(o0)=1.
It is obvious that f(2)&®;. However f(2)& &',
for

[Jg 151 darg 7
=gad,_l, lg lw| d arg w=4¢e (a¢+¢e) >0.

Let B* be the image domain of G by g (w).
Then we see that B*— C” C B and the restric-
tion of f(z) on B* is the mapping function of
B* onto the domain G of which the boundary
consists of the circular slit // and the radial slit
!”. Thus, by CorROLLARY 4, we have that

(0 >1.

On the other hand, ¢(z)=2z and thus ¢’(0) = 1
for the present B. Consequently, we see that

| £1(0)] > ¢ (0),
which rejects the maximality of ¢ (z) with re-
spect to I( f) on the class &;.

By an analogy of the present example, we
can infer that the function ¢ of THEOREM 1 does
not preserve the maximality with respect to the
functional I( f) on any class ®;.

6. ExampLE 2. Does the function ¢ defined
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in THEOREM 1 preserve the maximality (or mini-
mality) with respect to the functional J(f) (or
I(f), resp.) on the class 9, ? The following
example gives the negative answer for the both
questions.

Let G,V and !” be the ones defined in ExAMPLE
1. Let 4” be the domain

{lw] e < w|< e, m—e
<arg w<<z+e} (0<<e<ln)

slit along !”. Let F be the covering surface
over w-plane obtained by the crosswise connec-
tion of 4”7 and G along the common slit /.
Then F is a doubly-connected planar surface.
Thus we can conformally map F onto the do-
main B of which the boundary consists of a
circular slit C’ (the image of /) centred at the
origin and a radial slit C” (the image of 84"
—{"”) emanating from the origin, and further
may assume that the mapping function z= g(w)
satisfies the conditions

g(0)=0, g(eo)=0c0, g'(co)=L1.
The inverse function w = f(z)=g~!(z) maps B
onto F under the condition

F(0)=0, f(oo)=00, f'(c0)=1.
It is obvious that f(z) = 9:. However f(z)
&9/, for

(20) ng | f| d arg f

:Su Ig lw| d arg w=4a(p+¢)>0.
I

Let B* be the image domain of G by g(w).
Then we see that B* — C’ C B and the restric-
tion of f(z) on B* is the mapping function of
B* onto the domain G of which the boundary
consists of the circular slit // and the radial slit
!”. 'Thus, by COROLLARY 4, we have that

[ f(0)] <1.
On the other hand, ¢(2) =2z and thus ¢’(0)=1
for the present B. Consequently, we see that

(21) | F1(0)| < ¢’ (0),
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which rejects the minimality of ¢(z) with res-
pect to I(f) on the class ;. Further, by (20)
and (21), we can also see that ¢(z) does not
preserve the maximality with respect to J(f)
on the class ;.

By an analogy of the present example, we
can infer that the function ¢ of THEOREM 1 does
not preserve the maximality (or minimality)
with respect to the functional J(f) (or I(f),
resp.) on any class 9.

7. The present consegquence suggests the
possibility of an extension to the case of an in-
finitely-connected domain or an open Riemann
surface of finite genus. We shall concern our-
selves with the problem in the next paper.
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